
PORTAL: Fast and Secure Device Access with Arm CCA
for Modern Arm Mobile System-on-Chips (SoCs)

Fan Sang1, Jaehyuk Lee1, Xiaokuan Zhang2 and Taesoo Kim1

1Georgia Institute of Technology, 2George Mason University

Abstract—The increasing integration of diverse co-processors
and peripherals within mobile Arm System-on-Chips (SoCs)
presents significant challenges for secure and efficient device I/O.
Existing approaches relying on memory encryption introduce
substantial performance and power overheads, which are
exacerbated by the need for real-time data processing and
strict power efficiency requirements in mobile platforms. These
issues hinder the wider adoption of Arm Confidential Compute
Architecture (CCA), which aims to provide robust security
guarantees. To address these challenges, we present PORTAL,
a secure and efficient device I/O interface for Arm CCA on
mobile Arm SoCs. PORTAL achieves secure I/O through strict
memory isolation without the need for memory encryption.
By leveraging the memory isolation mechanism in Arm CCA,
PORTAL enforces hardware-level access control, ensuring that
only designated Realm virtual machines and peripherals can
access the PORTAL-protected plaintext memory regions. This
design eliminates the overhead associated with encryption,
supports dynamic peripheral integration, and maintains robust
security guarantees. The evaluation results demonstrate that
PORTAL incurs a minimal one-time overhead of 9.8%, while
enhancing scalability and power efficiency, making it a pivotal
solution for fostering the adoption of the upcoming Arm CCA
in mobile and resource-constrained environments.

1. Introduction

Arm’s CPU architecture dominates mobile processors
with a 99% market share, 40.8% in automotive, and an overall
48% share in related markets [27]. The historical trend in
the development of mobile Arm processors, has been charac-
terized by an increasing integration of diverse co-processors,
peripherals, and devices alongside Central Processing Unit
(CPU). This trend began with the integration of basic
elements such as memory management units and has evolved
to include a wide range of specialized components such as
Graphic Processing Units (GPUs), Neural Processing Units
(NPUs), reality processors (e.g., Apple R1 chip [1]) and var-
ious communication modules [60], [74], [8], [65], [50], [51],
[57]. As the evolution of mobile Arm processors continues,
these advancements are supporting emerging computing plat-
forms that demand low latency, high power efficiency, sub-
stantial computational power, and maximum space efficiency
within a single chip, such as in mobile devices, virtual reality,
autonomous vehicles, and edge computing applications.

Meanwhile, the security measurement on Arm processors
has also leaped forward significantly. Modern advancements
in Confidential Computing [16], [30], [44], [5] have intro-
duced confidential Virtual Machines (VMs) [4], [35], [34]
which protect both the application and the entire VM software
stack, including the guest Operating System (OS). Arm
recently announced its adoption of confidential VMs, called
Arm Confidential Compute Architecture (CCA) [10]. Due to
the strong security guarantees of confidential VMs, devices
are untrusted and cannot directly access the protected memory
allocated for confidential VMs. Workarounds for Arm CCA
facilitate device communication through an untrusted shared
memory region, such as virtio [39] or bounce buffer [48].
To meet the security requirements of confidential VMs, data
in transit is encrypted when in untrusted shared memory.

Arm CCA aims to provide robust security mechanisms,
but struggles to keep up with the trend of mobile Arm System
on Chips (SoCs) [20], hindering its wider adoption upon the
upcoming release.

The scalability and performance of Arm CCA are increas-
ingly challenged as the number of integrated devices within
mobile Arm System on a Chip (SoC) grows. For instance, cus-
tomized Arm processors in modern autonomous vehicles [74],
[14], [49], [45], [59], featuring CPUs, GPUs, sensor fusion
processors, and AI accelerators (e.g., NPUs), exemplify the
complexity an Arm SoC must handle. When these devices
concurrently access encrypted memory shared by all devices
and the CPU, significant performance degradation occurs. In
addition, memory encryption naturally conflicts with existing
optimizations such as deduplication [62]. Encryption makes
identical data blocks appear different, leading to inefficient
memory usage, especially in systems requiring rapid, frequent
access to shared data. These drawbacks impact real-time
data processing in resource-constrained platforms such as
autonomous vehicles, where minor lags can compromise
safety and efficiency. Furthermore, point-to-point memory
encryption in current secure device Input/Output (I/O) ap-
proaches for Arm CCA [25], [82], [69], [76] ties the device
to the entire lifespan of the confidential VM, preventing
dynamic device assignment during runtime, a common
scenario when integrated devices on mobile SoCs are shared
by multiple tenants. Lastly, unlike desktop platforms, mobile
Arm platforms operate under stringent power efficiency re-
quirements (e.g., battery). Repetitive memory encryption and
decryption significantly increase energy consumption [61],
[46], [3], [55], [72], [32], [47]. The growing number of

500 1000 1500

0

5k

10k

15k

gpu-encrypt-5GB gpu-5GB

Power Consumption over Time
 Apple Mac Mini M1 | Netflix Queen's Gambit | MacOS 11.2.

Time (ms)

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

248 m
W

451 mW

935 mW

1854 mW

0 500 1000 1500

gpu-5GB-8

gpu-5GB-4

gpu-5GB-2

gpu-5GB-1

Power Consumption (W)

Figure 1: Overhead incurred by memory encryption with software-
based 128-bit AES-GCM. Left: power usage and execution time
(indicated by spikes) when copying 5GB of memory with and with-
out encryption. Right: additional power consumption for multiple
GPUs due to p2p memory encryption. Experiment conducted on
Apple M1 SoC with 16GB unified memory.

integrated devices that require secure interactions exacerbates
this problem when memory is shared in the mobile Arm SoCs,
as shown in our Apple M1 SoC experiment [7] in Figure 1.

We propose a bold approach: achieving Arm CCA secure
device I/O by sole isolation without memory encryption.
Historically, memory encryption is deployed in Confidential
Computing because if any of the isolation techniques have
been compromised, the data being accessed is still protected
by cryptography. One particular case is to prevent physical
attacks such as memory probing [71], [29], [68], [38] and
cold boot attacks [33], [31], [80], [40], as isolation does
not extend to the memory bus. In other words, memory
encryption can be redundant if memory isolation is strictly
and always enforced. Thanks to the integrated memory
design adopted in common mobile Arm SoCs, we argue that
encrypting the shared memory between the confidential VMs
and the peripheral devices is unnecessary. On the one hand,
external attackers cannot launch physical attacks by probing
the memory bus, as the integrated memory design connects
the memory directly to the CPU and devices within the Arm
SoC [66], [81], [24], which is commonly equipped with
tamper detection against unauthorized physical accesses. On
the other hand, unlike traditional process-based Confidential
Computing (CC), Arm CCA enforces strict hardware-based
memory access control even for privileged software (i.e.,
OS and Virtual Machine Monitor (VMM)) so that privileged
attackers cannot access protected memory regions [16], [10].
As a result, memory encryption is unnecessary if no other
entities except designated confidential VMs and devices
can read or write to the shared memory region. In return,
it is possible to achieve plaintext secure device I/O, which
enhances Arm CCA for mobile platforms by 1) boosting
the performance for secure data transmission, 2) retaining
scalability with the increasing trend of integrated devices,
and 3) reducing burden on energy efficiency.
PORTAL. In this paper, we present PORTAL, a secure
and efficient device I/O interface for Arm CCA on mobile
Arm SoCs. PORTAL achieves secure I/O by strict memory
isolation without memory encryption. In essence, PORTAL

provides a plaintext memory region whose access control
is strictly enforced by Arm CCA so that no parties except
the designated Realm virtual machines (Realm VMs) and
peripherals can access it. PORTAL leverages the capabilities
of Arm CCA’s Granule Protection Check (GPC) and
System Memory Management Unit (SMMU) to enforce
hardware-level memory isolation. GPC enforces strict access
control on the host physical address space and is mandatory
for any component that generates memory transactions under
the CCA model. SMMU provides integrated devices with
virtual to physical address translation and access controls
when accessing the host memory. The two trusted access
control components collaborate to enforce two-way exclusive
memory access between designated Realm VMs and devices,
achieving secure I/O by isolation without encryption.

To ensure the integrity of the isolation, PORTAL employs
a specialized Realm VM to protect the configuration and
management of the sensitive data structures (e.g., translation
tables) that establish the isolation. As PORTAL removes the
memory encryption and adopts a plaintext-based approach,
we also conduct an in-depth security analysis of PORTAL and
make sure that PORTAL does not open new attack surfaces.

We prototype PORTAL on two official platforms, the
Arm Fixed Virtual Platforms (FVPs) emulator [15] for
software-simulated Arm CCA features and the Orange Pi
5 Plus [53] with Arm Mali-G610 GPU. Evaluation results
show that PORTAL-based secure I/O incurs a minimal
one-time overhead of 9.8% with runtime device management
and can achieve a significant performance gain (1.07×-9.07×
on selected benchmarks) on data-intensive applications
compared to memory encryption solutions.

PORTAL tries to foster a broader adoption of Arm CCA
on the most widely deployed mobile processor architecture
upon its official release in the near future. PORTAL serves
as the first plaintext secure I/O interface for Arm CCA to
achieve performance, scalability, and power efficiency on
demanding mobile Arm platforms. PORTAL will be publicly
available as an open-source project, allowing communities
to test and contribute towards a more practical secure I/O
for peripheral access on mobile Arm CC platforms.
Contributions. This paper makes following contributions:
• New approach. We present PORTAL, the first plaintext-

based secure I/O interface for mobile Arm CCA that
ensures efficiency, scalability, and power efficiency.

• Fostering broader adoption of Arm CCA. We point out
the current challenges of Arm CCA in the trend of increas-
ing integration of diverse devices on mobile Arm devices,
the most widely adopted computing platform. PORTAL
boosts the practicality of Arm CCA within the architectural
trend of mobile Arm processors, fostering a wider adoption
of Arm CCA upon its upcoming official release.

• Comprehensive evaluation. Our evaluation shows
that PORTAL is feasible and achieves its performance,
scalability, and power efficiency goal. As PORTAL adopts
plaintext instead of encrypted shared memory for data
transmission, we also conduct comprehensive security
analysis of PORTAL to demonstrate its security.

Security State NS PAS Secure PAS Realm PAS Root PAS

NS ✓ × × ×
Secure ✓ ✓ × ×
Realm ✓ × ✓ ×
Root ✓ ✓ ✓ ✓

TABLE 1: Accessibility of physical memory pages having different
Physical Address Space (PAS) from different processor security
states. NS stands for Non-Secure.

2. Background

2.1. Arm Integrated Memory

Integrated memory is a configuration where the
memory subsystem is embedded onto the processor’s
silicon. This design allows shared access between the
CPU and peripherals like GPUs, NPUs, Digital Signal
Processors (DSPs), and co-processors, optimizing space,
power efficiency, and data access speeds.

Integrated memory is prevalent in Arm processors,
especially in mobile and embedded systems where compact
design and energy efficiency are crucial [60], [74], [8], [65],
[50], [51], [57]. This architecture is standard in smartphones,
tablets, and portable devices [65], [57], which dominate the
mobile processor market and benefit from the space efficiency
and power savings of integrated memory. In addition,
integrated memory is increasingly used in automotive
systems [74], [14], [49], [45], [59], extended reality head-
sets [60], [1], industrial machines [50], and edge computing
devices [51], [8]. This trend shows the demand for efficient,
responsive, and robust computing across industries, making
integrated memory essential in modern Arm processors.
Feasibility of physical memory attacks. Considering
physical attacks [71], [29], [68], [38], [33], [31], [80],
[40] on Arm systems with integrated memory, several
factors render these attacks impractical. The compact and
integrated nature of Arm SoCs makes memory components
physically inaccessible without specialized tools and risk
of significant damage [66], [81], [24]. Advancements in
packaging technology [26], [77] protect these components
by making direct memory access exceedingly difficult
without sophisticated equipment. Furthermore, security
features such as tamper detection [18], [67], [64], [43], [79]
safeguard against unauthorized physical access by triggering
automatic data deletion or device locking upon tampering
attempts. These protections greatly reduce the chances of
successful physical attacks on integrated memory.

2.2. Arm CCA

Arm CCA [16], [10] enables the creation of VM-based
trusted execution environments via a hardware extension to
the Armv9 Instruction Set Architecture (ISA) [9], referred
to as Realm Management Extensions (RME) [12]. RME
introduces two new worlds, Realm and Root, in addition to
the existing Normal and Secure worlds. CCA manages these
worlds by implementing a Granule Protection Table (GPT),
a crucial data structure that assigns physical addresses (or

Device

GPC

SMMU
CPU

GPC

TLB MMU

Cache

Interconnect

DRAMMPE Memory Controller

Realm
VM

RMM

Monitor

VM

VMM

Realm Normal

EL0

EL1

EL2

EL3

Root

RSI

SMC
RMI

SMC

Figure 2: GPC in Arm CCA. Blue components are subject to GPC
enforcement. The right figure shows interfaces between the Realm
VM, Realm Management Monitor (RMM), VMM, and Monitor.
The SMC instruction allows the RMM and VMM (EL2) to return
control to the Monitor (EL3). Realm service interface (RSI) is
the channel for requesting services from the RMM, and realm
management interface (RMI) is the communication channel from
the host to the RMM.

Physical Address Spaces (PAS) in CCA terminology) to one
of the four worlds, where a granule is the smallest unit of
memory that can be managed. This setup enhances isolation
by equipping Processing Elements (PE) (i.e., Arm cores,
SMMU, caches, and Translation Lookaside Buffers (TLBs))
with GPC, which check if the source and destination PAS
conform to the access control policies (see Table 1). For
example, when a CPU core executes in Realm mode, it
can generate memory transactions for the Realm PAS. If
an invalid transaction is detected, CCA triggers a Granule
Protection Fault (GPF) and handles it in EL3.

The GPTs, stored in the main memory under the
Root world, are accessible only by the trusted Monitor,
which updates them as necessary. Changes to the GPTs
trigger synchronization of the GPC, which requires flushing
outdated states to maintain consistency. These checks are
pivotal in preventing unauthorized access to the Realm
memory from the untrusted Normal or Secure worlds by
controlling all memory accesses and ensuring that memory
transactions initiated from the core are securely managed.

The trusted Monitor at EL3 in the Root world adjusts
the world bit during context switches, enhancing security.
Concurrently, the trusted RMM at EL2 in the Realm
world isolates confidential VMs by managing stage-2
translations from guest to host physical addresses. Lastly,
memory encryption and integrity protection prevent physical
tampering with main memory data.

2.3. Arm Peripherals and SMMU

Unlike discrete peripherals in Intel-based systems,
Arm-based devices use a unified memory architecture (§2.1)
shared with the CPU and other peripherals (e.g., GPU
and NPU). Arm handles data transfers and communication
between the host and device through comprehensive
software, including kernel drivers and user runtimes. This
software manages the device computation environment and
facilitates hardware interactions.

To set up the execution environment, the device software
allocates physical memory and creates buffers for specific
tasks. It then loads essential task elements into device mem-
ory. Additionally, the software stack creates the page table
and configures registers for Direct Memory Access (DMA) to
access critical components. Interaction with hardware is man-
aged via task scheduling and submission through Memory-
Mapped Input/Output (MMIO). After computations, the soft-
ware retrieves results and restores the system environment.

Given the shared memory architecture, Arm has
integrated the SMMU to oversee DMA-capable peripherals.
Most Arm GPUs [11], [52], [56] and other peripherals are
connected to an SMMU. Similar to the CPU’s Memory
Management Unit (MMU), the SMMU [13] performs stage-1
and stage-2 address translations to regulate peripheral access
to the physical address space. Privileged software configures
the SMMU registers, including page table and translation
configuration registers, through MMIO. Besides address
translation, the SMMU supports GPC under Arm CCA. To
secure these features, CCA adds SMMU MMIO registers
accessible only in the Root world, offering configurations
for SMMU GPC, such as GPT base, GPC controls, fault
handling, and TLB invalidation.
Device identity management. Each device connected to the
SMMU is assigned a unique Stream ID (SID) included in its
memory access requests. The Stream Table (ST) maps SIDs
to their corresponding Context Descriptors (CDs), which
contain the virtual-to-physical address translation table. To
retrieve the physical address, the SMMU uses the device’s
SID to traverse the ST and CD for the translation table, which
is then used to find the physical address. Besides address
translation, the ST and CD in the SMMU manage memory
access, access control, and security for connected devices.

3. Overview

3.1. Motivation

As more devices are integrated into Arm SoCs, managing
secure environments becomes increasingly complex. Includ-
ing many devices in a single Arm SoC presents challenges
for Arm CCA’s practicality upon its upcoming release to
mobile Arm SoCs.
Limitations of existing approaches. Specifically, existing
solutions for secure device I/O in Arm CCA do not align
with the ongoing architectural evolution of Arm SoCs for
several reasons:
1) Performance and TCB overhead: Existing shared memory
solutions [76], [39], [48] rely on software-based memory
encryption which causes significant performance overhead
(more than 40%), defeating the original goals of using devices
such as accelerators, while recent study [69] requires non-
trivial modification on hypervisor hardware and significantly
bloats the Trusted Computing Base (TCB). Worse, memory
encryption naturally hinders existing mature performance
optimizations such as memory deduplication [62], opposing
mobile platforms that demand real-time processing.

2) Inscalability: The performance overhead increases when
multiple peripheral devices access unified memory simulta-
neously [60], [74], [8], [65], [50], [51], [57]. Each device
must encrypt every memory access and undergoes complex
key management overhead for multiple sessions. Current
solutions do not scale with the increasing integration of
devices in Arm SoCs, hindering the adoption of Arm CCA
in the most prevalent mobile processor market.
3) Inflexibility: In order to enforce exclusive access, existing
solutions employ one-to-one binding [25], [82], [69], [76]
between the VM identity and the target device, which is
persist throughout the VM’s lifespan. Such a direct binding
hinders the support of multiple peripherals or dynamic
attachment of peripherals.
4) Power inefficiency: Mobile Arm platforms operate under
stringent power efficiency requirements. The computational
overhead associated with frequent memory encryption for
various peripheral devices increases energy consumption
substantially [61], [46], [3], [55], [72], [32], [47], making
Arm CCA even less appealing for mobile Arm platforms.
5) Lack of device generality: Constrained devices that lack
the capability to support cryptographic operations, including
key negotiation and secure encryption, cannot be integrated
into existing solutions that demand point-to-point encryption.
Reevaluating memory encryption in Arm SoCs. Histori-
cally, Memory encryption arose to secure data in transit and
at rest within complex processor and memory architectures.
This was crucial in shared and cloud computing environments
to protect data from unauthorized access at the hardware level.
Given the strong physical security and low risk of physical
attacks on Arm SoCs, the need for memory encryption in
Arm CCA for mobile processors should be reconsidered. In
environments where processors are not physically threatened,
strict memory access controls (e.g., hardware-based GPC
in Arm CCA) may provide sufficient protection without the
drawbacks of memory encryption. We believe that carefully
redesigning Arm CCA memory isolation can ensure data se-
curity without memory encryption, maintaining performance,
scalability, and power efficiency for mobile Arm SoCs.

3.2. Targeted Platforms

We consider SoC-based Arm processors where the mem-
ory is embedded on chip (i.e., integrated memory) and is
shared between the CPU and peripheral devices (i.e., unified
memory model), a common configuration for mobile Arm
processors. We assume that communication within the Arm
processor package is secure and physical attacks are infea-
sible, owing to its built-in resilience against tampering and
interference with interconnections (§2.1). As a result, the data
in transit among the memory, the processors, and peripherals
on chip, remains secure against physical memory attacks.

3.3. Threat Model

We assume that the next-generation Arm SoC will
incorporate security primitives including the RME, CCA, and

device

GPC

Interconnect

MPE

CPU

GPC

RealmNormal

integrated

memory

Read from memory

device

GPC

Interconnect

MPE

CPU

GPC

RealmNormal

integrated

memory

Shared in PORTAL

PORTAL

RMM SMMURMM SMMU

Figure 3: Access modes of integrated devices. Left: encrypted
memory in native Arm CCA. Right: plaintext memory access
through PORTAL.

a hardware root of trust to support secure boot and remote
attestation. We trust the Realm and the Root world that hosts
the RMM and the Monitor, conforming to the TCB of Arm
CCA. We assume a strong attacker who controls both the Nor-
mal world and the Secure world, including the host OS and
the VMM. The attacker aims to leak or manipulate the sen-
sitive data transmitted between the confidential VM and the
peripheral device. The attacker can access the unified memory
holding the sensitive data or employ DMA-capable peripher-
als to execute similar attacks. Additionally, the attacker might
disrupt the isolated execution environment by compromising
memory management and modifying the states of device
registers. The attacker could also introduce malicious device
tasks to access or tamper with sensitive data within other
realms. We assume that all platform devices integrated into
the SoC packages are not forgeable. We do not consider
denial-of-service attacks from the malicious hypervisor or
host OS. We also do not consider speculation attacks and side-
channel leakage due to microarchitectural implementation.

3.4. PORTAL Overview

The core of PORTAL is a strictly isolated plaintext
shared memory region, called PORTAL region, for data
transmission between Arm CCA confidential VMs (i.e.,
Realm VMs) and integrated devices on Arm SoCs. PORTAL
ensures that only dedicated Realm VMs and peripherals
can access the PORTAL region, while unauthorized entities,
including privileged software (i.e., VMM and host OS), are
prohibited from access. PORTAL removes the requirement
for memory encryption against physical attacks by relying
on the robustness of Arm SoC packages.

Specifically, when authorized confidential VMs and
peripherals initiate memory transactions to the PORTAL
region, PORTAL configures their GPTs so that the PORTAL
region is treated as the Normal world PAS, allowing them
to issue memory transactions without encryption. The CPU
and SMMU stage-2 translation tables are utilized to ensure
Realm VM-level and device-level isolation. In contrast, the
PORTAL region is configured as the Root world PAS for
unauthorized entities, blocking their accesses.

device

GPC

Interconnect

MPE

CPU

GPC

RealmNormal

integrated

memory

Shared in PORTAL

PORTAL

RMM SMMU

Realm

VM

VMID1

Stage-2 trans. tables

STE VMID1

Stage-2
…

Stream Table

SID1

Stage-2 trans. tables

Device-level isolation

Intra-realm isolation

Protected

Figure 4: Protected PORTAL regions.

Challenges. The design of PORTAL faces three key chal-
lenges. C1: The current SMMU design lacks Realm VM
context (i.e., whether a device belongs to a Realm VM) and
cannot issue memory transactions targeting the Realm PAS.
Meanwhile, the SMMU hosts multiple page tables in system
memory (i.e., Normal world and Secure world), which is con-
sidered untrusted under Arm CCA. PORTAL thus establishes
an isolated memory region in the Normal world PAS for
device communication, while securing it by restricting access
to authorized entities. C2: It is critical to ensure PORTAL
does not bloat the TCB of trusted components of Arm CCA.
PORTAL uses a dedicated Realm VM, the System Realm, for
critical management tasks (e.g., configuring the SMMU),
preserving the original TCB of EL2 and EL3 without
expanding the RMM in EL2 or the Monitor in EL3. C3: As
PORTAL removes memory encryption and adopts a plaintext
shared memory region for device communication, the strict
isolation enforced by PORTAL must span all layers of the
Arm CCA stack to maintain data integrity and confidentiality.
We conduct an in-depth security analysis on PORTAL, and
demonstrate that PORTAL does not open new attack surfaces
and the design decisions are well justified (§6.2).

4. Design

4.1. Protected Memory Regions

PORTAL region. PORTAL strictly isolates a shared memory
region, called PORTAL region, for a particular pair of
authorized Realm VM and device to achieve secure I/O
without encryption. However, the existing SMMU under
CCA is not aware of the Realm world context and all devices
are treated in the Normal world. Therefore, a PORTAL region
must reside in the Normal world to be accessible to both the
Realm VM and the device. As shown in Figure 4, PORTAL
utilize the stage-2 translation tables and SMMU translation
tables to enforce memory isolation. The stage-2 translation
table for Realm VMs is managed by the trusted RMM and
is used to isolate mutually distrusting Realm VMs. PORTAL
uses the RMM’s stage-2 translations table to ensure that when
a PORTAL region is mapped to a particular Realm VM, it will
not be accessible by other Realm VMs that do not possess the

device

GPC

Interconnect

MPE

CPU

GPC

RealmNormal

integrated

memory

PORTAL

RMM SMMU

Realm

VM

VMID1

Stage-2 trans. tables

STE VMID1

Stage-2
…

Stream Table

SID1

Stage-2 trans. tables

Host in a Portal region

accessible by SMMU

SMMU data

Host OS / VMM

internal reg

…

Figure 5: Protecting the SMMU data structures.

mapping. As a result, even though GPC allow any Realm VM
to access a PORTAL region, which is within the Normal world
PAS, RMM’s stage-2 translation table ensures the isolation of
the PORTAL region from unauthorized Realm VMs. Similarly,
PORTAL configures the SMMU translation table to ensure
that only the authorized device has the mapping to the specific
PORTAL region in its stage-2 translation. However, as the
SMMU is managed by the untrusted host OS and the VMM,
it can be manipulated by the attackers to allow attacker-
controlled devices to access unauthorized PORTAL regions,
demanding effective protection measurements. We discuss
how PORTAL protects the SMMU in Section §4.2.

4.2. Protection of the SMMU

Protecting the SMMU data structures. The SMMU is not
a part of the Arm CCA’s TCB and is originally managed by
the untrusted host OS and the VMM. Hosting the SMMU
data structures (i.e., Stream Tables and stage-2 translation
tables per device) in highly privileged software layers such as
the trusted Monitor or the RMM can prevent access from the
attackers. However, the SMMU, without the corresponding
permission, cannot perform accesses to the SMMU data struc-
tures located in either the RMM or the Monitor. Therefore,
PORTAL hosts the SMMU data structures in a PORTAL region
(EL1) (Figure 5), which resides in the Normal world PAS and
can be freely accessed by the SMMU, while isolated from the
host OS and the VMM to prevent malicious manipulations.
Protecting SMMU management. In addition to protecting
the SMMU data structures, the code logic that manages the
SMMU should be secured as well. Specifically, originally
located in the untrusted host OS and VMM, the SMMU man-
agement code should be relocated to memory regions inacces-
sible by the attackers. Existing approaches [76], [69] choose
to move the SMMU management code to the trusted Monitor
or the RMM to achieve intrinsic security offered by Arm
CCA. However, as the Monitor and the RMM are the most
security-critical layers of Arm CCA, introducing the SMMU
management code will enlarge the TCB and might cause total
compromise of Arm CCA (i.e., both the Root and the Realm
world) if security flaws exist in the added logic. In addition, as
the RMM and the Monitor are located in the high privileged

device

GPC

Interconnect

MPE

CPU

GPC

Normal

integrated

memory

PORTAL

RMM SMMU

System Realm VM

VMIDsystem

Stage-2 trans. tables

SMMU

Management

logic

MMIO

Managed by a dedicated

System Realm VM

SMMU

management logic

MMIO config

registers

Realm…MMIO

Figure 6: Protecting SMMU management.

exception levels, it incurs additional overhead of context
switching and TLB/cache flushing whenever the Realm VM,
the host OS, or the VMM request SMMU updates.

PORTAL employs a dedicated Realm VM called System
Realm (EL1) to manage the SMMU on behalf of the host OS
and the Realm VM that is authorized to communicate with
the device, shown in Figure 6. The System Realm owns the
PORTAL region (EL1) that hosts the SMMU data structures.
The System Realm also has exclusive access to the MMIO
registers that configure the SMMU and its data structures, as
these registers can be used by the attackers to compromise
the security of PORTAL (e.g., turn off stage-2 translations or
the SMMU entirely). This is achieved by mapping the MMIO
configuration registers only to the System Realm’s translation
table, forcing every SMMU-related operation to be routed to
and handled by the System Realm. Note that the Stream Table
I/O page tables are set up using the memory pages that belong
to the System Realm, and are inherently only accessible by
the System Realm itself, the RMM, and the Monitor.

We assume that the System Realm is implemented and
distributed by trusted vendors such as Arm or SoC vendors.
Since the System Realm is also an instance of Realm VM,
it benefits from the existing Arm CCA security guarantees.
First, based on the attestation report provided by Arm CCA,
the Realm VM wishing to access the PORTAL region can
verify whether the System Realm is provisioned by the
trusted vendors. Meanwhile, the measurement provided in
the attestation report validates whether the expected code
logic (e.g., no intentional information leak) is running in the
System Realm. In addition, potential vulnerabilities in the
System Realm (EL1) will not compromise the RMM (EL2)
and the Monitor (EL3), unlike the existing approaches. Lastly,
to reduce the overhead caused by frequent world switching
and exception level changes, PORTAL provides an exclusive
interface to interact with the System Realm. Through this
interface, Realm VMs are able to send commands to the
System Realm to configure the SMMU on demand. We
provide more details about the PORTAL System Realm
interface in Section §4.4.

CPU P-GPT

Unauthorized
Entity N-GPT

Device P-GPT
for Realm 1

Device P-GPT
for Realm 2

System Realm
P-GPT

RMM R1 R2

Portal 1

Portal 2

Portal 1 Portal 2

Portal for SMMU

Normal World Realm World Root World

Figure 7: Memory accessibility for authorized and unauthorized
entities in different security states (i.e., Realm or Normal) based
on GPT configurations.

4.3. Memory Isolation

All memory requests generated by peripheral devices
are checked by the SMMU for access control and address
translations provided in the I/O page table. As PORTAL
regions belong to the Normal world PAS, memory trans-
actions from devices to a PORTAL region are marked as
Normal world transactions. However, since multiple devices
can be attached to the same SMMU, a device can access
any existing PORTAL region using Normal world memory
transactions, even when the particular PORTAL region is
established for other devices. PORTAL thus requires device-
level isolation within the Normal world to achieve two-way
isolation between a dedicated pair of Realm VM and device,
which can be achieved through the existing access control
mechanism provided by the SMMU.
Intra-realm and device-level isolation. Arm CCA GPC
enforce access control at world granularity, which is not
sufficient to isolate mutually distrusting peripherals. PORTAL
employs stage-2 translations to enforce fine-grained isolation.
Within PORTAL’s model, stage-2 translations have two sides:
CPU side and device side, as shown in Figure 4. On the CPU
side, the RMM isolates mutually distrusting Realm VMs
using stage-2 translations, which are stored in the protected
Realm memory (EL2) inaccessible to the host OS and the
VMM. On the device side, similarly, to enable the secure
device I/O at device granularity, PORTAL uses the SMMU
stage-2 translations to isolate mutually distrusting devices
from accessing each other’s PORTAL regions. Since the
isolation guarantee solely depends on correctly identifying
the world to which the VM and the device belong, the
identity of VMs and devices must be unforgeable. PORTAL
uses the VMID of each VM and the SID of each device to
identify VMs and devices, respectively. Both identifications
belong to the SMMU data structures and are protected by
the dedicated PORTAL region (EL1) owned by the System
Realm, allowing its exclusive management on behalf of other
Realm VMs as described in §4.2. Moreover, the configuration
of the SMMU is managed by the PORTAL System Realm
instead of the untrusted host OS and the VMM.
Isolating authorized and unauthorized entities. PORTAL
designs two types of custom GPTs, PORTAL-GPT (P-GPT)
and Normal-GPT (N-GPT), to configure the memory views
for authorized and unauthorized entities, respectively, as

shown in Figure 7. The P-GPT of an authorized entity
(i.e., a Realm VM or a device assigned to a Realm VM)
sets its PORTAL region as the Normal world PAS. For a
Realm VM on a CPU core, its P-GPT sets the PORTAL
region as Normal world PAS and maintains the rest of
the PAS layout of memory regions as in its original GPT,
preventing untrusted software from accessing the Realm
and Root regions (Figure 8). Isolation among distrusting
Realm VMs is enforced by the RMM’s stage-2 translation.
For a device attached to the Realm VM, the P-GPT in the
SMMU configures non-PORTAL regions as Root world PAS,
restricting its access to only the PORTAL region for DMA.
Isolation among distrusting devices accessing any PORTAL
region is enforced by SMMU stage-2 translation, ensuring
each device accesses only its own PORTAL region. In contrast,
the active GPT of an unauthorized entity (i.e., a Normal world
VM or a device not assigned to a Realm VM) is N-GPT,
which configures the PORTAL regions as Root world PAS
to block unauthorized access while preserving the original
access control of other memory regions (Figure 8). Conse-
quently, memory transactions from unauthorized entities to
the PORTAL regions are bound by lower exception levels
and rejected by GPC before reaching the memory controller.
Without such a dual-GPT setup of P-GPT and N-GPT, the un-
trusted VMM managing Normal world VMs can maliciously
insert mappings from Normal world VMs to PORTAL regions
in its stage-2 translations to enable unauthorized access.
Switching between P-GPT and N-GPT in CPU. Each CPU
core’s GPT is set as a P-GPT for the authorized Realm
VM running on it. When not executing a Realm VM, the
P-GPT transitions to an N-GPT to block unauthorized
access to the PORTAL region. The Monitor in the Root
world intercepts Realm Management Interface (RMI) calls
(e.g., RMI_REC_ENTER) that start a Realm VM, transforming
the N-GPT to a P-GPT before switching from the Normal
to the Realm world, and vice versa (Figure 7).
Synchronizing P-GPT and N-GPT. Regardless of the access
control on PORTAL regions, N-GPT and P-GPT must provide
the same access control between different PAS as per CCA
policies. Except for PORTAL regions, P-GPT and N-GPT
should be identical for other memory sectors. In PORTAL,
updates on the GPT requested via RMI and Realm Service
Interface (RSI) interfaces into the Monitor thus are applied to
both P-GPT and N-GPT for any Realm page not in a PORTAL
region. Such a synchronisation does not incur significant
performance overhead. Originally without PORTAL, one GPT
(i.e., N-GPT in PORTAL terms) is updated by the Monitor.
P-GPT, introduced by PORTAL, is updated based on the same
mechanism except for the PORTAL region. As invoking the
Monitor already incurs an expensive context-switching over-
head and as N-GPT and P-GPT only differ in the PORTAL
region, these additional updates add minimal overhead.

Isolating MMIO in Realm VMs. Given that MMIO controls
integrated devices (e.g., GPU and SMMU) in SoC, granting
exclusive MMIO access to authorized Realm VMs effectively
protects each device. Since MMIO uses physical memory
addresses to map peripheral registers, PORTAL employs GPC

GPC

Interconnect

MPE

CPU

GPC

RealmNormal

integrated

memory

Shared in PORTAL

PORTAL

RMM

Realm VM

CPU

Normal VM

GPC

MMU

Portal (P)-GPT

Root RMM PORTALR-VM

Normal (N)-GPT

Root RMM PORTALR-VM

Realm world memory transactions Normal world memory transactions

Figure 8: Isolating authorized and unauthorized entities via P-GPT and N-GPT.

API Description

RMI_REC_ENTER* initiate the execution of a Realm VM.
PORTAL updates P-GPT and N-GPT.
PORTAL check the device attachment / detachment.

RSI_ATTACH_DEV allocate a device from a Realm VM.
RSI_DEV_MNG attach and detach a device from Realm world.
RSI_SET_PORTAL request a PORTAL region for DMA.
RMI_ATTACH_DEV allocate device memory from Normal world to Realm world.
RMI_CREATE_Q create a command queue for a newly instantiated Realm VM.
SMC_SET_PORTAL delegate Realm memory to a PORTAL region.

add stage-2 translation for the SMMU.

TABLE 2: Updated and new interfaces introduced by PORTAL.
RMI_REC_ENTER is an existing interface and is updated for PORTAL-
specific operations.

protection for access control on MMIO pages and host them
in the Realm VM’s PORTAL region. However, Arm CCA
does not validate the mapping between the guest Physical
Address (PA) and the host PA by default when adding new
memory pages to the Realm VM. Each platform has unique
and fixed MMIO physical addresses for devices, listed in the
device tree and immutable at runtime. PORTAL can verify
that the MMIO page mappings match these fixed addresses.
Without verification, attackers can map the guest PA to a
malicious host PA, enabling man-in-the-middle attacks.

4.4. System Realm Internals

We adhere to the Arm CCA specification for RMM
communication with the untrusted host OS and VMM [16]
and propose new interfaces (Table 2). The interfaces
RSI_ATTACH_DEV and RMI_ATTACH_DEV allocate devices for
Realm VMs, while SMC_SET_PORTAL configures the device
under PORTAL protection.
System Realm initialization. We illustrate the initialization
of the System Realm for exclusive SMMU management
in Figure 9. Assigning a device (i.e., SMMU and peripheral)
to a Realm VM is achieved by providing it exclusive access
to the MMIO region of the device. Since the host VMM
manages all memory resources, including SMMU MMIO
addresses, the System Realm invokes RSI_ATTACH_DEV on the
SMMU address to transfer the SMMU device from the host
VMM to the System Realm (1). As PORTAL allows only

System Realm

RMM

MonitorHost VMM

RSI_ATTACH_DEV(SMMU_addr)

SMMU P-GPT Portal to SR
Portal to SMMUSystem Realm

P-GPT
Normal Realm Root

HPA
SMMU_addr

IPA
SMMU_addr

System Realm Init.

Command Queue Init.
RMI_CREAT_Q(q_addr, VMID)

HPA
q_addr

IPA
0xf1000

Sy
st

em
 R

ea
lm

 S
-2

Map page

(0xf1000, VMID)

SID, CREATE_MAP,
0xc000, 0xab002 …SID, CREATE_MAP,

0xc0000, 0xab0001 … …

VMID Commands

Command Queues
Validate command

Deque

Reverse map Update
SMMU

Portal Portal Portal
SMMU MMIO Stream Table S-2

SMMU_addr

VMID S-2
…

Stream Table
0xab000

(HPA)
0xc0000

(IPA)

Validate Request

RUN_EXECUTION_LOOP()

EXIT_TO_HOST

RMI_ATTACH_DEV(HPA)

SMC_SET_PORTAL(HPA,SIZE) Map page

Return to Realm

virt = IOREMAP(0xf1000)
Init_register_Q (virt, VMID)

Execution Loop

❶

❷

❸

❻❹

❺

❼

❽

➀

➁

➂

➃

Figure 9: System Realm lifecycle.

the System Realm to acquire the SMMU, the RMM validates
the RSI_ATTACH_DEV call by checking the requesting Realm
VM’s measurement against the System Realm (2). If the
System Realm initiates the SMMU device attachment request,
the host delegates the PA pages mapped to the SMMU to
the RMM. That is, the host detaches the SMMU driver
and delegates the memory pages mapped to the SMMU
MMIO region to the System Realm via RMI_ATTACH_DEV
(3). Since the host is not trusted, the delegated host PA
pages are checked against the requested addresses. If they
match, the RMM invokes SMC_SET_PORTAL (4) to configure
the pages within a PORTAL region for the System Realm
(5) through the Monitor, which updates the P-GPT and
N-GPT accordingly. After the RMM creates a mapping in
the stage-2 page table of the System Realm (6), it returns
to the System Realm (7), which then initiates an execution
loop (8) to exclusively process the commands submitted by
Realm VMs to manage the SMMU.

Command queue for efficient command submission. To
reduce inter-realm context switching overhead for SMMU
management, PORTAL uses ring buffers between the System
Realm and other Realm VMs as command queues for

efficient command submission, as shown in Figure 9. When
a Realm VM is instantiated, users can set a flag to indicate
PORTAL support. Based on this flag, the host VMM invokes
RMI_CREATE_Q to create a command queue for the Realm
VM. The host then delegates the command queue memory
pages to the RMM (1). The RMM maps the command
queue in the stage-2 page table, ensuring exclusive access
for the RMM and System Realm (2). An exception is raised
to the System Realm (3) to notify it of the new command
queue. A pre-registered exception handler establishes the
virtual-to-physical address mapping for the command queue,
allowing access by the System Realm during execution. After
registering the command queue, the System Realm returns
from the exception and continues the execution loop (4).

Execution loop for command handling. After initializing
the System Realm and command queues, the System Realm
dequeues pending requests to process SMMU configuration
requests for the requesting Realm VMs (Figure 9). Under
benign scenarios, to establish a PORTAL region between a
Realm VM and a device, the Realm VM requests the System
Realm to map its PORTAL region into the SMMU page table.
To prevent unauthorized mappings, the System Realm verifies
1) the host PA of the PORTAL region and 2) the owner of
the PORTAL region (e.g., VMID of the Realm VM). Each
command queue is a dedicated channel between the System
Realm and a Realm VM, making it easy to identify the
source of requests (i.e., the VMID of the requesting Realm
VM). Requests are submitted by a Realm VM through an
RMI call into the RMM, and the RMM holds the VMID
information of the requesting Realm VM. By comparing
the VMID of the requesting Realm VM with the VMID
that owns the target PORTAL region, PORTAL verifies if the
requesting Realm VM has the appropriate permissions to
configure a specific PORTAL region for the peripheral device
in the SMMU (5). To aid in verification, the System Realm
maintains a reverse mapping to verify that the requested
physical addresses have not been already mapped in the
other I/O page table to establish the PORTAL region. After
verification passes, the System Realm updates the SMMU
metadata, such as the Stream Table, to generate mapping to
allow authorized devices to access the PORTAL region (6).

On-demand command handling. Keeping the System
Realm running constantly wastes CPU resources when
idle. Instead, it is activated on demand for SMMU-related
tasks. However, frequent context switching between Realm
VMs and the System Realm can still occur. For example,
devices like GPUs need memory pages for metadata, such
as command and interrupt queues, which are only used
after device initialization. Thus, invoking the System Realm
for each allocation request of these pages is inefficient. In
addition, since the host VMM [19] manages inter-realm
context switching, additional overhead between the Realm
and Normal world is inevitable. To reduce overhead, PORTAL
lazy-loads the System Realm when a device encounters
a page fault from invalid DMA mappings in the SMMU.
PORTAL defers SMMU management until the device accesses
the PORTAL region for DMA, avoiding excessive context

switching during initialization.

4.5. Direct Memory Access (DMA)

Devices and the host use DMA to transfer large amounts
of data. After a device is attached to a Realm VM, memory
should be allocated for DMA and protected by PORTAL
for secure transmission. Unlike MMIO, which has a fixed
address in the host PA and is vendor-configured, the DMA
region is dynamically generated and configured at runtime.
Thus, a PORTAL region for DMA cannot be pre-allocated
in the Realm VM like MMIO but must be requested and
configured during runtime.

To allocate a PORTAL region for DMA, the requesting
Realm VM submits a request to the System Realm by
calling RSI_SET_PORTAL to change the granule of the desired
physical pages from Realm PAS to Normal world PAS.
The Realm VM sends a list of guest PA with size along
with the device id to the RMM. The RMM fulfills this
request by translating the guest PA to host PA using its
stage-2 translation tables for the Realm VM. Note that the
Realm memory transitioned to the Normal world PAS as the
PORTAL region already belongs exclusively to the requesting
Realm VM, ensuring intra-realm isolation. After the granule
changes, only the requesting Realm VM can access the
PORTAL region as plaintext memory, while other Realm
VMs and untrusted peripherals are prohibited by the N-GPT.
Besides CPU configuration, the SMMU page table must be
updated for peripherals to access the PORTAL region via
DMA. To transition device memory to the initialized PORTAL
region, the Realm VM requests the System Realm to update
the SMMU ’s stage-2 tables (§4.3). With P-GPT configured,
the device can access the PORTAL region via DMA after
proper SMMU stage-2 mappings. This approach only
requires kernel modification for DMA setup, without changes
to the application, device driver, runtimes, or device logic.

4.6. Device Management

Unlike the traditional VM model in which a device is
dedicated to a Realm VM throughout its lifetime, under
the SoC model, multiple Realm VMs need to share the
device. However, current CCA design, utilized by existing
studies [69], [76], incorporates the device in the initial
attestation of the Realm VM, which forces the device to be
bond to the Realm VM for its entire lifespan. To support
runtime device management, PORTAL introduces per-device
states managed by the RMM.

Supporting runtime device management securely is non-
trivial. Before deeming the ownership transfer of a device
from one Realm VM to another is completed and the device is
ready for use, not only the stage-2 page table mapping on the
CPU side, but also the I/O page table of the SMMU should be
completely transferred to the destination Realm VM. For ex-
ample, assume that RealmB wants to attach a device occupied
by RealmA. If the device is deemed ready for use after updat-
ing the SMMU I/O page table, but the stage-2 page table map-
ping on the CPU side remains unchanged, then RealmA can

System
Realm

Realm B (VMID = 0x2)

RSI_DEV_MNG (0xb000, ATTACH)0x
b

00
0

RMM

0x2 S-2
…

0x1 S-2
…

Stream Table

RSI_DEV_MNG (0xb000, OCCUPIED)

0xb000

Realm A
OCCUPIED

RDB

0xb000
TRANSITION

0xb000

Realm B
DETACHED

0xb000

Realm B
OCCUPIED

Realm A (VMID = 0x1)

RSI_DEV_MNG (0xb000, DETACH)

HPA
0xb000

IPA
0xb000

Realm B S-2

❶

❷❸

❻

❹

❺

❼

❽

Realm B

Device
State

Realm A S-2

IPA
0xb000

HPA
0xb000

Figure 10: Device management of PORTAL.

still interact with the device, which will now have access to
memory pages of RealmB. This breaks the isolation between
Realm VMs and is detrimental when RealmA is malicious.

We illustrate how PORTAL achieves runtime device
management securely in Figure 10. The device attachment
request is initiated from RealmB through RSI_DEV_MNG (1). It
requires the base address of the device’s MMIO region and a
command to notify RMM that it wants to attach a new device.
Since the device has been owned by RealmA, RMM first
updates the state of the device from OCCUPIED to TRANSITION.
The RMM also updates the owner to indicate that the device
will be transferred to RealmB (2). The RMM then enters
RealmA by injecting an interrupt so that RealmA can handle
device detachment operation as it is the current owner of the
device (3). RealmA handles device detachment and invokes
RSI_DEV_MNG to notify the RMM that it is safe to detach the
device from RealmA (4). The RMM destroys the mapping to
the device MMIO pages in the stage-2 page table of RealmA
to prevent its further access to the device. Meanwhile, the
RMM updates the device state to DETACHED (5). In order to
request the System Realm to update device ownership in the
Stream Table, the RMM injects an interrupt to the System
Realm (6). The System Realm switches the I/O page table
pointer stored in the Stream Table and updates VMID to initi-
ate device support for RealmB. Also, it invokes RSI_DEV_MNG
to notify the RMM of the completion of the SMMU update
(7). Finally, the RMM updates the device state to OCCUPIED
and updates the stage-2 page table of RealmB so that the
RealmB accesses the device exclusively (8).

Device Attestation. If the device remains attached until the
Realm VM is destroyed, it can be attested during Realm VM
initialization. However, the initial measurement value will not
account for runtime device attachment and detachment events.
Therefore, PORTAL makes use of the Realm Extensible
Measurement (REM) register in Arm CCA to track device
management histories maintained by the RMM. When the
status of the device managed by PORTAL changes, PORTAL
logs the changes and updates the REM register to measure
the logs. The device status can only be updated through
the RMI/RSI calls, so the attackers cannot manipulate the
log directly. Furthermore, even though attackers can invoke

RMI/RSI calls to detach devices from the Realm VM or
prevent their assignment, the entire device management log
is securely maintained with its measured hash. This allows
the victim to analyze and triage the attacks afterward. The
only feasible attack against device management is a denial-
of-service attack, which is considered out of scope.

5. Implementation

We implement PORTAL in two types of prototypes: 1) a
functionality prototype on Arm FVPs that verifies the design
and security of PORTAL, and 2) a performance prototype
that uses Armv8 instructions to emulate the latency of Arm
CCA features in the coming Armv9.

5.1. Functionality Prototype

PORTAL is prototyped on Arm FVP_Base_RevC-
2XAEMvA [15] with RME support. The FVPs simulates the
Arm system, including processors, memory, and peripherals.
Nevertheless, the FVPs does not support genuine unified-
memory devices found on commercial SoC Arm chips.
Instead, the FVPs includes a connected test engine that
handles peripheral memory accesses as if it were a DMA-
capable peripheral, along with an SMMU that supports
RME. We use the simulated devices to verify the isolation
guarantee of PORTAL. We use Linux v5.1 kernel as the
host OS and the TF-A v2.10 as the Monitor. To verify the
isolation guarantees of PORTAL, we initialize GPTs in the
FVPs prototype and test with the emulated CPU and the test
engine peripheral. As the existing TF-A assigns the same
GPT for both components, we additionally reserve a 0.5MB
memory for device GPTs. To use the GPTs to control the
data transmission between the CPU and the peripheral, we
configure the system registers of MMU and SMMU. We also
provide a reference implementation of the System Realm,
which in reality should be mediated and distributed by trusted
parties such as Arm and processor vendors.

5.2. Performance Prototype

Given that the FVPs does not provide cycle-accurate
emulation [15], [82], we developed a physical prototype
based on Armv8 with Armv9 CCA features to evaluate
PORTAL’s performance. We migrated our FVPs prototype
to the Orange Pi 5 Plus [53], equipped with an RK3588
SoC [63] featuring an 8-core 64-bit Arm processor (4-core
A76 and 4-core A55). The SoC includes an Arm Mali-G610
GPU and 8GB of DRAM shared between the processor and
the GPU. We run a customized TF-A to emulate Arm CCA.
We run Ubuntu 24.04 with Linux v6.1 kernel as the Normal
world host. User Realm VMs and the System Realm run a
customized Linux v6.2 kernel. We disabled the A55 cores and
used the A76 cores to measure overhead reliably. Note that,
although Armv9 boards are recently available [42], [58], Arm
CCA hardware extensions are still pending. Following state-
of-the-art projects [76], [69], we emulate CCA instructions

using Armv8 instructions for cycle-accurate performance
evaluation. Since no non-CCA Armv9 instructions were
needed, emulating on Armv9 or Armv8 makes no difference.
Emulation of Arm CCA. We replace all CCA instructions
and registers with Armv8 features to simulate CCA. First,
TF-A (i.e., the trusted Monitor) retrieves the GPT hardware
configuration from GPCCR_EL3. We replace it with instructions
returning a fixed value to ensure GPT initialization without
exceptions. In addition, the ARMv8 processor differentiates
only between Secure and Normal worlds, lacking Realm
world support. We created a Realm context in the Normal
world and patched the TF-A to validate the security state
origin (e.g., Normal or Realm) of SMC calls for proper RSI
handling from the Realm VM. Lastly, we moved the GPT
initialization code (i.e., TF-A bl2) to bl3 since the boot
sequence of the evaluation board (i.e., the Orange Pi 5 Plus)
is designed to run u-boot secondary program loader as its
second-stage bootloader instead of TF-A bl2.

6. Evaluation

In this section, we evaluate our PORTAL prototypes
according to the following research questions:
• RQ1: How large is the TCB of PORTAL?
• RQ2: Can PORTAL defend against privileged adversaries?
• RQ3: How much performance and power benefit does

PORTAL provide?
• RQ4: How much performance overhead does PORTAL

incur?
• RQ5: How much memory overhead does PORTAL incur?

We measure the performance benefit of our prototype
using the Rodinia benchmark suites [22], covering various
Arm GPU use cases. We also evaluate the performance
overhead of PORTAL due to its lifecycle, the System Realm,
and device management. Each experiment is conducted 10
times, and we calculate the average values as the final results.

6.1. RQ1: TCB Size

Layer Lines of Code (LoC)

TF-A 96
RMM 784
System Realm 550
Realm VM (Guest kernel) 230

All 1,660

TABLE 3: Introduced TCB size of PORTAL measured in LoC.

We measure the TCB size of PORTAL using cloc [2] in
terms of standard lines of source code. PORTAL introduces
1,660 LoC additions in total.

6.2. RQ2: Security Analysis

The removal of memory encryption by PORTAL neces-
sitates a meticulous security analysis, compared to existing

approaches. We analyze the security of PORTAL on a wide
range of attacks based on our threat model §3.3. We also
combine and include attack scenarios from state-of-the-art
solutions [76], [69] to ensure the security compliance of
PORTAL aligns with them.
Unauthorized memory access and modification. To
compromise data security, an attacker may directly leak or
manipulate the data transmitted between the Realm VM and
the peripheral. PORTAL utilizes Arm CCA’s GPC to protect
the shared PORTAL region from unauthorized access by
entities such as the host OS, VMM, and untrusted peripherals.
In particular, the PORTAL region is visible as Normal world
PAS only to authorized Realm VMs and peripherals, whereas
it is seen as Root world PAS by all other entities. This
configuration is set in GPTs and is enforced by GPC. An
attacker might also directly request a Realm VM under her
control to directly access the sensitive data in other Realm
VMs. However, such a request fails to bypass the memory
isolation on the CPU side due to stage-2 translation in the
RMM. Same attacks using malicious applications on the
device side fails for the same reason due to the SMMU GPC.
Illegal device management. Given that device memory is
managed by the untrusted hypervisor, a malicious hypervisor
could attempt to expose sensitive information by dishonestly
handling memory requests (e.g., Iago attacks [23]). To defend
against these attacks, the System Realm ensures that the
device memory does not overlap with the memory allocated
to other realms and devices. Specifically, the System Realm
verifies whether the PORTAL region used for the device
communication overlaps with the Normal world PAS of
other entities in the GPTs. The attacker might also attempt to
deliberately map the device memory to an unauthorized area
or create duplicate mappings. In such scenarios, the System
Realm checks the mappings before making changes to the
actual device page table (i.e., the SMMU stage-2 page table).
Fake device and SMMU. An attacker (e.g., VMM) could
emulate a fake peripheral device and attempt to transfer
sensitive data into this simulated device. In addition, the
attacker could also simulate the SMMU to compromise the
GPT isolation guarantees. PORTAL guarantees that the CCA
Monitor communicates with actual hardware devices rather
than simulated ones. PORTAL takes advantage of the fact that
the physical addresses of Arm peripheral devices and SMMU
MMIO registers are fixed and unmodifiable in most Arm-
based devices [6], [17], [28], [70], [76]. Consequently, mali-
cious or emulated devices must be assigned to different fixed
addresses, enabling PORTAL to confirm that the data transfer
is occurring with the genuine device. Furthermore, an attacker
could try using peripheral multiplexing to assign the same
memory address to another fake peripheral. However, the ini-
tial configuration of device multiplexing is performed by the
firmware of SoC during the initial boot of the system, which
is within Arm CCA ’s TCB and thus prevents such attacks.
Malicious co-tenants. An attacker can deploy a malicious
Realm VM that is co-located with the victim Realm VM on
the same platform. The malicious Realm VM may attempt
to allocate DMA regions that overlap with the victim’s

devices to gain access to sensitive data. In PORTAL, the
System Realm ensures that the malicious Realm VM cannot
request DMA mappings on PA that it does not own by
verifying the stage-2 translation table, thereby preventing
overlapped DMA regions.
CPU GPC bypass. An attacker might attempt to circumvent
the CPU GPC to gain access to restricted memory. One
possible method is to disable the GPC or replace the GPT
with a malicious version. However, since the GPC registers
are located in the Root world, the attacker lacks the necessary
privileges to access them. The attacker might also try to
directly alter the GPT to compromise memory isolation, but
this is also thwarted as the GPTs resides in the Root world.
Finally, the attacker might exploit GPC TLB entries to access
the protected region. That is, because the TLB is cached
following the GPC, when the GPT is updated, the TLB will
continue to correspond to the GPC based on the old GPT
version. PORTAL mitigates such attacks by ensuring that
TLB entries are flushed whenever the CPU GPT is modified.
Device GPC bypass. Just as with CPU GPC, attackers may
attempt to circumvent the GPC on the device side to gain
unauthorized access to the device memory, other realms, and
the TCB of PORTAL. Nevertheless, the attacker is unable
to directly access the registers that control GPC because
she does not possess Root world privileges. Furthermore,
PORTAL protects the device GPTs within the Root world,
preventing the attacker from directly altering them to un-
dermine access control. Similarly, the attacker could exploit
the TLB to circumvent GPC. Thus, PORTAL ensures that
TLB entries in the SMMU are flushed whenever there are
changes to the device GPT.
Malicious DMA. An attacker could exploit other devices
to gain unauthorized access to the PORTAL region for DMA
operations between the Realm VM and the connected device.
Although a PORTAL region is a plaintext shared memory
area, PORTAL depends on the GPT’s stage-2 translation
table to block untrusted devices from accessing the PORTAL
region designated for DMA. Specifically, the PORTAL region
currently in use is configured as Root world PAS in the GPTs
for untrusted entities. As the attacker might instead launch a
malicious application on the victim’s device to achieve the
same goal, PORTAL ensures that when a device is assigned
to other realms, a PORTAL region that is not overlapped with
other PORTAL regions is assigned for DMA.
Physical Attacker. A physical attacker can take advantage of
a compromised device (e.g., with debugging features enabled
or loaded with vulnerable firmware). When such a device is
connected to a Realm VM, it can compromise the platform’s
security. PORTAL depends on the remote verifier to confirm
that the device connected to the Realm VM is correctly
configured during Arm CCA remote attestation. Moreover, a
physical attacker might attempt to directly probe the memory
related to PORTAL regions to extract sensitive information.
However, this type of attack is not viable under PORTAL’s
threat model, which relies on the robustness of SoC-based
Arm processor packages. Additionally, we assume that
probing or maliciously redirecting the memory transactions

Application Problem Size Data Buffers Memory

Gaussian 1024 × 1024 nodes 3 8.39 MB
LUD 2048 × 2048 nodes 1 16.00 MB
Pathfinder 100000 × 100 points 4 40.46 MB
NW 2048 × 10 nodes 2 16.79 MB
Hotspot3D 512 × 512 × 8 nodes 3 25.16 MB
NN 42764 nodes 2 0.51MB

TABLE 4: Configuration of the selected Rodinia benchmark

10−1

100

101

102

103

104

Gaussian
LUD Pathfinder

NW Hotspot3D
NN

tim
e(

m
s)

w/ mem encryption

904.8

494.8
450.1

154.7 216.8

4.4

w/ Portal
842.9

370.1

141.3

24.1 23.9

3.8

Figure 11: Performance of GPU tasks when protected by memory
encryption and by PORTAL.

of PCIe peripherals is prevented by the security features of
Integrity and Data encryption (IDE) included in PCIe-5 [73].

6.3. RQ3-1: Performance Benefit of PORTAL

We follow best practices from state-of-the-art
solutions [76], [69] and evaluated the performance of well
selected six GPU tasks from the Rodinia benchmark [22]
both under the traditional confidential model with memory
encryption and PORTAL with plaintext isolated memory
for DMA. The selected benchmarks cover a wide range
of domains, data workloads, and sizes of applications,
including a heavy-weight Gaussian, two medium-weight
applications (LUD and Pathfinder), and three light-weight
applications (NW, Hotspot3D and NN). We adopt AES-GCM
encryption on both CPU and GPU to establish a baseline
where Realm VM and the device communicate via encrypted
shared memory for DMA. We report the problem size and
memory consumption in Table 4.

As shown in Figure 11, based on these configurations,
the performance overhead due to memory encryption is
heavier when the processing logic is simpler but the data
size is larger, which conforms to the characteristic of memory
encryption. It also shows that PORTAL benefit the most when
protecting data intensive applications where larger size of
data is transmitted frequently. Specifically, Hotspot3D deals
with a large 3D grid of temperatures, making it data intensive,
and achieves the highest performance gain of 9.07× among
the six selected benchmarks. NW (Needleman-Wunsch) and
Pathfinder involve frequent data movement due to their dy-
namic programming nature (i.e., requiring frequent updates to
tables or grids), and therefore also achieve great performance
increase of 6.42× and 3.19×, respectively. LUD (1.34×), NN
(1.16×), and Gaussian (1.07×), which showed relatively
lower performance increases, involve more complex control
flow and are more compute-bound than others, meaning

0

2k

4k

6k

8k

10k

squeezenet1_1

efficientnet_b0

shufflenet_v2_x0_5

mnasnet1_0
mobilenet_v3_small

resnet50
vgg16

po
w

er
(m

W
)

w/ mem encryption

5.8k
5.3k 4.9k

5.4k
4.9k

9.7k 9.5k

w/ Portal

4.0k
3.5k 3.2k

3.6k
3.1k

8.0k 7.7k

Figure 12: Power consumption of machine learning workloads
when protected by memory encryption and by PORTAL.

the bottleneck is in the CPU/GPU processing rather than
memory bandwidth or data movement. In compute-bound
benchmarks, optimizations to memory access or data trans-
mission become less impactful compared to those focusing
on vectorization or parallelism. Overall, PORTAL achieves an
average performance improvement of 3.71× (1.07×-9.07×)
over the six selected Rodinia benchmark GPU tasks thanks
to its plaintext isolated memory for device communication.

Note that, the hardware-based encryption adopted in
the upcoming RME should have a much better performance
compared to AES-GCM. However, eliminating the memory
encryption by RME should still grant a noticeable
performance benefit for PORTAL. Furthermore, comparing
the relative performance with other works is challenging.
Existing solutions [76], [69], [25] are implemented on
different platforms (e.g., Hikey960, Juno R2, custom FPGA,
etc.), as well as different trusted firmware, RMM, and
kernel images, incurring costly re-implementation efforts.
Nonetheless, PORTAL is the first to propose the removal
of memory encryption in device access for Arm CCA on
mobile SoCs, which brings considerable performance and
efficiency benefits while maintaining security, while existing
works incur different levels of performance overhead instead.

6.4. RQ3-2: Power Benefit of PORTAL

We also evaluated the energy consumption of seven
real-world lightweight machine learning models when pro-
tected with memory encryption and with PORTAL. Specif-
ically, we ran five smaller models (i.e., squeezenet1_1,
efficientnet_b0, shufflenet_v2_x0_5, mnasnet1_0, and
mobilenet_v3_small) and two larger models (i.e., resnet50,
vgg16) to simulate the device’s power consumption under
various scenarios. We gathered power consumption data at
50 ms intervals over a five-minute period and calculated the
average power consumption. As shown in Figure 12, PORTAL
provides an average power consumption reduction of 1.43×.

6.5. RQ4-1: Performance of PORTAL Lifecycle

Initializing GPTs. PORTAL uses two GPTs to protect
regions (i.e., P-GPT and N-GPT), initialized at boot time.
The existing system-wide GPT is used as N-GPT, and P-GPT

is additionally populated. Initializing the additional GPTs
incurs a one-time overhead.
Initializing Realm VM. PORTAL incurs minimal overhead
during Realm VM creation if the PORTAL flag is not set.
When PORTAL is activated, additional overhead occurs due
to invoking RMI_CREATE_Q to establish the command queue
page. Note that RMI_CREATE_Q can be invoked at any point
during Realm VM creation, as injecting exceptions and
handling the command queue can occur concurrently. Realm
VM creation time varies with its size, but no noticeable
overhead is detected if RMI_CREATE_Q is invoked early.
Invoking RMI_CREATE_Q at the end of creation introduces a
2% overhead.
Entering Realm VM. PORTAL adds a conditional check
in RMI_REC_ENTER to address device management before
entering the Realm VM. The runtime overhead, regardless
of PORTAL usage, is a single-bit flag check in the Realm
Descriptor, equivalent to 5 instructions. If there are
pending device management operations for Realm VM, the
RMM injects a fault to notify Realm VM. The injection
process involves reading system registers, determining
the handler address, and updating the system register to
resume execution from the exception handler. This injection
overhead is 6.3% compared to executing RMI_REC_ENTER
with the device management flag unset.

6.6. RQ4-2: Performance Overhead of System
Realm

Initializing System Realm. The System Realm is
instantiated during host OS boot and persists until system
shutdown. PORTAL incurs a one-time 1.5% overhead for
the System Realm during boot, which involves Realm VM
creation, SMMU device attachment, and data structure setup
(e.g., Stream Tables). Most of the overhead arises from
Realm VM creation, not from the additional RMI/RSI calls
for SMMU attachment.
Processing SMMU management commands. PORTAL
incurs two types of overhead in processing commands. The
first is the cost of engaging the system realm when an SMMU
interrupt occurs due to an invalid mapping in the PORTAL
region. This involves handling the SMMU interrupt in the
VMM and forwarding the virtual interrupt to the System
Realm. Since CCA supports interrupt injection through
existing RMI_REC_ENTER, PORTAL does not require additional
operations to engage the System Realm. It takes 2 µs, with
most of the overhead from world switching incurred by
entering the System Realm. This can be minimized by
allocating a dedicated physical core to handle commands in
a polling style. The other overhead involves processing com-
mands, which includes traversing queues, checking reverse
mappings, and creating SMMU I/O page table mappings. In
our evaluation, two Realm VM instances using PORTAL
generated 10 commands per queue, requesting to insert
SMMU entries. Processing 20 commands took 1.9 µs to
2.4 µs. We dedicated one core for the execution loop in the

System Realm. This overhead can be optimized by assigning
multiple cores as the number of command queues increases.

6.7. RQ4-3: Performance Overhead of Device Man-
agement

Device initial attachment. The overhead of device attach-
ment varies based on the device’s status requested by the
Realm VM. If the device is not assigned to a Realm VM,
its MMIO pages must be first delegated to the RMM and
configured as a PORTAL region via SMC_SET_PORTAL. Our
evaluation shows that attaching the MMIO pages of the
Mali-G610 GPU (512 pages) takes 46.29 µs.
Device reassignment. If the device is occupied by another
Realm VM, delegating MMIO pages is unnecessary. Instead,
there are extra communication costs between the current
Realm VM and the System Realm, as detailed in Figure 10,
incurring 175 µs overhead. Note that most of the overhead
comes from multiple world switches due to inter-Realm
VMs communication. While device attachment is costly, it
is not frequent. In addition, in contrast to the current RMM
design [19], which involves the VMM for each MMIO
page access, PORTAL assigns MMIO pages directly to the
Realm VM’s PORTAL region, eliminating additional host
involvement.

6.8. RQ5: Memory Overhead

Maintaining P-GPT. In our evaluation, the protected
memory region is configured as 4GB. The GPT uses two
levels of page tables: 1GB for the first-level and 4KB for the
last-level. Adding one GPT as P-GPT requires a 4KB page in
SRAM (first-level GPT) and 0.5MB of DRAM (second-level
GPT). Compared to existing approaches [76], PORTAL does
not need additional GPT per device because the SMMU
provides extra protection using the P-GPT configured for
SMMU, enabling PORTAL to be used in constrained devices
with limited memory.
Device management & Command queue. The RMM
must maintain per-device data structures for secure device
management. Considering the device status and the owner,
the next transition state and the authorized Realm VM to
initiate the transition can be determined. Since PORTAL does
not trust the VMM for device management, per-device status
is stored within the RMM. PORTAL allocates 8 bytes for each
device: 40 bits for Realm Descriptor address (page-aligned),
16 bits for VMID, and 2 bits for device state. PORTAL also
allocates a 256KB command queue per Realm VM, including
VMID, locks, and the queue. With a 16-byte entry size, up to
16,384 requests can be queued per Realm VM. The command
queue size is based on the experiment in §6.6.

7. Related Work

Secure Device Access in Arm CCA. Strongbox [25]
enhances TrustZone-based isolation for integrated GPUs on

Arm platforms, excluding the driver from the TCB. However,
StrongBox trusts the Secure World, which PORTAL excludes
from its TCB to align with Arm CCA’s threat model. Strong-
Box is also incompatible with hypervisors, which, if compro-
mised, can bypass the stage-2 translation, PORTAL’s primary
protection mechanism. Compared to StrongBox, PORTAL
is more suitable for next-generation Arm devices. Recently,
Arm CCA has introduced a proposal to support peripheral de-
vices. However, this support, known as RME Device Assign-
ment (RME-DA) [16], remains a theoretical concept without
finalized hardware implementation. To address the issue of
data security in external peripherals (e.g., PCIe), a recent
study called ACAI [69] suggests a similar design to RME-DA
by extending CCA security invariants to device-side access.
Compared to these designs, PORTAL has a more compact
TCB. Both RME-DA and ACAI add additional management
logic to the privileged RMM (EL2) and Monitor (EL3).
PORTAL utilizes a dedicated System Realm for device man-
agement tasks, preventing the TCB of CCA core components
from becoming bloated. In addition, RME-DA introduces
hardware changes on the SMMU and still employs memory
encryption, which is undesirable for mobile Arm SoCs, while
ACAI replaces the SMMU configuration code with special
interfaces. Instead, PORTAL does not introduce any modifica-
tion to the SMMU by relying on the Normal World PAS for
isolated memory, and the System Realm for exclusive SMMU
management. CAGE [76] seeks to enhance unified-memory
GPU support on Arm CCA. CAGE introduces a novel shadow
task mechanism to flexibly manage confidential GPU applica-
tions and utilizes multiple GPCs to achieve two-way isolation.
There are several distinct differences between CAGE and
PORTAL. CAGE aims to efficiently execute confidential GPU
tasks on Arm CCA, while PORTAL is designed to provide fast
and secure I/O for a wide range of Arm peripheral devices.
CAGE retains memory encryption, which presents disadvan-
tages in mobile SoCs as discussed. PORTAL, leveraging the
integrated memory model of mobile SoCs, safely removes
memory encryption, benefiting from the SoC’s physical
robustness. For SMMU management, CAGE relies on the
untrusted host, whereas PORTAL introduces a System Realm
for exclusive SMMU management, enhancing security. In
addition, CAGE requires a GPT for each Realm VM due to its
absence of the RMM, which PORTAL overcomes by utilizing
the trusted RMM, needing only one GPT for all Realm
VMs, with intra-Realm isolation managed by the RMM.
While CAGE assumes one SMMU per device, common Arm
mobile SoCs have an integrated SMMU [76], so PORTAL
only requires one GPT for the SMMU, with intra-device
isolation managed by the stage-2 table in the Stream Table.

The most distinct difference of PORTAL is its usage of
plaintext memory for secure device access in Arm CCA.
Such a design respects the modern trend of the increasing
number of integrated devices on mobile Arm SoCs while
managing the unique challenges posed by those platforms.
Besides efficient secure device I/O, PORTAL enables dynamic
device management for Arm CCA thanks to the non-binding
plaintext shared memory, unlike existing solutions that
require device assignment to a Realm VM for its entire

lifetime. We believe that PORTAL can effectively foster a
wider adoption of Arm CCA to mobile platforms upon its
coming release.
GPU TEEs. GPU TEEs have been proposed recently to
secure the data security of GPUs. In order to establish a
secure I/O between the user and the GPU, a typical GPU
TEE relies on the CPU-side TEE to transfer the sensitive
data to the GPU and manage the access control to the GPU
MMIO. For example, HIX [36] and HoneyComb [41] use
Intel Software Guard Extensions (SGX) and AMD Secure
Encrypted Virtualization (SEV) to secure the GPU MMIO,
respectively. Cure [21] secures the GPU TEE by adding
an access control filer in the system bus. HETEE [83]
protects the GPU resources within isolation environments
by introducing a security controller on the FPGA hardware.
Due to the difference in architecture and chip design, these
approaches might not be suitable to adopt these approaches
to protect Arm GPUs. Recent works have also proposed
Arm-based TEEs for GPUs [25], [37], [54], [78]. These
approaches utilize traditional Arm security primitives, such
as the Arm TrustZone, while they provide insufficient security
guarantees under the security model of Arm CCA. Lastly,
several efforts have been made to directly house TEEs inside
GPUs without the CPU-side TEEs, including Graviton [75]
and Nvidia H100 GPUs [48]. The standalone GPU TEEs
monitor the commands and data submitted by the host and
ensures confidentiality during task execution. However, these
approaches rely on the fact that the GPU memory and the
host are naturally isolated as external GPUs possess private
memory, while such assumptions do not hold for integrated
GPUs on Arm processors with unified memory model.

8. Discussion

Limitations. PORTAL relies on the assumption that the
SoC package is physically secure, making physical memory
attacks infeasible. While this is valid for mobile SoCs, one
of the largest Arm markets, extending PORTAL to other
platforms where this assumption does not hold presents
a challenge. Potential solutions could involve integrating
additional physical security measures or incorporating se-
lective memory encryption where necessary. PORTAL also
requires vendors to implement and distribute a System Realm
tailored to their specific SoC configurations. This increases
the burden on vendors, who must ensure the System Realm’s
correctness and security through meticulous validation and
testing. Collaborating with Arm and industry stakeholders to
develop standardized implementations of the System Realm
could help mitigate this burden.
Discrete devices. PORTAL’s utility extends beyond SoC
environments to include scenarios where data must be trans-
mitted from SoC integrated memory to external peripherals
connected through PCIe, such as discrete GPUs. In these
cases, PORTAL can leverage the link-layer encryption pro-
vided by PCIe-5 [73], which ensures secure data transmission
between the SoC and the external devices. This approach
requires only a one-time encryption provided by the PCIe

link layer, eliminating the need for additional software-based
or hardware-based encryption on the SoC. This not only
maintains the performance and power efficiency benefits
of PORTAL but also enhances its applicability to a broader
range of devices and configurations. By relying on PCIe
link-layer encryption, PORTAL can effectively secure data
in transit without the overhead associated with traditional
encryption methods, making it a versatile solution for both
integrated and discrete peripheral environments.
Real world applications. PORTAL offers significant benefits
across a range of real-life applications, enhancing both
performance and energy efficiency. In practical use cases like
mobile gaming, video streaming, and AR/VR, it accelerates
secure data exchanges between GPUs, CPUs, and memory,
reducing latency and power consumption for smoother
experiences and longer battery life. Security-critical AI-
driven tasks, such as facial recognition or on-device voice
assistants, benefit from faster inference and lower energy
overhead, while autonomous vehicles can process sensor data
in real-time without the encryption bottlenecks, improving
safety and operational duration. Innovative applications like
wearable health devices, smart cities, and IoT systems see
improved data transmission efficiency while maintaining
privacy, enabling longer device lifespans and more accurate
monitoring. Additionally, in healthcare, PORTAL can help en-
sure the integrity and confidentiality of crucial real-time data,
such as operations during robot-assisted surgeries, and in
industrial automation, it can improve the reliability of control
systems while improving responsiveness and scalability.
Regulatory and compliance considerations. The adoption
of PORTAL in real-world applications must navigate various
regulatory and compliance considerations, particularly in
industries with stringent data protection requirements. While
PORTAL enhances performance and power efficiency by
eliminating memory encryption, some applications may
still require encryption to comply with regulations such
as GDPR, HIPAA, and PCI-DSS. To address this, PORTAL
could integrate optional encryption mechanisms to meet
these specific regulatory standards without compromising
its core benefits. Additionally, the implementation of the
System Realm by vendors necessitates thorough validation to
ensure compliance with security certifications and standards.
Engaging with regulatory bodies and industry consortia to
establish PORTAL as a compliant solution across different
sectors will be crucial.

9. Conclusion

PORTAL provides a novel solution for secure and ef-
ficient device I/O in Arm CCA on mobile Arm SoCs.
By implementing strict memory isolation without memory
encryption, PORTAL tackles performance, scalability, and
power efficiency challenges hindering Arm CCA adoption in
the near future. PORTAL leverages CCA’s GPC and SMMU
for robust hardware-level access control, enabling secure and
efficient data interactions between Realm VMs and devices. It
also introduces dynamic device management via a dedicated

System Realm, facilitating flexible peripheral integration at
runtime. The evaluation results show that PORTAL improves
data transmission and reduces energy consumption.

Acknowledgment

We would like to thank the anonymous reviewers and
our shepherd for their helpful feedback. We also would
like to thank Bokdeuk Jeon from Samsung for constructive
discussions. This research was funded by a research grant
from Samsung.

References

[1] “Apple vision pro - technical specifications,” 2024, https://support.
apple.com/en-us/117810.

[2] AlDanial, “cloc,” 2024, https://github.com/AlDanial/cloc.

[3] A. S. D. Alluhaidan and P. Prabu, “End-to-end encryption in resource-
constrained iot device,” IEEE Access, vol. 11, pp. 70 040–70 051,
2023.

[4] AMD, “AMD Secure Encrypted Virtualization (SEV),” 2024, https:
//developer.amd.com/sev/.

[5] AMD, “Confidential computing solution brief,” 2024, https://www.
amd.com/en/processors/epyc-confidential-computing-cloud.

[6] Amlogic, Inc., “S905 Datasheet,” 2016, https://dn.odroid.com/S905/
DataSheet/S905_Public_Datasheet_V1.1.4.pdf.

[7] Apple, “Apple unleashes M1,” 2020, https://www.apple.com/
newsroom/2020/11/apple-unleashes-m1/.

[8] ——, “Apple unveils M3, M3 Pro, and M3 Max, the
most advanced chips for a personal computer,” 2023, https:
//www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-
m3-max-the-most-advanced-chips-for-a-personal-computer/.

[9] Arm, “Arm Architecture Reference Manual for A-profile architecture,”
2024, https://developer.arm.com/documentation/ddi0487/latest/.

[10] ARM, “Arm Confidential Compute Architecture,” 2024,
https://www.arm.com/architecture/security-features/arm-confidential-
compute-architecture.

[11] Arm, “Arm Mali Graphics Processing Units (GPUs),” 2024, https://
developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus.

[12] ——, “Arm Realm Management Extension (RME) System Architec-
ture,” 2024, https://developer.arm.com/documentation/den0129/latest/.

[13] ——, “Arm System Memory Management Unit Architecture Specifica-
tion,” 2024, https://developer.arm.com/documentation/ihi0070/latest/.

[14] ——, “Autonomous Vehicles,” 2024, https://www.arm.com/markets/
automotive/autonomous-vehicles.

[15] ——, “Fixed Virtual Platforms,” 2024, https://www.arm.com/products/
development-tools/simulation/fixed-virtual-platforms.

[16] ARM, “Introducing arm confidential compute architecture,” 2024,
https://developer.arm.com/documentation/den0125/0300/.

[17] Arm, “Juno r2 ARM Development Platform SoC,” 2024,
https://developer.arm.com/documentation/den0125/0300/Arm-
CCA-Hardware-Architecture.

[18] ——, “Layered Security for Your Next SoC,” 2024, https://www.arm.
com/products/silicon-ip-security.

[19] ——, “Realm Management Monitor specification,” 2024, https://
developer.arm.com/documentation/den0137/latest/.

[20] ——, “SoC Development,” 2024, https://www.arm.com/glossary/soc-
development.

[21] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, “CURE: A security architecture with
CUstomizable and resilient enclaves,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 1073–1090.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE international symposium on workload
characterization (IISWC). IEEE, 2009, pp. 44–54.

[23] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
api is a bad untrusted rpc interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 253–264, 2013.

[24] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting Data on Smartphones and Tablets from
Memory Attacks,” in Proceedings of the 20th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Istanbul, Turkey, Mar. 2015.

[25] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao, and F. Zhang, “StrongBox: A GPU TEE on Arm
Endpoints,” in Proceedings of the 29th ACM Conference on Computer
and Communications Security (CCS), Los Angeles, CA, Nov. 2022.

[26] C. Feng, H. Sun, J. Wang, L. Zhang, and S. Xu, “A soc architecture
compatible with cortex-m4,” in 2023 IEEE 7th Information Technology
and Mechatronics Engineering Conference (ITOEC), vol. 7, 2023, pp.
514–518.

[27] Forbes, “Arm Stock: AI Chip Favorite Is Overpriced,” 2024,
https://www.forbes.com/sites/bethkindig/2024/03/21/arm-stock-ai-
chip-favorite-is-overpriced/?sh=759485ec69d6.

[28] FuZhou Rockchip Electronics Co., Ltd., “Rockchip RK3288 Technical
Reference Manual Part1,” 2017, https://opensource.rock-chips.com/
images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf.

[29] S. Ghosh, M. N. I. Khan, A. De, and J.-W. Jang, “Security and privacy
threats to on-chip non-volatile memories and countermeasures,” in
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2016, pp. 1–6.

[30] Google, “Confidential computing,” 2024, https://cloud.google.com/
security/products/confidential-computing.

[31] M. Gruhn and T. Müller, “On the practicability of cold boot attacks,” in
2013 International Conference on Availability, Reliability and Security,
2013, pp. 390–397.

[32] B. Halak, T. Gibson, M. Henley, C.-B. Botea, B. Heath, and S. Khan,
“Evaluation of performance, energy, and computation costs of quantum-
attack resilient encryption algorithms for embedded devices,” IEEE
Access, vol. 12, pp. 8791–8805, 2024.

[33] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest We Remember: Cold Boot Attacks on Encryption Keys,” in
Proceedings of the 17th USENIX Security Symposium (Security), San
Jose, CA, Jul.–Aug. 2008.

[34] G. D. H. Hunt, R. Pai, M. V. Le, H. Jamjoom, S. Bhattiprolu,
R. Boivie, L. Dufour, B. Frey, M. Kapur, K. A. Goldman, R. Grimm,
J. Janakirman, J. M. Ludden, P. Mackerras, C. May, E. R. Palmer,
B. B. Rao, L. Roy, W. A. Starke, J. Stuecheli, E. Valdez, and W. Voigt,
“Confidential computing for OpenPOWER,” in Proceedings of the 16th
European Conference on Computer Systems (EuroSys), Virtual, Apr.
2021.

[35] Intel, “Intel Trust Domain Extensions (TDX),” 2024,
https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-trust-domain-extensions.html.

[36] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity gpus,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 455–468.

https://support.apple.com/en-us/117810
https://support.apple.com/en-us/117810
https://github.com/AlDanial/cloc
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.amd.com/en/processors/epyc-confidential-computing-cloud
https://www.amd.com/en/processors/epyc-confidential-computing-cloud
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://developer.arm.com/documentation/ddi0487/latest/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/documentation/den0129/latest/
https://developer.arm.com/documentation/ihi0070/latest/
https://www.arm.com/markets/automotive/autonomous-vehicles
https://www.arm.com/markets/automotive/autonomous-vehicles
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://developer.arm.com/documentation/den0125/0300/
https://developer.arm.com/documentation/den0125/0300/Arm-CCA-Hardware-Architecture
https://developer.arm.com/documentation/den0125/0300/Arm-CCA-Hardware-Architecture
https://www.arm.com/products/silicon-ip-security
https://www.arm.com/products/silicon-ip-security
https://developer.arm.com/documentation/den0137/latest/
https://developer.arm.com/documentation/den0137/latest/
https://www.arm.com/glossary/soc-development
https://www.arm.com/glossary/soc-development
https://www.forbes.com/sites/bethkindig/2024/03/21/arm-stock-ai-chip-favorite-is-overpriced/?sh=759485ec69d6
https://www.forbes.com/sites/bethkindig/2024/03/21/arm-stock-ai-chip-favorite-is-overpriced/?sh=759485ec69d6
https://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
https://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
https://cloud.google.com/security/products/confidential-computing
https://cloud.google.com/security/products/confidential-computing
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

[37] J. Jiang, J. Qi, T. Shen, X. Chen, S. Zhao, S. Wang, L. Chen,
G. Zhang, X. Luo, and H. Cui, “Cronus: Fault-isolated, secure and
high-performance heterogeneous computing for trusted execution
environment,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2022, pp. 124–143.

[38] D. Lee, D. Jung, I. T. Fang, C. che Tsai, and R. A. Popa, “An Off-Chip
attack on hardware enclaves via the memory bus,” in Proceedings of
the 29th USENIX Security Symposium (Security), Virtual, Aug. 2020.

[39] Linux, “Support for Arm CCA VMs on Linux,” 2023, https://lwn.net/
Articles/921482/.

[40] J. Mahmod and M. Hicks, “UnTrustZone: Systematic Accelerated
Aging to Expose On-chip Secrets,” in Proceedings of the 45th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2024.

[41] H. Mai, J. Zhao, H. Zheng, Y. Zhao, Z. Liu, M. Gao, C. Wang,
H. Cui, X. Feng, and C. Kozyrakis, “Honeycomb: Secure and efficient
{GPU} executions via static validation,” in 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), 2023,
pp. 155–172.

[42] MediaTek, “MediaTek Dimensity 9000,” 2024, https://www.mediatek.
com/products/smartphones-2/mediatek-dimensity-9000.

[43] D. Mehmedagić, M. R. Fadiheh, J. Müller, A. L. D. Antón, D. Stoffel,
and W. Kunz, “Design of access control mechanisms in Systems-on-
Chip with formal integrity guarantees,” in Proceedings of the 32nd
USENIX Security Symposium (Security), Anaheim, CA, Aug. 2023.

[44] Microsoft, “Azure confidential computing,” 2024, https://azure.
microsoft.com/en-us/solutions/confidential-compute/.

[45] Mobileye, “EyeQ: The System-on-Chip for Automotive Applications,”
2024, https://www.mobileye.com/technology/eyeq-chip/.

[46] P. S. Munoz, N. Tran, B. Craig, B. Dezfouli, and Y. Liu, “Analyzing
the resource utilization of aes encryption on iot devices,” in 2018
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), 2018, pp. 1200–1207.

[47] M. Mössinger, B. Petschkuhn, J. Bauer, R. C. Staudemeyer, M. Wójcik,
and H. C. Pöhls, “Towards quantifying the cost of a secure iot:
Overhead and energy consumption of ecc signatures on an arm-based
device,” in 2016 IEEE 17th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2016, pp.
1–6.

[48] Nvidia, “Confidential Compute on NVIDIA Hopper H100,”
2024, https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
HCC-Whitepaper-v1.0.pdf.

[49] ——, “In-Vehicle Computing for AI-Defined Cars,” 2024, https://
www.nvidia.com/en-us/self-driving-cars/in-vehicle-computing/.

[50] ——, “Nvidia Grace CPU,” 2024, https://www.nvidia.com/en-us/data-
center/grace-cpu/.

[51] ——, “Nvidia Jetson Xavier,” 2024, https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-xavier-series/.

[52] ——, “Tegra X1,” 2024, https://developer.nvidia.com/content/tegra-
x1/.

[53] Orange Pi, “Orange Pi 5 Plus (4GB/8GB/16GB),” 2024, http:
//www.orangepi.org/html/hardWare/computerAndMicrocontrollers/
details/Orange-Pi-5-plus.html.

[54] H. Park and F. X. Lin, “Safe and practical gpu computation in
trustzone,” in Proceedings of the Eighteenth European Conference on
Computer Systems, 2023, pp. 505–520.

[55] P. Porambage, A. Braeken, A. Gurtov, M. Ylianttila, and S. Spinsante,
“Secure end-to-end communication for constrained devices in iot-
enabled ambient assisted living systems,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), 2015, pp. 711–714.

[56] Qualcomm, “Adreno Graphics Processing Units,” 2024, https://
developer.qualcomm.com/software/adreno-gpu-sdk/gpu/.

[57] ——, “Snapdragon 8 Gen 3 Mobile Platform,” 2024,
https://www.qualcomm.com/products/mobile/snapdragon/
smartphones/snapdragon-8-series-mobile-platforms/snapdragon-
8-gen-3-mobile-platform.

[58] ——, “Snapdragon 8 Gen 3 Mobile Platform,” 2024,
https://www.qualcomm.com/products/mobile/snapdragon/
smartphones/snapdragon-8-series-mobile-platforms/snapdragon-
8-gen-3-mobile-platform.

[59] ——, “Snapdragon Ride Platform SoCs,” 2024, https://www.
qualcomm.com/products/automotive/automated-driving/.

[60] ——, “Snapdragon XR2 5G Platform,” 2024, https:
//www.qualcomm.com/products/mobile/snapdragon/xr-vr-
ar/snapdragon-xr2-5g-platform.

[61] J. Raigoza and K. Jituri, “Evaluating performance of symmetric encryp-
tion algorithms,” in 2016 International Conference on Computational
Science and Computational Intelligence (CSCI), 2016, pp. 1378–1379.

[62] Y. Ren, J. Li, Z. Yang, P. P. C. Lee, and X. Zhang, “Accelerating
Encrypted Deduplication via SGX,” in Proceedings of the 2019
USENIX Annual Technical Conference (ATC), Renton, WA, Jul. 2019.

[63] Rockchip, “RK3588 Brief Datasheet,” 2022, https://www.rock-chips.
com/uploads/pdf/2022.8.26/192/RK3588%20Brief%20Datasheet.pdf.

[64] M. S. U. I. Sami, T. Zhang, A. M. Shuvo, M. S. U. Haque, P. E.
Calzada, K. Z. Azar, H. M. Kamali, F. Rahman, F. Farahmandi, and
M. Tehranipoor, “Advancing trustworthiness in system-in-package:
A novel root-of-trust hardware security module for heterogeneous
integration,” IEEE Access, vol. 12, pp. 48 081–48 107, 2024.

[65] Samsung, “Mobile performance redefined,” 2024, https:
//semiconductor.samsung.com/us/processor/mobile-processor/.

[66] A. Selinger, K. Rupp, and S. Selberherr, “Evaluation of mobile arm-
based socs for high performance computing,” in Proceedings of the
24th High Performance Computing Symposium, ser. HPC ’16. San
Diego, CA, USA: Society for Computer Simulation International,
2016.

[67] A. T. Sheikh, A. Shoker, and P. Esteves-Verissimo, “Resilient and
secure system on chip with rejuvenation in the wake of persistent
attacks,” in Proceedings of the 16th European Workshop on System
Security, ser. EUROSEC ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 37–43.

[68] S. P. Skorobogatov, “Physical attacks and tamper resistance,”
2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:
107662043

[69] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “ACAI: Protecting Accelerator Execution with Arm Confi-
dential Computing Architecture,” in Proceedings of the 33rd USENIX
Security Symposium (Security), Philadelphia, PA, Aug. 2024.

[70] STMicroelectronics, “GPU device tree configuration,” 2023, https:
//wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration.

[71] Y. Su and D. C. Ranasinghe, “Leaving your things unattended is no
joke! memory bus snooping and open debug interface exploits,” in
2022 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom
Workshops), 2022, pp. 643–648.

[72] I. Sultan and M. T. Banday, “An energy efficient encryption technique
for the internet of things sensor nodes,” International Journal of
Information Technology, 02 2024.

[73] Synopsys, “Synopsys IDE Security IP Module for PCI Express 5.0,”
2024, https://www.synopsys.com/dw/ipdir.php?ds=security-pcie5-ide.

[74] Tesla, “FSD Chip,” 2024, https://en.wikichip.org/wiki/tesla_(car_
company)/fsd_chip.

[75] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on {GPUs},” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 681–696.

https://lwn.net/Articles/921482/
https://lwn.net/Articles/921482/
https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9000
https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9000
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.mobileye.com/technology/eyeq-chip/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://www.nvidia.com/en-us/self-driving-cars/in-vehicle-computing/
https://www.nvidia.com/en-us/self-driving-cars/in-vehicle-computing/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://developer.nvidia.com/content/tegra-x1/
https://developer.nvidia.com/content/tegra-x1/
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5-plus.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5-plus.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5-plus.html
https://developer. qualcomm.com/software/adreno-gpu-sdk/gpu/
https://developer. qualcomm.com/software/adreno-gpu-sdk/gpu/
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/automotive/automated-driving/
https://www.qualcomm.com/products/automotive/automated-driving/
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-xr2-5g-platform
https://www.rock-chips.com/uploads/pdf/2022.8.26/192/RK3588%20Brief%20Datasheet.pdf
https://www.rock-chips.com/uploads/pdf/2022.8.26/192/RK3588%20Brief%20Datasheet.pdf
https://semiconductor.samsung.com/us/processor/mobile-processor/
https://semiconductor.samsung.com/us/processor/mobile-processor/
https://api.semanticscholar.org/CorpusID:107662043
https://api.semanticscholar.org/CorpusID:107662043
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration
https://www.synopsys.com/dw/ipdir.php?ds=security-pcie5-ide
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip

[76] C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning, S. Yan, and
Z. He, “CAGE: Complementing Arm CCA with GPU Extensions,”
in Proceedings of the 2024 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2024.

[77] H. Wang, J. Ma, Y. Yang, M. Gong, and Q. Wang, “A review of
system-in-package technologies: application and reliability of advanced
packaging,” Micromachines, vol. 14, no. 6, p. 1149, 2023.

[78] J. Wang, Y. Wang, and N. Zhang, “Secure and timely gpu execution
in cyber-physical systems,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp.
2591–2605.

[79] Xilinx, “Developing Tamper-Resistant Designs with Zynq UltraScale+
Devices,” 2024, https://docs.amd.com/v/u/en-US/xapp1323-zynq-usp-
tamper-resistant-designs.

[80] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold Boot Attacks
are Still Hot: Security Analysis of Memory Scramblers in Modern
Processors,” in Proceedings of the 23rd IEEE Symposium on High
Performance Computer Architecture (HPCA), Austin, TX, Feb. 2017.

[81] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “CaSE: Cache-Assisted
Secure Execution on ARM Processors,” in Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2016.

[82] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “SHELTER: Extending arm CCA with isolation in user space,”
in Proceedings of the 32nd USENIX Security Symposium (Security),
Anaheim, CA, Aug. 2023.

[83] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang,
Y. Zhang, J. Ying, L. Zhang et al., “Enabling rack-scale confidential
computing using heterogeneous trusted execution environment,” in
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1450–1465.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes PORTAL, a secure and efficient
device I/O interface designed for Arm CCA on mobile Arm
SoCs. The key innovation of PORTAL lies in achieving secure
device I/O through strict memory isolation without relying
on traditional memory encryption techniques. This approach
addresses the significant performance and power overheads
associated with memory encryption, making PORTAL a
promising solution for dynamic peripheral integration in
resource-constrained environments.

A.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper addresses a long-known Issue. Enabling
secure I/O on mobile devices is important. Existing
methods for secure device I/O on Arm CCA rely
on memory encryption, which introduces considerable
performance and power overhead. PORTAL directly
tackles this problem by leveraging Arm CCA GPC
and SMMU to achieve isolation, making it relevant for
performance-sensitive mobile devices.

2) Provides a Valuable Step Forward in an Established
Field: While secure device I/O for Arm CCA is a
well-explored area, PORTAL offers a novel approach
by leveraging access control, memory isolation instead
of encryption, achieving significant performance gains
while maintaining similar security guarantees.

https://docs.amd.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs
https://docs.amd.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs

	Introduction
	Background
	Arm Integrated Memory
	Arm CCA
	Arm Peripherals and SMMU

	Overview
	Motivation
	Targeted Platforms
	Threat Model
	Portal Overview

	Design
	Protected Memory Regions
	Protection of the SMMU
	Memory Isolation
	System Realm Internals
	Direct Memory Access (DMA)
	Device Management

	Implementation
	Functionality Prototype
	Performance Prototype

	Evaluation
	RQ1: TCB Size
	RQ2: Security Analysis
	RQ3-1: Performance Benefit of Portal
	RQ3-2: Power Benefit of Portal
	RQ4-1: Performance of Portal Lifecycle
	RQ4-2: Performance Overhead of System Realm
	RQ4-3: Performance Overhead of Device Management
	RQ5: Memory Overhead

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

