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Abstract
The recent past has seen an increasing interest in Heteroge-
neous Graph Neural Networks (HGNNs), since many real-
world graphs are heterogeneous in nature, from citation graphs
to email graphs. However, existing methods ignore a tree hi-
erarchy among metapaths, naturally constituted by different
node types and relation types. In this paper, we present HET-
TREE, a novel HGNN that models both the graph structure
and heterogeneous aspects in a scalable and effective manner.
Specifically, HETTREE builds a semantic tree data structure to
capture the hierarchy among metapaths. To effectively encode
the semantic tree, HETTREE uses a novel subtree attention
mechanism to emphasize metapaths that are more helpful in
encoding parent-child relationships. Moreover, HETTREE pro-
poses carefully matching pre-computed features and labels
correspondingly, constituting a complete metapath representa-
tion. Our evaluation of HETTREE on a variety of real-world
datasets demonstrates that it outperforms all existing baselines
on open benchmarks and efficiently scales to large real-world
graphs with millions of nodes and edges.

Code — https://github.com/microsoft/HetTree

1 Introduction
Graph neural networks (GNNs) have been widely explored
in a variety of domains from social networks to molecular
properties (Pal et al. 2020; Park et al. 2019; Sun, Dai, and Yu
2022), where graphs are usually modeled as homogeneous
graphs. However, real-world graphs are often heterogeneous
in nature (Hu et al. 2020a; Lv et al. 2021). For example,
as shown in Figure 1(a), a heterogeneous email graph can
include multiple types of nodes - Domain, Sender, Recipient,
Message, and IP Address - and the relations among them.
Moreover, multiple relations can exist between two entities
in complex heterogeneous graphs. For example, a Sender
node can be a P1 sender and/or P2 sender of a Message,
where the P1 sender denotes the entity that actually sent the
message while an email application displays the P2 sender
as the “From” address. For example, if Bob sends an email
on behalf of Alice, the email appears to originate from Alice,
making Alice the P2 sender and Bob the P1 sender. As a
result, there are two relations between Sender and Message
in Figure 1(a), p1 sends and p2 sends.
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To better understand real-world heterogeneous graphs, var-
ious heterogeneous graph neural networks (HGNNs) have
been proposed. The most well-known approaches are the
metapath-based methods (Schlichtkrull et al. 2017; Wang
et al. 2019; Fu et al. 2020), which first aggregate neigh-
bor representations along each metapath at the node level
and then aggregate these representations across metapaths
at the metapath (semantic) level. However, metapath-based
approaches often involve manual effort to select a subset
of meaningful metapaths, because the node-level aggrega-
tion along each metapath is computationally expensive (Fu
et al. 2020; Wang et al. 2019). Other models that do not
apply the metapath method, such as HetGNN (Zhang et al.
2019) and HGT (Hu et al. 2020b), carefully encode repre-
sentations for different node types and/or relation types in
heterogeneous graphs. These fine-grained embedding meth-
ods often utilize multi-layer message-passing techniques as
in traditional GNNs, thus facing scalability issues. To effi-
ciently model real-world web-scale graphs, researchers and
practitioners have explored various ways to scale HGNNs.
Sampling-based methods sample sub-graphs with different
strategies (Hu et al. 2020b; Zhang et al. 2019), while others
use model simplification to execute feature propagation as
a pre-processing stage before training (Yu et al. 2020; Yang
et al. 2022).

However, existing HGNNs fail to account for a tree hi-
erarchy among the metapaths. A metapath represents an
ordered sequence of composite relationships connecting dis-
tinct or identical node types (Definition 3.2). For instance, as

illustrated in Figure 1(a), the metapath Sender
p1 sends−−−−−→

Message
is sent from−−−−−−−−→ IP is intuitively more closely

associated with Sender
p1 sends−−−−−→ Message than with

Sender
s has domain of−−−−−−−−−−−→ Domain due to a greater overlap

in node types and relationships. This overlap can be con-
ceptualized as a parent-child relationship, where the parent
metapath serves as a prefix to its child metapaths. Conse-
quently, these parent-child relationships naturally form a tree
hierarchy among the metapaths.

The exploration of tree structures in heterogeneous graphs
is not a new topic, as several tree-based HGNNs have investi-
gated this concept. However, existing tree-based HGNNs (Xu
et al. 2021; Wu and Wang 2022; Qiao et al. 2020) pri-
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Figure 1: (a) Relational scheme of a heterogeneous email
graph (b) An example of the email graph.

marily utilize tree structures to capture the local topology
of nodes. These approaches subsequently employ attention
mechanisms for semantic aggregation to integrate informa-
tion across metapaths. Despite these efforts, they do not ac-
count for the parent-child relationships or hierarchical orga-
nization inherent among metapaths (Section 2).

Moreover, to augment the data usage, label utilization has
been widely adopted in GNNs (Sun, Gu, and Hu 2021; Shi
et al. 2020; Zhang et al. 2022; Yu et al. 2022). These methods
leverage ground truth labels from the training set and propa-
gate them through the graph structure as inputs to the model.
However, existing approaches either completely separate fea-
ture learning from label learning, combining them only in the
final stage, or treat feature and label vectors equivalently by
projecting them to the same latent space. While such strate-
gies may be effective for homogeneous graphs, they are less
suitable for heterogeneous graphs, where features and labels
can propagate along distinct metapaths, and features and
labels through the same metapath are more related.

In this paper, we present HETTREE, a scalable HGNN
that extracts a unified tree representation on metapaths, i.e.,
semantic tree, from the input graph and proposes a novel tree
aggregation with subtree attention to encode the resulting se-
mantic tree, in which propagated labels are carefully matched
with corresponding features based on metapaths.

To scale efficiently on web-scale graphs, HETTREE fol-
lows the model simplification approach that simplifies hetero-
geneous feature aggregation as a pre-processing stage. Mean-
while, label aggregation of the target node types for each
metapath is also executed. HETTREE then builds a semantic
tree to capture the hierarchy among metapaths. Instead of
separating feature learning from label learning (Sun, Gu, and
Hu 2021; Zhang et al. 2022) or treating features and labels
equally by projecting them to the same latent space (Yang
et al. 2022), HETTREE proposes to match them carefully on
corresponding metapaths, which provides more accurate and
richer information between node features and labels.

To encode the resulting semantic tree, HETTREE uses a
novel subtree attention mechanism to emphasize children
nodes that are more helpful in encoding parent-child relation-
ships. Existing tree encoding techniques (Xu et al. 2021; Wu
and Wang 2022; Qiao et al. 2020) aggregate children nodes
by weighting the contribution of children nodes based on sim-
ilarity to the parent node. However, in the semantic tree, this
tree encoding fails to capture the entire parent-child hierarchy
by only considering the parent node. Hence, subtree attention
in HETTREE models a broader parent-child structure while

enhancing correlations, bringing a better representation for
each metapath.

In summary, we make the following contributions.
• We observe that existing HGNNs ignore the hierarchy of

the metapath features. HETTREE takes a radically new
approach to encoding metapath hierarchy by building a
semantic tree for both pre-computed features and labels.

• HETTREE proposes a novel tree aggregation with subtree
attention to encode the semantic tree structure. For better
label usage, HETTREE matches pre-computed features
and labels correspondingly, which constitutes a complete
representation of a metapath.

• We conduct extensive experiments on five open graph
datasets as well as a real-world commercial email dataset.
The results demonstrate that HETTREE can outperform
the state-of-the-art architectures on all datasets with low
computation and memory overhead.

2 Related Work
Graph Neural Networks. Graph Neural Networks (GNNs)
are neural networks that take input structured as graphs. The
fundamental task in a GNN is to generate the representation
of graph entities, such as nodes and edges, in a d-dimensional
space, referred to as the embedding of the entity. To generate
the embedding, GNNs usually use a multi-layer feature prop-
agation followed by a neural network to combine structural
information from the graph structure and the input features.
Various GNN architectures exist today, but they differ in how
the information is aggregated and transformed (Hamilton,
Ying, and Leskovec 2017; Defferrard, Bresson, and Van-
dergheynst 2016; Veličković et al. 2018; Hamilton, Ying,
and Leskovec 2017). Nevertheless, a main problem with
these classic GNNs is that they are hard to scale due to the
feature propagation performed at each layer of the neural
networks. Hence, many sampling methods (Hamilton, Ying,
and Leskovec 2017; Chen, Ma, and Xiao 2018; Zou et al.
2019a,b) have been proposed to reduce both computation
and memory complexity by using only a subset of nodes
and edges. Besides sampling, other methods (Wu et al. 2019;
Frasca et al. 2020; Zhu and Koniusz 2020) simplify mod-
els by making feature propagation an offline stage, so that
this computation-intensive process only needs to be executed
once and is not involved during the training.
Heterogeneous Graph Neural Networks. To extend GNN
from homogeneous graphs to heterogeneous graphs, various
heterogeneous GNN architectures (HGNNs) have been ex-
plored. The most general approach in HGNNs is the so-called
metapath-based method (Fu et al. 2020; Wang et al. 2019),
where the feature propagation is performed based on seman-
tic patterns and an attention mechanism is usually applied at
both the node level for each metapath and the semantic level
across metapaths. Other models (Schlichtkrull et al. 2017;
Zhang et al. 2019; Hu et al. 2020b; Lv et al. 2021) encode
graph heterogeneity at a more fine-grained level using the
multi-layer, message-passing framework common in GNNs,
where different weights are learned for distinct entity types.

However, HGNNs also inherit the scalability problem from
traditional homogeneous GNNs. Hence, sampling (Hu et al.



2020b) and model simplification (Yu et al. 2020) have also
been explored in the heterogeneous graph learning domain.
NARS (Yu et al. 2020) first applies the scaling approach pro-
posed by SIGN (Frasca et al. 2020) on heterogeneous graphs,
which samples multiple relational subgraphs using different
sets of relations and then treats them as homogeneous graphs.
SeHGNN (Yang et al. 2022) computes averaged metapath
features separately and applies Transformer-like attention
to learn metapath features. However, simply applying the
Transformer ignores the hierarchy among metapath features
and thus results in sub-optimal results.
Tree-based HGNNs. Recent work (Zhang, Ying, and Lauw
2023) utilizes a topic tree as a regularizer, i.e., log-likelihood
terms, for text decoding on document graphs. For general
heterogeneous graphs, a few HGNNs have explored tree struc-
ture based on the local topology of nodes. T-GNN (Qiao et al.
2020) and SHGNN (Xu et al. 2021) construct hierarchical
tree structures at the node level, where each tree represents
a metapath and each level of the tree contains nodes of a
certain type. Similarly, HetGTCN (Wu and Wang 2022) also
constructs a tree hierarchy for each node, where tree nodes at
the kth level are k-hop neighbors of the root node. To encode
tree-structured data, i.e. parent-child relationships among tree
nodes, they either use a weighted sum aggregator (Qiao et al.
2020; Wu and Wang 2022) or compute weights using an at-
tention mechanism for each parent-child pair (Xu et al. 2021;
Wu and Wang 2022). These methods utilize the tree structure
to aggregate neighbor information for each metapath first and
then use semantic attention (Wang et al. 2019) to aggregate
metapath representations to obtain the final node representa-
tion. However, the tree hierarchy among metapaths has not
been explored.
Label Utilization. Label utilization has been commonly
applied in graph representation learning. In general, partially
observed labels in the training set are propagated through the
network structure to generate label representations, combined
with the feature representations to generate the final repre-
sentations of graph entities (ZhuЃ and GhahramaniЃн 2002;
Wang et al. 2021; Sun, Gu, and Hu 2021). To avoid label leak-
age and overfitting, UniMP (Shi et al. 2020) randomly masks
the training nodes for each epoch. GAMLP (Zhang et al.
2022) modifies label propagation with residual connections
to each hop to alleviate the label leakage issue.

However, these methods either completely separate fea-
ture learning and label learning and only combine them at
the end, or they simply add the features and label vectors
together as propagation information, which may result in
good performance in homogeneous graphs but not in the case
of heterogeneous graphs, since the features and labels are
related by the corresponding metapaths.

3 Preliminary
In this section, we provide formal definitions of important
terminologies related to HETTREE.

Definition 3.1. Heterogeneous Graph. A heterogeneous
graph is denoted as G = (V, E ,O,R), where each node
v ∈ V and edge e ∈ E are associated with a node mapping
function τ(v) : V → O from node set V to node type set O,

and a edge mapping function ϕ(e) : E → R from edge set E
to relation set R, respectively.
Example 3.1. Figure 1(a) shows the relational scheme
of a heterogeneous email graph while Figure 1(b) shows
an illustrative example. It is composed of five types of
nodes: Domain,Sender, Message, Recipient, IP , and six
types of relations: s has domain of(H), r has domain of(D),
p1 sends(O), p2 sends (T), receives(R), is sent from(F).

Definition 3.2. Metapath. A metapath P is a path that de-
scribes a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl be-
tween node types O1 and Ol+1, where ◦ denotes the compo-
sition operator on relations. P is denoted as O1

R1−−→ O2
R2−−→

· · · Rl−→ Ol+1, which is abbreviated as R1R2 · · ·Rl. A spe-
cial metapath where no relation is present but includes only
a node type O is simply denoted as Oinit (abbreviated as
init when O is specified). The set of metapaths ending
with node type O excluding P = Oinit is denoted as PO.
The set of metapaths up to hop k is denoted as Pk, where
l ≤ k, ∀P = R1R2 · · ·Rl ∈ Pk. Metapath-based neighbors
N v

P of node v along metapath P are the set of nodes that
are connected with node v via metapath P . Note that when
τ(v) = O and P ends with O, N v

P can include v itself.
Remark 3.3. Most of metapath-based HGNNs denote a meta-
path P = O1

R1−−→ O2
R2−−→ · · · Rl−→ Ol+1 as O1O2 · · ·Ol+1

for short. We note that this notation fails to differentiate meta-
paths that have different relation compositions but the same
node types along the metapaths, as multiple relations can be
present between two node types in a heterogeneous graph.
Example 3.3. In Figure 1, a sender can be connected to
a recipient through three 2-hop metapaths: Sender

O−→
Message

R−→ Recipient (OR), Sender T−→ Message
R−→

Recipient (TR), Sender
H−→ Domain

D−→ Recipient
(HD). Moreover, let S = {OR, TR,HD}, then we have
S ⊂ Pk, for any k ≥ 2.
Definition 3.4. Semantic Tree. A semantic tree TO with
depth of k, for node type O, is composed of tree nodes
C = {CP , ∀P ∈ Pk} and relation edges R. The root node
represents the metapath P = Oinit, denoted as COinit (ab-
breviated as Cinit when O is specified). A non-root node
CR1R2···Rl

represents the metapath from the root node Cinit

to them via relation edges R1R2 · · ·Rl. The root node Cinit

is the parent of all nodes CR1 at depth 1 of the semantic tree
TO. A node CR1R2···Rl

with depth ≥ 2 has a parent node
CR1R2···Rl−1

, and they are connected by edge Rl.
Example 3.4. A semantic tree with depth of 2 for Sender
nodes in the heterogeneous email graph is shown in Figure 2,
where the root node Cinit represents metapath init and other
nodes represent the metapath from the root node to them. For
example, node COF is connected with the root node Cinit by
relation edges O and F in order.

4 Methodology
In this section, we describe a novel heterogeneous tree graph
neural network, HETTREE, for scalable and effective hetero-
geneous graph learning. HETTREE consists of three major
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components: offline feature aggregation and semantic tree
construction (Section 4.1), metapath feature transformation
(Section 4.2), and semantic tree aggregation (Section 4.3).

4.1 Offline Aggregation and Semantic Tree
Construction

As a pre-processing stage, node features and labels are ag-
gregated to prepare for training. In node classification tasks,
initial node features are normally associated with every node
(if not, we can use external graph embedding algorithms like
ComplEx (Trouillon et al. 2017) to generate them), while
labels are often only associated with nodes of target node
types that need to be classified. For example, in the email
dataset we collect, the task is to classify Sender nodes as a
compromised email account or not, and only Sender nodes
are associated with labels. Moreover, as mentioned in Sec-
tion 2, only labels of training nodes can be used as part of
the input features, and the problem of label leakage in la-
bel utilization should be well addressed. We also construct
a novel semantic tree structure to organize the aggregation
results and capture the hierarchy of metapaths, which can be
leveraged in semantic tree aggregation (Section 4.3).

Feature Aggregation Figure 2(a) shows the process of
offline feature aggregation. Unlike existing metapath-based
methods (Wang et al. 2019; Fu et al. 2020), where feature ag-
gregation is involved with model learning such as projection
and attention, HETTREE performs feature aggregation as a
pre-processing step. Existing methods manually select meta-
paths with domain knowledge. The choice saves computation
complexity but also results in information loss. As the feature
aggregation happens offline and involves no parameter learn-
ing, which is much less expensive than existing approaches,
we use all metapaths up to hop k, where k is a user-defined
parameter. For example, when k = 2 as shown in Figure 2(a),
feature aggregation is conducted on 14 metapaths (init, O,
T , H , OO, OT , OR, OF , TT , TO, TR, TF , HH , HD).
Possible aggregators include but are not limited to mean,

sum, max, and min, and we use the mean aggregator in
this paper for both feature and label aggregation. For each
node v, we compute a set of aggregated features X v:

X v = {Xv
P = agg({xu, ∀u ∈ N v

P }), ∀P ∈ Pk} (1)

where Xv
P represents the aggregated feature for node v along

metapath P , and agg is the aggregation function (mean by
default).

Label Aggregation Figure 2(b) shows the process of of-
fline label aggregation. The label aggregation process is very
similar to the feature aggregation process described in Sec-
tion 4.1, except for two differences: first, since only labels
from nodes with target node type Otgt (node type to be clas-
sified) in the training set can be used, the label aggregation is
only conducted for metapaths Pk

Otgt
where they end at node

type Otgt; second, feature aggregation applies to all nodes
in N v

P including v itself, while v is excluded during label
aggregation to avoid label leakage. For example, when k = 2
as shown in Figure 2(b), label aggregation is conducted on 3
metapaths (OT, TO,HH) excluding the center target node,
respectively. Note that only labels from nodes in the training
set are used for label aggregation, and zero vectors are used
for nodes in the non-training set. Specifically, for each node
v, we compute a set of aggregated features Ŷv:

ŷv =

{
yv, if v ∈ training set
0, otherwise

Ŷv = {Ŷ v
P = agg({ŷu, ∀u ∈ NP

v \ {v}}), ∀P ∈ Pk
Otgt

}
(2)

where yv is the ground truth label for node v, ŷv is the
label used in label aggregation for node v, and Ŷ v

P is the
aggregated label along metapath P for node v.

Semantic Tree Construction We can construct a semantic
tree TO for node type O with tree nodes {CP , ∀P ∈ Pk}.
Cinit is the root node and a non-root node CR1R2···Rl

repre-
sents the metapath from the root node Cinit to itself via re-
lation edges R1R2 · · ·Rl. The parent of all 1-hop tree nodes



CR1 is Cinit, which are at depth 1 of TO. Starting from depth
2, CR1R2···Rl

is connected with its parent node CR1R2···Rl−1

via edge Rl. By constructing the semantic tree, the hierar-
chy among metapaths can be captured, which provides the
model structural information of the metapaths. Moreover, the
semantic tree is also used as the underlying data structure for
semantic tree aggregation discussed in Section 4.3, where the
metapath features are aggregated following the tree structure
in a bottom-up way. Figure 2(c) shows an illustration of the
semantic tree for the Sender node type.

4.2 Metapath Feature Transformation
After obtaining aggregated features and labels for metapaths,
we transform them to the same latent space. This is due to
the aggregated features for metapaths being generated from
raw features of metapath-based neighbors with different node
types, which may have different initial spaces. Instead of
separating the transformation of features and labels as in ex-
isting methods (Sun, Gu, and Hu 2021; Zhang et al. 2022),
HETTREE automatically matches and concatenates (∥) the
aggregated features and labels of the same metapath P for
P ∈ POtgt . This gives the model more accurate label infor-
mation of its metapath-based neighbors by designating the
aggregated labels with corresponding metapaths. Specifically,
for all P ∈ Pk, we compute the metapath features M as

M = {MP =

{
MLP (XP ∥ ŶP ), if P ∈ Pk

Otgt

MLP (XP ), otherwise
}. (3)

4.3 Semantic Tree Aggregation
As discussed in Section 4.1, we construct a semantic tree
T , and each tree node CP represents a metapath P , where
P ∈ Pk. Since we also obtain metapath features M, we can
associate each tree node CP with MP correspondingly. Note
that the semantic tree structure is the same for all nodes with
the same node type in a heterogeneous graph, so the target
nodes (to be classified) can easily be batched. We now have
tree-structured metapath features, and the hierarchical rela-
tionship between metapath features needs to be well modeled
when aggregating them.

The tree aggregation in HETTREE is conducted in a
bottom-up fashion. As it gets closer and closer to the tar-
get node as the process proceeds, the semantic tree aggrega-
tion can gradually emphasize those metapaths that contribute
more to the local subtree structure, i.e., the parent-child re-
lationship. To calculate the encoded representation ZP for
each metapath node in the semantic tree, HETTREE applies a
novel subtree attention mechanism to aggregate the children
nodes thus encoding the local subtree structure. Unlike exist-
ing tree encoding methods (Tai, Socher, and Manning 2015;
Qiao et al. 2020; Xu et al. 2021; Wu and Wang 2022) that use
either a simple weighted-sum aggregator or attention mech-
anism to emphasize parent tree nodes, HETTREE proposes
the subtree attention to encode both the parent and children
representation and uses it to emphasize the hierarchical cor-
relation between metapaths. Specifically, let Pchild

P be the
set of metapaths that {CQ, Q ∈ Pchild

P } are the set of chil-
dren nodes of CP in the semantic tree, HETTREE computes
a subtree reference as SP = MLP (MP ∥

∑
Q∈Pchild
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Figure 3: Semantic tree aggregation in HETTREE.

for each metapath P in the semantic tree. Then, the weight
coefficient aQ of each children node CQ can be calculated
as:

αQ =
exp(δ(WP · [SP ∥ ZQ]))∑

B∈Pchild
P

exp(δ(WP · [SP ∥ ZB ]))
. (4)

where δ is the activation function, WP is a learnable projec-
tion vector for metapath P and ∥ stands for concatenation.
Then, we can finally compute the encoded representation ZP

for parent node CP by aggregating encoded representation
of children nodes as:

ZP = MP + δ(
∑

Q∈Pchild
P

αQ · ZQ). (5)

After the semantic tree aggregation has finished from bot-
tom to top, the sum of metapath representations will be used
as the final representation of the semantic tree. Moreover,
we add a feature residual and a label residual to further em-
phasize the initial features and labels aggregated from the
metapath-based neighbors. Specifically,

Ypred = MLP (
∑

P∈Pk

ZP ) +MLP (Xinit)

+MLP (agg.({ŶP , ∀P ∈ Pk
Otgt

})).
(6)

where agg. is an aggregation function, which can be mean,
sum, max, min, etc. An illustration of the semantic tree
aggregation process is shown in Figure 3, following the same
example in Figure 2.

5 Experiments
We conduct extensive experiments on six heterogeneous
graphs to answer the following questions.

Q1. How does HETTREE compare to the state-of-the-art
overall on open benchmarks?

Q2. How does HETTREE perform in a practical compro-
mised account detection on a noisy email graph?

Q3. How does each component of HETTREE contribute to
the performance gain?

Q4. Is HETTREE practical w.r.t. running time and memory
usage?



DBLP IMDB ACM Freebase
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.52±0.50 92.07±0.50 58.85±0.26 62.05±0.15 91.55±0.74 91.41±0.75 46.78±0.77 58.33±1.57
HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58 90.89±0.43 90.79±0.43 21.31±1.68 54.77±1.40
HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65 85.91±0.25 86.05±0.25 - -
MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67 90.88±0.64 90.77±0.65 - -
HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57 91.12±0.76 91.00±0.76 29.28±2.52 60.51±1.16
HGB 94.01±0.24 94.46±0.22 63.53±1.36 67.36±0.57 93.42±0.44 93.35±0.45 47.72±1.48 66.29±0.45
SeHGNN 95.06±0.17 95.42±0.17 67.11±0.25 69.17±0.43 94.05±0.35 93.98±0.36 51.87±0.86 65.08±0.66
HETTREE 95.34±0.17 95.64±0.15 68.43±0.31 70.92±0.29 94.26±0.20 94.19±0.20 52.35±0.96 66.39±0.40

Table 1: Experimental Results of HETTREE and baselines over four graphs in the HGB benchmark. ”-” means that the model
runs out of memory on the corresponding graph.

Graph Nodes Edges Node
Types

Relation
Types Classes

DBLP 26.1K 239.5K 4 6 4
IMDB 21.4K 86.6K 4 6 5
ACM 10.9K 547.8K 4 8 3
Freebase 180.0K 1.0M 8 36 7
Mag 1.9M 21.1M 4 5 349
Email 7.8M 34.9M 5 6 2

Table 2: Statistics of datasets.

Experimental Setup. All of the experiments were con-
ducted on a machine with dual 12-core Intel Xeon Gold 6226
CPU, 384 GB of RAM, and one NVIDIA Tesla A100 80GB
GPU. The server runs 64-bit Red Hat Enterprise Linux 7.6
with CUDA library v11.8, PyTorch v1.12.0, and DGL v0.9.

Datasets. We evaluate HETTREE on four graphs from
the HGB (Lv et al. 2021) benchmark: DBLP, IMDB, ACM,
and Freebase, a citation graph Ogbn-Mag from the OGB
benchmark (Hu et al. 2020a) and a real-world email dataset
collected from a commercial email platform. We summarize
the six graphs in Table 2.

Baselines. For the four graphs from the HGB benchmark,
we compare the HETTREE results to the results reported in
the HGB paper (Lv et al. 2021) as well as a state-of-the-
art work SeHGNN (Yang et al. 2022). For Ogbn-Mag, we
compare the HETTREE with top-performing methods from
either the baseline paper or the leaderboard of OGB (Hu
et al. 2020a). We use the unified metrics chosen by the bench-
marks for a fair comparison, i.e., the HGB benchmark uses
F1 scores while the OGB benchmark uses accuracy as met-
rics. For the email dataset, we compare HETTREE with the
best-performing baseline SeHGNN. All experimental results
reported are averaged over five random seeds.

Ethics and Broader Impacts. This work was reviewed
and approved by independent experts in Ethics, Privacy, and
Security. For the email dataset, all users’ identities were
anonymized twice, and the map from the second anonymized
user IDs to the first anonymized user IDs was deleted. Further-
more, the data was handled according to GDPR regulations.

5.1 Experiments on Open Benchmarks
To answer Q1, we compare the performance of the proposed
HETTREE model to state-of-the-art models on five heteroge-

neous graphs from two open benchmarks - HGB (Lv et al.
2021) and OGB (Hu et al. 2020a).
Performance on HGB Benchmark. Table 1 shows results
that compare HETTREE with the best-performing baselines
on four datasets from the HGB benchmark. HETTREE outper-
forms the baselines on all graphs in terms of both Macro-F1
and Micro-F1 scores. For datasets in the HGB benchmark,
which share similar medium-scale sizes and have uniformly
preprocessed input node features, we observe that HETTREE
derives greater benefits from its semantic tree aggregation
mechanism on more complex tasks involving a larger number
of classes. As shown in Table 1, HETTREE has more per-
formance gain on IMDB and Freebase with 5 and 7 classes,
respectively, compared with DBLP and ACM with 3 and 4
classes, respectively. This can be attributed to HETTREE’s
semantic tree aggregation that learns more information, i.e.,
the hierarchy among metapaths, which is ignored by the other
baselines.
Performance on Ogbn-Mag Dataset. We also evaluate HET-
TREE on a large-scale citation graph, Ogbn-Mag (Hu et al.
2020a), with millions of nodes in Table 3. We report re-
sults without self-enhanced techniques like multi-stage train-
ing (Li, Han, and Wu 2018; Sun, Lin, and Zhu 2020; Yu et al.
2022), which are orthogonal to HETTREE and can be incorpo-
rated for additional benefits. The results show that HETTREE
maintains its benefits on large graphs and outperforms all
baselines.

Methods Validation Accuracy Test Accuracy
RGCN 48.35 ± 0.36 47.37 ± 0.48
HGT 51.24 ± 0.46 49.82 ± 0.13

NARS 53.72 ± 0.09 52.40 ± 0.16
LEGNN 54.43 ± 0.09 52.76 ± 0.14
GAMLP 55.48 ± 0.08 53.96 ± 0.18
SeHGNN 56.56 ± 0.07 54.78 ± 0.17

HETTREE 57.31 ± 0.15 55.54 ± 0.17

Table 3: Detection accuracy of the HETTREE model and other
baselines for the Ogbn-Mag dataset.

5.2 Experiments on Commercial Email Graph
Besides the open benchmark datasets, we also collect a large
email dataset from a commercial email platform to answer
Q2, for lack of public alternatives. In this experiment, a sub-
sample of real-world email data is used, which contains five



types of entities - senders, recipients, domains, IP addresses,
and messages. The task is to predict if the sender is legitimate
or compromised, given its domain, messages, recipients of
the message, recipients’ domains, and message IP addresses.
Compromised accounts may send various types of malicious
emails, such as phishing emails, malware attachments, and
spam. The email dataset has highly imbalanced classes where
legitimate email accounts are much more than compromised
accounts, as in the real-world scenario.

Since the email dataset contains binary labels, we can con-
struct a Receiver Operating Characteristic (ROC) curve for
the models. The ROC curve for the detection of compromised
emails is presented in Figure 4 for the email dataset, and the
accuracies are shown in Table 4. These results demonstrate
that while both the best-performing baseline SeHGNN (Yang
et al. 2022) and HETTREE can achieve high accuracy in clas-
sification, HetTree can distinguish better between positive
and negative classes.

Figure 4: ROC Curves for the email dataset. The error bars
for HETTREE are tiny.

Methods Val Accuracy Test Accuracy
SeHGNN 97.22 ±0.02 97.26 ± 0.02

HETTREE 98.48±0.01 98.48 ± 0.02

Table 4: Detection accuracy for the email dataset.

5.3 Ablation Study
We next evaluate whether adding the subtree attention compo-
nent and using labels from the training set really help or not
to answer Q3. The test F1 scores or accuracy of HETTREE
are evaluated on IMDB, ACM, and Ogbn-Mag compared
with its three variants: ”weighted-sum”, ”parent-att” and ”no-
label”. Variant weighted-sum removes the proposed subtree
attention but uses a weighted child-sum like TreeLSTM (Tai,
Socher, and Manning 2015). Variant parent-att removes the
proposed subtree attention but computes weights of children
nodes using attention on the parent node, which is the tree-
encoding method used in SHGNN (Xu et al. 2021). Variant
no-label does not use labels as extra inputs. We note that
substituting the entire semantic tree aggregation with conven-
tional metapath aggregation based on attention mechanism
is what the baseline SeHGNN (Yang et al. 2022) does. Since
we compare HETTREE with SeHGNN in all benchmarks, we
do not include it in the ablation study.

The results in Table 5 show that each component is effec-
tive for HETTREE. We notice that datasets exhibit distinct

sensitivities to individual components. The subtree attention
results in more performance gain on IMDB, which could
be attributed to the sparsity of the graph. It demonstrates
that subtree attention can capture the metapath hierarchy,
compared to other tree encoding mechanisms. Ogbn-Mag is
more sensitive to label utilization, which could be attributed
to the large number of classes of labels that provide richer
information through propagation.

IMDB ACM Ogbn-Mag

Micro-F1 Micro-F1 Accuracy

HETTREE 70.92±0.29 94.19±0.20 55.54±0.17
weighted-sum 69.70±0.24 93.54±0.23 55.38±0.21

parent-att 69.69±0.41 93.83±0.18 54.87±0.26
no-label 70.11±0.25 93.41±0.23 52.93±0.12

Table 5: Effectiveness of each component of HETTREE.

5.4 Computation Cost Comparison
We next investigate the computational cost of HETTREE in
terms of epoch time and memory footprint to answer Q4. We
select three performant models - HAN (Wang et al. 2019),
HGB (Lv et al. 2021), and SeHGNN (Yang et al. 2022) - to
compare with HETTREE on four graphs in the HGB bench-
mark. For fair comparison, we use a 2-layer structure for
HAN and HGN, and 2-hop feature propagation for SeHGNN
and HETTREE. The result in Figure 5 shows that HETTREE
incurs the lowest computational cost in terms of both running
time and memory usage across three datasets from the HGB
benchmark.
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Figure 5: Epoch time and memory usage on HGB datasets.

6 Conclusion
In this paper, we present a novel HGNN, HETTREE, based on
the observation that existing HGNNs ignore a tree hierarchy
among metapaths, which is naturally constituted by different
node types and relation types. HETTREE builds a semantic
tree structure to capture the hierarchy among metapaths and
proposes a novel subtree attention mechanism to encode the
semantic tree. Compared with existing tree-encoding tech-
niques that weight the contribution of children nodes based
on similarity to the parent node, subtree attention in HET-
TREE can model the broader local structure of parent nodes
and children nodes. The evaluation shows that HETTREE can
outperform state-of-the-art baselines on open benchmarks
and efficiently scale to large real-world graphs.
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