
RUG: Turbo LLM for Rust Unit Test Generation
Xiang Cheng, Fan Sang, Yizhuo Zhai, Xiaokuan Zhang†, and Taesoo Kim

Georgia Institute of Technology, †George Mason University
{cxworks, fsang, yzhai60, taesoo}@gatech.edu, xiaokuan@gmu.edu

Abstract—Unit testing improves software quality by evaluating
isolated sections of the program. This approach alleviates the
need for comprehensive program-wide testing and confines the
potential error scope within the software. However, unit test
development is time-consuming, requiring developers to create
appropriate test contexts and determine input values to cover
different code regions. This problem is particularly pronounced
in Rust due to its intricate type system, making traditional unit
test generation tools ineffective in Rust projects. Recently, large
language models (LLMs) have demonstrated their proficiency in
understanding programming language and completing software
engineering tasks. However, merely prompting LLMs with a
basic prompt like "generate unit test for the following source
code" often results in code with compilation errors. In addition,
LLM-generated unit tests often have limited test coverage.

To bridge this gap and harness the capabilities of LLM,
we design and implement RUG, an end-to-end solution to
automatically generate the unit test for Rust projects. To help
LLM’s generated test pass Rust strict compilation checks, RUG
designs a semantic-aware bottom-up approach to divide the
context construction problem into dependent sub-problems. It
solves these sub-problems sequentially using an LLM and merges
them to a complete context. To increase test coverage, RUG
integrates coverage-guided fuzzing with LLM to prepare fuzzing
harnesses. Applying RUG on 17 real-world Rust programs (average
24,937 LoC), we show that RUG can achieve a high code coverage,
up to 71.37%, closely comparable to human effort (73.18%). We
submitted 113 unit tests generated by RUG covering the new
code: 53 of them have been accepted, 17 were rejected, and 43
are pending for review.

I. INTRODUCTION

Unit testing is essential to ensure program quality throughout
the development process, with the aim of comprehensively
testing a function in all possible branches and execution paths.
It has become an integral part of the software development
cycle, and many companies such as Google and Meta have a
strict coverage requirement [1], [2]. A good unit test includes
the calling context to successfully execute the function, the
proper input triggering different paths, and clear assertions
reflecting the correctness of the result. Consequently, it is
widely recognized that the production of high-quality unit tests
requires substantial human energy and effort. For example, in
the United States, software testing labor is estimated to cost
$48 billion dollars per year [3].

To reduce developers’ workload, several approaches have
been proposed to automate test generation, including 1)
traditional approaches like Search Based Software Testing
(SBST) [4], fuzzing [5], program synthesis [6] and 2) lat-
est Large Language Model (LLM)-based methods [7], [8].
Traditional approaches usually leverage program analysis to
build the testing context and search for appropriate test

input to trigger different paths. These tools achieve good
testing coverage on programming languages such as Java
(e.g., EvoSuite [9]), Python (e.g., Pynguin [10]) and C/C++
(e.g., AFL [5]). Recently, many LLM-based tools such as
CODAMOSA [11], ChatUniTest [8], TestGen-LLM [12] have
been proposed to automate testing generation. Commercial
products like Cody [13] and Copilot [14] are available for
daily development.

Rust, an emerging system programming language that
performs strict compilation checks, is gaining traction for its
performance and memory safety advancements. It is adopted
in crucial projects such as operating system kernels [15], [16],
device drivers [17], web browsers [18], etc. Rust also has
a plethora of over 130K packages to date. However, Rust
packages are not well tested. We conducted a survey on
crates.io, Rust’s package repository, computing the unit tests’
code coverage for the top 30K most downloaded crates1. From
our study, we found that many crates are rarely tested, and
47.41% of the crates have less than 30% test coverage, which
underscores the serious problem lack of unit testing in Rust
projects.

The difficulty of Rust testing is due to its complex-type
systems. For example, Rust’s ownership system defines the
single owner of each memory value, and the borrow checker
ensures that each value should only have one writable reference
at a time. These language features impose extreme stringency in
compiler checks, making it challenging even for experienced
developers to craft valid code that passes compilation [19].
When applying existing approaches in Rust, traditional ap-
proaches such as SBST and fuzzing suffer from complex
type dependencies and the potential huge searching space,
leading to limited test cases and test coverage. For LLM based
approaches, Rust’s strict compiler checks and complex program
conditions largely undermine the ability of LLMs to generate
valid testing code with high code coverage. This underscores the
necessity of developing an automated tool specifically for the
Rust programming language and pinpoints two key challenges
that must be addressed: A) Passing compilation checks. and
B) Expanding code coverage.

In this paper, we propose RUG, which leverages LLM to
automatically generate compilable high coverage unit tests
for Rust projects. To solve the challenge A, RUG proposes a
bottom-up approach to divide the context construction problem
into dependent sub-problems and iteratively interact with LLM
to solve each sub-problem. Each subsolution will be verified

1In Rust, packages are called crates.

1

https://crates.io

and memorized from the bottom of the dependency graph
to the top. The sub-solutions will be merged at the end to
generate the final test context. For challenge B, RUG transforms
the generated tests into fuzzing harnesses without breaking
test body and leverages fuzzing to improve the test coverage.
Regarding the fuzzing corpus, RUG prompts LLM to prepare
sample test data during context generation and reuses them as
initial corpora for the fuzzing process.

We evaluated RUG on the 17 most frequently downloaded
crates of rust (average 24,937 LoC). The result shows that RUG
generates high-quality tests with better code coverage. Using
the latest GPT-4 model, RUG achieves 71.37% code coverage,
which is comparable to human practice (73.18%), and even
achieves higher test coverage than human practice on 8 crates.
We submitted 113 unit tests generated by RUG containing code
regions that developers failed to test as pull requests (PRs),
and 53 of them have been merged into the project, taking 75.
14% of all the tests reviewed.
Contributions. This paper makes following contributions2:

• A Bottom-up Context Building Algorithm. We propose
a semantic-aware bottom-up algorithm which simplifies
the context construction problem for LLM and improve
correctness of generated code by 65.14%.

• Fuzzing based Input Exploration. We demonstrate that
fuzzing tools can be used to compensate for LLM’s weakness
in reasoning program conditions and expand testing coverage
by 6.26% to 8.91%.

• An automatic unit test generation tool for Rust. We
present RUG, an automatic unit test generation tool for Rust
that leverages a deep combination of LLM and program
analysis. RUG improves the code coverage of 13.21% to
29.68%, and 11.20% to 21.81% when compared to existing
traditional approaches and existing LLM-based approaches,
respectively.

• Practical Usage. We submitted the 113 generated unit tests
to 12 different popular Rust projects, 53 of them are merged
by maintainers with positive feedback, taking the 75.14%
of all the reviewed unit tests.

II. BACKGROUND

In this section, we first outlines the issue of test generation
alongside the most current state-of-the-art approaches. Then
we introduce the basics of the Rust programming language,
which guarantees memory safety and performance through
strict compiler checks. Furthermore, we highlight the obstacles
encountered in automatic testing code generation for Rust.

A. Automatic Unit Testing

Although unit tests have been proven to be helpful in program
quality during software development [20], it is time consuming
for human developers to write unit tests for each unit. In order
to address this issue, there are many efforts to automate the

2We will open source RUG upon publication.

unit test generations, including the SBST, fuzzing approach
and learning-based approach.

SBST Approach. Searching Based Software Testing (SBST)
leverages the source code, including the library code and
application code, to find the possible function sequences
and input data that can test new code. It utilizes different
search algorithms to automatically generate tests guided by the
coverage goal, and evolutionary algorithms are demonstrated
powerful for this searching process. However, when applying
the SBST to Rust, there are two drawbacks: 1) Due to
the complex type system of Rust, the mutation operators
can not guarantee the correctness of the generated code. 2)
the evolutionary algorithms primarily relies on existing user
program to mutate, limiting their ability to generalize and adapt
to broader testing scenarios.

Fuzzing. Fuzzing has grown in popularity for software testing
due to its efficiency and reproducibility. It generates and mutates
the input to test the target program and collect code coverage as
feedback. Based on coverage feedback and domain knowledge,
modern fuzzers are proficient in exploring paths within testing
programs and can even uncover bugs that have existed for
years [21]. With its ability to identify input data that cover
new code, fuzzing holds potential in aiding the generation of
test data for unit tests. However, utilizing fuzzing solely for
unit test generation presents the following issues. First, fuzzers
require specific fuzzing harnesses to work with, and the quality
of the fuzzing harnesses largely affects fuzzer performance.
Although program analysis tools such as RULF [22], RPG [23]
are proposed to automate this process, it still suffers from
the ultimate search process and lack of readability. Second,
the number of corpora generated during the fuzzing process
is large, requiring post-processing steps to filter and select.
Finally, the readability of the fuzzing corpora is poor and is
difficult to directly adopt into the repository.

LLM Approach. Large Language Models, like ChatGPT [24]
are state-of-the-art language models that are trained on vast
amounts of language data. These advanced language models,
with their neural architectures and expansive understanding of
languages, are able to capture intricate patterns and relation-
ships in language usage. As a result, they express an impressive
capabilities in the software-related activities including unit
test generation [25], [26], coding assistance [27] and program
debugging [28]. Provided the context and questions as prompts,
LLM is able to generate the relevant test program.

To evaluate the capabilities of LLM to generate unit tests,
Yuan et al. [26] conducted a thorough evaluation in the context
of JAVA. Their study reveals that ChatGPT is able to write a
reasonable number of unit tests, but a large proportion (57.9%)
encountered diverse compilation errors. Although the rest of
the tests have been successfully compiled, only 24.8% of
the executions succeed because the generated assertions are
incorrect. Finally, the unit test generated from LLMs exhibited
commendable readability. All three findings are consistent with
our results under the Rust context, and in this work we propose
our solutions for these problems.

2

B. Rust Programming Language

Rust is an emerging programming language for low-level
and system development with memory safety guarantees. It has
two parts; safe Rust is designed to achieve native performance
in a memory-safe way guarded by the compiler, and unsafe
Rust requires developers’ help for memory safety. (Safe) Rust3

employs a robust type system that imposes strict disciplines,
effectively mitigating security concerns and ensuring memory
safety. In addition to its advanced type system, Rust supports
traits to define the common behaviors and generic parameters
to extend its usability. Next, we will describe some necessary
language features and concepts used in the latter context and
highlight the challenges they present.
Type Checks. Rust is a statically typed language, all the
variables are assigned a specific type at the compilation time.
Rustc compiler will reason and check the type correctness and
bounds for every variables in the program. As a result, the unit
test generation tool needs to ensure the correctness of variable
types and bounds.
Ownership. Rust’s ownership ensures that every variable has
a relative memory it binds to, and this memory is immediately
reclaimed when the owner variable goes out of scope. This
ownership can also be transferred, and the original variable
loses the access to the value, ensuring the variable is valid
when it’s being accessed.
Traits and bounds. To further empower the flexibility, Rust
supports generic parameters to allow developers reuse the
functions. Trait bounds are used as desired restrictions for the
generic parameters. Therefore, when synthesising programs for
generic functions, synthesizers are expected to find qualified
candidate types as generic parameters, otherwise the Rustc will
find the missing or mismatch of generic parameters.

The aforementioned features along with other compiler
checks(e.g. mutability, lifetime, etc.) introduce new challenges
for test statement construction or program synthesis in Rust.
For instance, the recombination operator in a genetic algorithm
takes the parent programs(e.g., program A, B) as inputs and
’breeds’ them to generate child programs. In Java or C/C++
language, with the help of the type analysis, synthesizers
generate a program with cross-usage of variables (a variable is
created in A and used as a parameter in B). However, this step
does not always hold in Rust because, except type correctness,
the variable’s ownership, mutability, and lifetime need to be
correct as well. We argue that managing these requirements
simultaneously is not trivial under the constraints of safe Rust.
Furthermore, since Rust performs these checks during compile
time, it is difficult to bypass these challenges.

III. CHALLENGES

In this section, we use a motivating example in Listing 1 to
showcase the challenges to automatically generate unit tests.
Based on the root causes of these challenges, we categorize
them into two classes and propose our solutions in §IV.

3The goal of code generation is for safe Rust, we still call it Rust for
simplicity.

Listing 1. Motivating examples for encode function. Details of struct/trait
defintions are omitted. The challenge comes from lines 10-12; which provides
an implicit definition of Config trait.

1 fn encode<E: Encoder> (&self :char, encoder: E)
2 -> Result<EncodeError> // target function
3 // impl for Encoder trait
4 impl<W:Writer, C:Config> Encoder for EncoderImpl
5 pub struct EncoderImpl<W: Writer, C: Config>
6 // impls for Writer Trait
7 impl Writer for SliceWriter
8 impl Writer for IoWriter
9 // proxy impls for Config Trait

10 impl<T> Config for T where T: R1 + R2 + R3
11 // def for Configuration, impls R1, R2, R3
12 pub struct Configuration<R1, R2, R3>

A. Motivating Example

The motivating example in Listing 1 shows a target testing
function encode in line 1 and the related data structures in
the bincode crate [29]. The function encode takes the first
argument self as a char type, serializes it from memory into
raw bytes and stores them in the specified location (specified in
encoder). In order to test the target function, developers need
to prepare two concrete variables: one is a simple variable with
char type and the other is a complex instance of E: Encoder

trait.
In this code snippet, EncoderImpl is a candidate imple-

mentation of Encode. However, EncoderImpl itself depends
on two other traits: W: Writer and C: Config, representing
any general Writer or Config. Writer controls the output
location of the raw bytes, and Config controls the way to
encode the memory object(e.g., big endian or little endian). In
lines 7-8, we can resolve a concrete instance of Writer named
IoWriter or SliceWriter. As for the Config trait, instead of
providing a direct definition, developers need to deduce that the
’proxy’ definition of Config on line 10 implies that any type T

satisfying the union of Rn traits can be an implementation of
Config. Thus, RUG needs to search across the source codebase
for the intersections of candidates implementing Rn trait, which
is Configuration. After getting a valid Writer and Config, a
valid testing context is built for the encode function and ready
to test.

Generating a unit test for function encode highlights the
two previous challenges. First, to pass the compiler check, the
generation tool needs to infer the correct instance of the trait
based on the function declaration, ensuring that the generated
code adheres to the complex compiler rules. Through our
evaluation on GPT-3.5 and GPT-4, even all relevant source
code, rustdoc, and sample code are presented in the prompt, it
is still difficult for LLM to generate the correct tests. Second,
to enhance the coverage of the code, the generated code should
encompass various regions within the function. Even if the test
generation step succeeds, both the LLM and SBST approaches
face challenges in reasoning about the conditions, and thus
cannot effectively improve code coverage. By analyzing the
generated tests and their failure reasons, we identified the root

3

causes of these two challenges and classified them by their
sources as: the challenges caused by Rust and the challenges
caused by the LLM models.

B. Challenges to Pass the Compiler Check

The Rust compiler enforces strict checks for all variables,
making it challenging even for humans to write Rust code,
let alone automatic tools. Two common mistakes that often
require significant time for human engineers to diagnose and
resolve are trait errors and path errors.
Traits and bounds. Trait is extensively used in Rust to
define the shared behaviors across different structs, while
trait bound serves as the restrictions of available generic
parameters can be used in Rust library. For example, in
Listing 1, the E: Encoder indicates the generic paramter E

must satisfy the Encoder bound. Therefore, to generate a
concrete test, it is vital that traits and trait bounds are filled
with appropriate instances4. In the motivating example, the
second parameter encoder needs to be an instance of Encoder
trait, which further relies on the Writer trait and Config trait.
Moreover, the Config trait only has a proxy definition shown
in line 10 in Listing 1. Therefore, these complex composition
and proxy of trait & trait bounds become the burdens for
LLM to correctly reason the proper candidates, which lead
to compilation errors of type mismatch [30]. Besides, Rust’s
separation of data definition and implementations makes it
more difficult for LLMs to identify correct type information
from the mixed source code.
Definition paths. To ensure successful compilation, all type
and function definitions within the testing program must be
explicitly imported into the context. This is hard for the purely
LLM based approach. In the motivating example, the target
test function encode is part of the Encode trait, which is
implemented for the char type as the self parameter. Hence,
to trigger the encode function for char, the Encode trait must
be explicitly imported into the testing context.
Cascading Errors. The unit test composition process involves
several steps. First, we need to figure out the calling context,
e.g., reasonable input data for each variable. Second, we need to
properly passing those context to the target function. Finally, we
need to resolve the correct assertion statement. When prompt
LLM through this process, it requires complicated reasoning
chain from the model. Even a minor error at any step could
culminate in an inaccurate final prediction. Therefore, LLM
must accurately navigate the challenges posed by the Rust
language as mentioned previously.

C. Challenges of Low Code Coverage

Even after overcoming the challenge of generating unit tests
that pass the compiler’s checks, low code coverage remains a
significant issue when composing unit tests for Rust programs.

4Although Rust provides dyn keyword to delay these bound checks until
runtime, it’s rarely used in the Rust crates.

Rust Project
Type

Dependency Graph

Dependency Graph
Construction

Test
Code

§4.A.1 §4.A.2
Bottom-Up Context

Building

Harness
Transformation

§4.B.1

Fuzzing
Harness

Fuzzing(Corpora
Filtering & Selection)

Unit Tests

§4.B.2
RUG

Fig. 1. The general workflow and components of RUG. After building the
type dependency graph from the input Rust project, RUG leverages bottom-up
context building to handle the compilation challenges and fuzzing to resolve
the coverage challenges.

Difficulty in Path Exploration. In contrast to traditional
approaches, LLM currently lacks the capability to examine the
execution of the program. This limitation results in challenges
in reasoning about branch conditions and exploring various
code paths. Moreover, in the context of test assertions, the
oracle is responsible for verifying the correctness of the function
execution. While LLM is able to generate appropriate fields for
verification, because of failure to statically reason the path that
will be executed, they may yield incorrect values as oracles.
Such a deficiency in accurately reasoning about data conditions
and outcomes further complicates the LLM’s capability to
produce valid and reliable test assertions, underlining the need
for enhanced techniques.

IV. RUG DESIGN

To address the challenges of test generation and coverage, we
propose a new tool called RUG, which uses a semantic-aware
approach to guide the LLM building the test and leverages
fuzzing to expand testing coverage. The workflow of RUG is
shown in Fig. 1. Taking a Rust project as input, RUG first
constructs a type dependency graph for the parameters of the
target function, then it resolves the concrete types and the
corresponding code for each node in the dependency graph
from the bottom. After the root node is resolved, the unit test
context is complete. Finally, RUG uses fuzzing to explore valid
inputs and enhance code coverage.

In this section, we first introduce the context-building
approach of RUG in §IV-A and show the fuzzing process
in §IV-B.

A. Testing Context Construction

To build the unit test context, RUG follows a two-step process
for each target function: 1) RUG applies static analysis to
construct a type dependency graph for the parameters of the
target function; 2) Starting from the leaf node, RUG adopts the
bottom-up approach to automatically build the concrete code
with the help of LLM.

1) Constructing Type Dependency Graphs: To build the unit
test context, RUG first statically builds the type dependency
graph. To better explain our approach, we use G = (V,E)
to denote the type dependency graph, where G is a directed

4

EncoderImpl

ConfigWriter

T: R1+R2+R3

SliceWriterIoWriter

Writable

…
R1 R2 R3

Configuration

EncoderImpl

ConfigWriter

Configuration
(resolved)

IoWriter
(resolved)

Help me write unit test for
`encode` function:

<function body>
For the 1st argument, the
type is `EncoderImpl`, the
context with source code
is listed below:
```EncoderImpl
      -Writer
        -IoWriter ..
        -SliceWriter
      -Config
        -T: R1+R2+R3 .. ```
For the 2nd argument, …

…
<Prompt 1> : 
`Configuration`

<Prompt 2> :
ALL <Resolved Nodes>

Rug’s Sub-problemBaseline Problem Proxy Node Trait Node Instance Node

Unit Test for `encode` Code to build `Configuration` Unit Test for `encode`

Fig. 2. RUG’s bottom-up context building example. The left side represents the baseline’s one-shot approach, requiring LLM to generate the test with a long
context, leading to buggy output. RUG automatically divides the task into subproblems and simplifies the task iteratively. The content of the RUG prompt is in
Fig. 3 and Fig. 4.

graph; V denotes the nodes in the graph and E denotes the
edges. The details of the graph are defined as follows:

• ∀v ∈ V , v ∈ {vtrait, vinstance, vproxy}, where vtrait
denotes the vertices with trait bounds constraints; vinstance
represents the vertices with concrete types like struct

or enum; vproxy is a kind of special vertices for a proxy
definition (line 10 in Listing 1), denoting the logical
substitution of type compositions.

• ∀e ∈ E, e is a directed edge indicating that the start
vertex depends on the end vertex. For example, in Listing 1,
line 4 can be represented as EncoderImpl → Writer,
EncoderImpl, and Writer are vertices in the graph.

In this graph, the leaf vertices are defined as those with
concrete types. For example, in Fig. 2, which illustrates part
of the type dependency graph for Listing 1, the vertex Writer

is considered an instance vertex, but since it does not have a
concrete type, it is not a leaf vertex.

2) Bottom-Up Code Generation: Given the type dependency
graph G, treat each node in the graph as a subproblem, and
the unit test generation problem can be modeled as follows:

Given a type dependency graph G and parameters pi of
the target function, for each pi, the context of the unit test to
be generated is a subgraph g ∈ G, such that ∀s ∈ S, s starts
with pi and ends with primitive type nodes, where S denotes
all topological sequence permutations of g.

In Fig. 2, the subgraph of EncoderImpl is the scope of
the target parameter to be solved. For existing LLM based
auto-testing tools [7], [8], [30], [31], testing code generation
is finished in one shot like the left part in Fig. 2: they collect
the context and ask for the testing code, then check the output
and apply automatic fixes or retries if necessary. This one-shot
approach usually produces a long context for LLM to infer,
increasing the difficulties of code generation due to the strict
compiler checks and cascading errors in §III-B.

RUG divides the generation of the test code into small steps
as checkpoints, reducing the difficulties of each subproblem
and guiding LLM to solve the final problem. Like the right
part of Fig. 2, RUG begins with nodes that can be directly
instantiated, using LLM to construct the unit test context. Once
the unit test code for a node is generated, the results are used
to resolve its parent node in the graph. A node is ready to
be resolved once all its dependent nodes have been addressed.
For example, in Fig. 2, after resolving the Rn types, RUG
starts with the Configuration node, which can be resolved
using the output of Rn type sub-problems. With the prompt
shown in Fig. 3, the LLM generates the concrete code for
Configuration. To ensure the correctness of the generated
code for each node, RUG uses an oracle compiler to verify that
the code is compilable. Once validated, the results are used to
generate the test code for the type T as a proxy node, denoting
the composition of type R1+R2+R3.

When providing concrete types to the LLM, different
strategies are employed for different types of nodes. For
instance nodes, RUG resolves the correct definition paths for
each type within the context and recursively gathers relevant
items, including structure definitions, target function defini-
tions, trait definitions, structure field types, implementation
relationships. For trait nodes, RUG queries the intersection of
bound constraints to identify all candidate types. If no valid
candidate is found, RUG generates a prompt describing the trait
and uses LLM to implement it. Finally, for proxy nodes, RUG
applies its proxy definitions within the compilation context to
find candidate types.

After resolving and validating all the unit test codes for each
parameter, RUG leverages a test generation prompt (Fig. 4) to
ask LLM to generate the unit test code. The generated code
is then validated using the compiler. The whole algorithm is
shown in Algorithm 1: getDependent finds direct dependents
(if any) of the input type for instance nodes and valid candidate

5



Please help me fill in the sample code by creating an 
initialized local variable named {var-name} with type 
{var-type} using its constructor method or structural build in 
{crate-name} crate's {file-location} file. Fill in any sample 
data if necessary, …

<Rust sample code to fill>
(Optional) For the {dependent-type}, please reuse below 
sample code to construct.

<Dependent code from previous round>

Fig. 3. <Prompt 1>: template RUG used for each sub-problem. The optional
paragraph is reusing the previous output to cut the context.

types for trait & proxy nodes, descriptionGen generates the
prompt description of the target type, G[k] means accessing
the value in the map G by the key k, and D̄ is a set of verified
candidates for the input parameter type t.

Algorithm 1 RUG’s context construction algorithm. t is the
target parameter type, G is the type dependency graph. Corner
cases are omitted for simplicity.

1: procedure BUILD_CONTEXT(t, G)
2: D̄ ← {}
3: S̄ ← getDependent(t, G)
4: for s ∈ S̄ do
5: if not s is resolved then
6: build_context(s,G)

7: D̄[s]← G[s]

8: if t is Instance then
9: G[t]← llmRequest(t, D̄)

10: if not compileV erify(t, G[t]) then
11: G[t] = descriptionGen(t)

12: else
13: if D̄ is Empty then
14: D̄ = llmRequest(t, descriptionGen(t))

15: G[t] = D̄

16: return G[t]

3) Corner Cases: Although RUG’s bottom-up building
approach improves the quality of the generated code by
minimizing the relevant context, there are several corner
cases need to be handled. One of the corner cases is the
loop in the subgraph g, indicating the presence of cyclical
type dependencies. RUG will break the cycle by randomly
determining orders and will remove the sample code in the
prompt shown in Fig. 4.

In addition, for trait/proxy nodes, sometimes there is no valid
instance type in the compilation scope and RUG will prompt
LLM to implement the traits. Meanwhile, for the trait/proxy
nodes with multiple instances, RUG provides different candidate
selection strategies according to the user’s preferences. The
occurrence of nodes with multiple candidates available takes
around 17.48% and by default RUG will choose the candidate
in the local crate.

Finally, due to the uncertainties of LLM, sometimes the

The target function is {fn-name} in {crate-name} crate's 
{file-location} file, its definition path is {def-path} and source 
code is like below:

<Target test function>
For n-th argument, {parameter-n-type} can be used, please 
use following sample code to construct it:

<Dependent code sample to reuse>
Please help me build unit test, 

[Instructions to reuse the context]

Fig. 4. <Prompt 2>: Final test generation template RUG used to combine the
sub-solution together and build the target unit test.

model fails to give a correct answer, RUG will mark the subtask
as unfinished and continue the next step with descriptions in
natural language. In practice, we found, even without a sample
code, that sometimes LLM can generate the correct code for
the current sub-problem.

B. Fuzzing for Input Exploration

Although the divided context building approach helps LLM
to write executable tests, the generation of useful test data
is another burden for LLM. In §III-C, we show that the root
cause of this challenge is lack of the ability to inspect the state
of the program during execution, so it is struggling for LLM to
generate the corresponding data to trigger different conditions
in the code path. In our motivating example, for the char type
to encode, LLM usually prepares a valid ASCII symbol or one
or two simple UTF-8 characters as test data. With the help
of fuzzing, the test input is quickly scaled to complex UTF-8
characters and triggers the missed region. Thus, without fuzzing,
it is challenging for LLM to prepare reasonable test data for
high code coverage. In this section, we demonstrate how we
prepare the fuzzing harness from generated tests and how we
handle the redundant fuzzing corpora as postprocessing.

1) Fuzzing Harness Transformation: Fuzzers need fuzzing
harnesses to test with, where all input data is provided by
the fuzzers as raw bytes. To convert existing test code into
a fuzzing harness, RUG leverages program transformation to
construct test data from raw inputs and preserve the semantics
of the test body. During the transformation process, RUG first
identifies all the primitive data in the original test code and
replaces them with local variables of the same type built from
the fuzzer input bytes. Meanwhile, RUG records these initial
data as seeds and saves them as the initial corpus for the fuzzing
process. Second, to ensure the graceful execution of fuzzer,
RUG disabled all assertions to help fuzzer finish its execution.
Although this step may miss some bugs, it ensures the graceful
execution of the fuzzer and improves the code coverage. After
fuzzing and postprocessing, RUG will review these assertions
and try to replace the value based on the fuzzing result.

2) Fuzzing Corpora Selection: By applying fuzzers to an
existing test program, we can efficiently expand our test
coverage through the new input data found by the fuzzers.
Because of its efficiency, a few seconds of fuzzing can execute
the program thousands of times with hundreds of corpora

6



generated, which is far beyond the requirement for the number
of tests. To further manage these corpora, we develop a source
code coverage-based, path weight guided corpora selection
algorithm to filter and rank the corpora based on their coverage.
The post-processing goes with two stages. First, RUG filters
the corpora based on source code coverage, instead of fuzzers’
bitmap coverage to remove the redundant inputs. Second, RUG
uses weight to measure the importance of each code region
[32] and the overall weight for each corpora to rank them.
To calculate the weight, RUG assigns a default weight of 1
for each code region. For all the n corpora that touched this
region, they will share the weight, gaining the score of 1

n . The
goal of this weight sharing design is to find the corpus that
covers more unique code regions, and the algorithm is shown
in Algorithm 2: src_cov is a function that takes a specific
corpus and returns a set of code regions R̄ that are covered
by the given input. W̄ contains the weights for each input
corpus. Finally, based on the weight score and the number of
code regions covered, RUG ranks the corpora and selects them
according to the given threshold.

Algorithm 2 RUG’s corpora ranking algorithm. Ī is the input
corpora as a set.

1: procedure RANK-CORPORA(Ī)
2: W̄ , C̄, D̄ ← {}, {}, {}
3: for i ∈ Ī do
4: R̄← src_cov(i)
5: D̄[i]← R̄
6: for r ∈ R̄ do
7: C̄[r]← getOrDefault(C̄, r, 0) + 1

8: for i ∈ Ī do
9: weights ← 0

10: for r ∈ D̄[i] do
11: weights ← weights + 1.0/C̄[r]

12: W̄ [i]← weights

13: sort Ī by W̄ [i],∀i ∈ Ī in descending order
14: return Ī

V. IMPLEMENTATION

We implemented RUG for the Rust toolchain nightly-2022-
12-105. As shown in Fig. 1, RUG leverages LLM and fuzzer as
black boxes, implements a testing context builder that deeply
combines static analysis and LLM, fuzzing harness transformer,
and corpora postprocessor.

A. Static Analysis

Wrapped as a compiler plugin, RUG works with middle-
level intermediate representation (MIR) in Rustc to retrieve
the semantic information. Specifically, for the target types in
context, RUG recursively collect the relevant items including:
1) all the types’ definitions; 2) all the definitions of the inner
types; 3) all the types that implement the relevant traits; and

5The effort to support other toolchains is to handle the Rust compiler’s MIR
changes across different versions.

4) all the function definitions and the rustdoc of the relevant
types. RUG’s searching scope is limited to the target cage, and
when a foreign trait or type outside of the current compilation
scope is included, RUG stops searching for its relevant items.

B. Bottom-up Test Context Generation with LLM

RUG is implemented in Python. During the evaluation,
we use gpt-3.5-turbo-16k-0613 model as GPT-3.5 and
gpt-4-1106 model as GPT-4. We set presence penalty to
‘-1’ to encourage the model to reuse the context provided by
us and leave the other configurations unchanged6. To handle
the uncertainties of LLM outputs, RUG adds system prompts
asking LLM to conform to specific formats and always provides
a template code to fill out, which helps postprocess generated
code. However, due to the nondeterministic nature of LLM,
sometimes it is difficult for LLM to find the correct answer,
so we set a maximum limitation of three times to try for each
individual question. After three attempts, even if the answer is
still wrong, RUG will cache the result and use natural language
descriptions as hints for the next questions. After receiving
the answers from LLM, RUG checks the correctness of the
answer by compiling the code and detecting the types of local
variables using an oracle compiler plugin.

C. Fuzzing Transformation and Postprocessing

RUG implements harness transformer with the help of Rustc
compiler and ‘syn’ crate to transform the testing code into
fuzzing harnesses while semantically preserving the test logic.
For a given unit test, RUG first identifies and extracts the
primitive test data as local variables, then converts these local
variables from the input of the fuzzer so that the fuzzers
can manipulate them for testing. The original test data are
saved as the initial corpus seed for the fuzzer. In addition,
RUG temporally disabled all the assertions in the original test
since these assertions may not hold because the test data are
changed. Finally, RUG utilizes bolero [33] and libFuzzer to
launch fuzzing testing. After the fuzzing process, RUG applies
the corpora filtering algorithm to filter redundant corpora and
the ranking algorithm to order corpora according to their
importance.

VI. EVALUATION

To demonstrate the effectiveness of RUG, we conducted a
comprehensive evaluation motivated by the following research
questions:
• RQ1: How does the test generation performance of RUG,

in terms of coverage, compare to traditional tools?
• RQ2: Compared with other LLM-based tools, does RUG

show any benefits?
• RQ3: How does each factor contribute to RUG’s testing

coverage?
• RQ4: How is RUG’s usability for real world applications?
• RQ5: How robust is RUG in different scenarios? Specifically,

how does RUG perform on crates that the LLM has not been

6RUG uses default values for temperature=1, top-p=1, frequency-penalty=0.

7



trained on? Additionally, how do different type selection
approaches impact the results?

A. RQ1: Comparison with Traditional Tools

To answer Q1, we compare RUG with four of the latest
different test generation tools for Rust, including RustyUnit [4]
as a SBST approach, SyRust [6] as a constraint solving program
synthesizer, and RULF [22], RPG [23] as fuzzing-based tools.
Comparison with General Searching Based Tools. RustyUnit
is a SBST approach that leverages the DynaMOSA algorithm
to mutate the existing Rust codebase and generate the unit tests.
And SyRust is a semantic-aware program synthesizer that uses
a SAT solver to generate valid Rust programs. To ensure a fair
comparison, we applied RUG to their original benchmarks
separately and used LLVM source code coverage [32] to
measure the code region coverage and function coverage. When
calculating the code coverage, we considered only functional
code, excluding testing code and compiler-generated code.

We conducted our experiments on servers equipped with
two AMD EPYC 7452 CPUs and 256GB of memory, running
Ubuntu 22.04. The Rust toolchain version used is nightly-
2022-12-10, and all tools are assessed using their default
configurations. Since RustyUnit provided different evolution-
ary algorithms, we selected the most powerful DynaMOSA
algorithm, which achieves the highest code coverage, for
comparison with RUG. For SyRust, we run the synthesizer
with their default timeout of 10 hours for each project7.

The evaluation results are shown in Table I. RUG achieves
54.84% coverage on RustyUnit’s and 52.28% on SyRust’s,
outperforming all the works. RustyUnit’s seeded DynaMOSA
algorithm, which is part of the genetic algorithm family, relies
on existing code as ’parents’ to mutate unit test statements.
However, because the usage of each function within a crate is
often imbalanced, this approach struggles with less frequently
used functions. SyRust, on the other hand, requires a manually
crafted template of function arguments for synthesis, necessitat-
ing developer input and limiting the synthesis to the template
input. Overall, RUG’s superior coverage is primarily due to its
ability to construct calling contexts for a wider range of target
functions.
Comparison with Fuzzing Tools. Besides comparing with
SBST tool and program synthesis approach, RUG is evaluated
against fuzzing-based tools: RULF [22] and RPG [23]. RULF
constructs type dependency graphs to assist in generating
fuzzing harnesses, producing a sequence of API calls through
graph traversal. RPG extends RULF by adding support for
generic parameters and prioritizes functions containing unsafe
regions using a pool-based generator. We run all tools on
RULF’s benchmarks under default configurations to ensure a
fair comparison. For each individual fuzzing harness, we set
a timeout of 24 hours for RULF and 4 hours for RPG, since
RPG generates much more fuzzing harnesses compared with

7The crates are: bitvec, crossbeam, dashmap, imrc, ndarray, num-rational,
slab for data structure and csv-core, encode-unicode, encoding-rs, hcid, sval,
urlencoding, utf8-width for encoding.

Crate Func Region Func Region
RustyUnit RUG

gamie 55.54% 30.79% 68.67% 72.24%
humantime 45.55% 26.67% 50.33% 64.92%

lsd 32.58% 40.23% 37.66% 43.98%
quick-xml 17.38% 24.61% 54.5% 62.76%

tight 24.70% 30.27% 32.24% 36.90%
time 75.26% 70.78% 68.13% 56.94%

mean 37.23% 34.70% 49.96% 54.84%
SyRust RUG

data-structure 26.11% 31.19% 52.10% 56.03%
encoding 30.69% 28.51% 55.47% 48.54%

mean 28.40% 30.65% 53.79% 52.28%
Table I

COVERAGE COMPARISON BETWEEN RUG, RUSTYUNIT AND SYRUST. RUG
OUT PERFORMS RUSTYUNIT BY 20.14% AND SYRUST BY 21.57%.

RULF8. For tests generated by RUG, we conduct fuzzing for
60 seconds per function, which is a reasonable time for unit
test generation. All fuzzing experiments were repeated three
times, and the average values are reported.

The results are shown in Fig. 5, where RUG achieves an
average coverage of 54.9%, outperforming RULF’s 25.2%
and RPG’s 41.7%. RULF’s harnesses generation process is
an NP-Complete problem, using a heuristic threshold to limit
the generation process. Besides, RULF does not implement
static analysis for generic parameters, preventing it from
triggering functions that use traits (e.g. json crate). RPG
improves upon RULF by supporting generic parameters and
utilizing a pool-based generator to produce more fuzzing
harnesses. However, RPG encounters a similar search problem
as RULF and prioritizes functions with unsafe regions during
the generation process, which affects the total number of
harnesses. In addition, if no valid candidate is found for the
given generic parameters, the RPG may not locate a candidate
outside the current compilation scope, leading to a missing
fuzzing harness. In contrast, RUG leverages LLM to generate
the testing code, avoiding the search problem and covering
more testing functions.

B. RQ2: Comparison with LLM-based Tools

To answer the RQ2 and demonstrate RUG’s effectiveness
in tackling the two challenges, we select 17 crates from the
most downloaded on crates.io averaging 24,937 LoC per crate.
Beyond their popularity, theese crates represent a diverse
spectrum of Rust applications in system development: mio,
crc32fast for system call and hardware instructions; json,
toml, bincode for data serialisations; hashes, uuid for crypto
computations; and num-traits, ryu for numerical computations.

For the baseline approach, we integrate three LLM-based
approaches: ChatUniTest [8] for code generation, TestGen-
LLM [12] for oracle compiler check, and RustAssistant [30]
for code repair. The process is as follows: 1) We collect the
relevant source code context of the target function and send it,

8This setting outfits RPG’s evaluation settings of 4 to 6 hours total timeout
for each project.

8

https://crates.io


clap flate regex proc time semver url tui r-syntax s-parser json http* xi-editor mean
0

20

40

60

80

22.1

65.6
60.6

32.8

46.3

36.8

73.6

27.2

54.3

8.2 7.7 8.8
4.0

25.2

19.1

43.4

67.2

43.4

59.4

40.1

60.9

44.9

55.6

21.6

37.0

0.0

7.5

41.7

51.1

66.4
63.1

73.6

60.4

44.1

75.8

62.4 63.3

82.3

50.5

67.0

16.2

54.9

C
od

e
R

eg
io

n
C

ov
er

ag
e(

%
)

RULF RPG RUG

Fig. 5. Coverage comparison between RUG and RULF, RPG. *: RPG encounters an unexpected crash while running for http crate.

Crate Name
(Downloads) Tests

ac/rej

GPT-3.5 GPT-4 Human
Test

Coverage
Base RUG Base RUG Newly API

Cov Ratew/o w. fuzzing w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing
bincode(49M) 4/0 1.57% 1.57% 22.92% 23.91% 16.63% 18.79% 44.67% 47.91% 74.11% 64.58%
chrono(128M) 22/13 37.88% 44.07% 47.2% 58.29% 54.04% 59.24% 56.90% 62.67% 73.05% 76.66%
hashes(266M) P(7) 43.84% 43.84% 68.28% 68.28% 57.71% 57.71% 68.96% 85.16% 61.41% 85.17%

humantime(98M) P(5) 63.09% 64.40% 67.02% 75.39% 74.08% 75.92% 74.61% 80.37% 40.00% 79.32%
itoa(221M) 1/0 26.00% 26.00% 82.00% 96.00% 96.00% 98.00% 100.00% 100.00% 83.33% 86.00%
json(203M) - 28.10% 35.69% 44.60% 52.07% 62.26% 67.00% 70.25% 70.49% 47.33% 72.36%
mio(145M) - 20.47% 20.47% 25.20% 25.20% 26.77% 26.77% 33.86% 33.86% 38.89% 24.19%
nom(114M) 6/1/P(14) 25.81% 25.81% 39.93% 40.04% 51.13% 51.17% 53.84% 53.87% 28.64% 76.20%

num-traits(185M) - 36.02% 36.47% 43.20% 43.95% 46.94% 46.94% 47.23% 47.98% 90.36% 50.58%
demangle(93M) P(14) 21.32% 21.62% 21.83% 65.99% 20.00% 74.82% 26.60% 76.55% 18.75% 72.25%
crc32fast(104M) - 62.35% 64.71% 70.59% 71.76% 87.06% 88.24% 87.06% 88.24% 92.86% 68.24%

ryu(185M) 0/3 52.51% 95.28% 61.65% 97.64% 76.40% 99.42% 81.72% 99.42% 100.00% 87.85%
semver(168M) 18/0 61.40% 62.96% 62.54% 73.36% 72.36% 74.64% 74.22% 76.50% 95.24% 84.33%

textwrap(134M) 1/0 88.84% 92.56% 90.15% 94.31% 92.78% 94.75% 92.56% 94.97% 83.34% 87.53%
time(200M) P(3) 33.08% 35.06% 48.98% 51.72% 55.34% 55.34% 79.89% 79.89% 66.06% 96.48%
toml(125M) - 32.43% 37.06% 47.28% 49.02% 59.58% 64.40% 38.90% 38.90% 25.14% 70.81%
uuid(108M) 1/0 58.66% 64.44% 69.30% 77.20% 73.86% 75.08% 75.68% 76.60% 88.89% 61.40%

mean - 40.79% 45.41% 53.69% 62.60% 60.17% 66.37% 65.11% 71.37% 65.14% 73.18%
Identifier P A B C D E F G H I J

Table II
CODE COVERAGE EVALUATION FOR RUG ON 17 POPULAR RUST CRATES. ’P’ INDICATES THE PR IS STILL PENDING FOR RESPONSE. THE THREE

DIMENSIONS FOR SENSITIVITY TESTS ARE: GPT MODEL VERSIONS, GENERATION APPROACHES AND WHETHER APPLYING FUZZING. THE
newly API coverage DENOTES THE APIS THAT baseline FAILED TO TEST AND ONLY COVERED BY RUG.

along with the prompt, to the LLM to generate test cases. 2)
The generated test code is then checked for correctness by an
oracle compiler. 3) If the LLM output fails to pass the compiler
checks, we collect the error message, line numbers, and reasons
for the failure, then ask LLM to fix the problems within the
same context. Since ChatUniTest and TestGen-LLM are not
implemented for Rust, we reimplemented them specifically for
Rust during the preparation of the baseline experiment. We treat
this pipeline of three approaches as the baseline, representing
the best existing LLM-based practice.

Compared to baseline, RUG does not have an additional
error fixing stage and employs a bottom-up building algorithm
to generate the compilable test code. In addition, RUG trans-
forms the test code into a fuzzing harness and takes advantage
of fuzzing as a final step.

The results across different experiment configurations are
shown in Table II. Compared with A D and E H , we show
that RUG’s overall approach improves the testing coverage by
21.81% and 11.20% under different LLMs. The improvement
number of GPT-4 is relatively smaller because the remaining
untested code regions are limited, especially we only focus on
the actual functional code and do not generate tests for derived

functions9.

C. RQ3: Ablation Study

To demonstrate the effectiveness of RUG’s two
techniques(bottom-up building and fuzzing) and its sensitivity
to different LLM models, we conducted sensitivity experiments
for each of them, showing their individual contributions to the
final results shown in Table II.
Bottom-up Building. To demonstrate the effectiveness of the
bottom-up building approach of RUG, we evaluate the "newly
covered APIs" shown in I , representing target APIs that the
baseline tools failed to generate the test context but can be
resolved by the bottom-up approach of RUG. RUG successfully
covers 65.14% of these APIs, highlighting its effectiveness. In
addition, comparing between A C and E G , we show that
bottom-up building helps improve code coverage by 12.90%
and 4.94%, which accounts for about half of the total coverage
improvement.
Fuzzing Approach. To show the improvement contributed by
fuzzing, we launch RUG’s fuzzing harness transformer on both

9Rustc allows #[derive] to generate default implementations like clone,
which will be counted as separate functions in LLVM source code coverage.

9



generated tests. The result shows that the fuzzing component
increases code coverage by 8.91% in C D and 6.26% in
G H . Even when the initial method achieved high coverage,
such as 60.17% in E and 65.11% in G , fuzzing still provided
an additional coverage boost of around 6%. This reinforces
our insight that applying fuzzing can effectively enhance code
coverage.
Large Language Model Versions. Finally, we test RUG’s
sensitivity to different version of LLM models(GPT-3.5 and
GPT-4). Clearly, GPT-4 is more intelligent than GPT-3.5 by
showing about 20% improvement between A and E . The
experiment result shows code coverage are all further improved
by applying RUG for 21.81% in GPT-3.5 and 11.20% in
GPT-4. Besides, in terms of testing coverage, applying RUG on
GPT-3.5 D achieves a higher coverage number than vanilla
GPT-4 approach E .

D. RQ4: Practical Usability Evaluation
In this section, we evaluate the usability of RUG by com-

paring its generated tests with human-written tests to answer
RQ4. For the 17 crates in Table II, we note that due to their
popularity, these crates are actively maintained and well tested
by the developers, achieving an average coverage of 73.18%.
We refer to their coverage as the best that human developers
can achieve in practice, and evaluate RUG’s generated tests
against the human-written tests to demonstrate its practical
usage.
Code Coverage. As shown in the column J , the developers
achieve an average of 73.18% code coverage on these 17 crates,
and by leveraging the latest GPT-4, RUG can achieve 71.37%
in H , which is comparable to human tests. In addition, among
the 17 crates, RUG and human developers both achieve higher
coverage on 8 crates and get the similar testing coverage
for hashes, indicating the potential usage of RUG in the
software testing process. In addition, for crates like chrono,
nom and time, RUG largely expands the testing coverage than
developers’, showing the effectiveness of RUG.

For crates where RUG does not outperform (e.g.
bincode, toml), the main reasons are as follows: 1) These
crates are template libraries for (de)serialization, with few
type implementations in the code base, making it difficult for
RUG to find the valid candidates. 2) The code requires highly
structured input to be fuzzed effectively, which is challenging
for fuzzers without concrete structure definitions.
Readability. To evaluate RUG’s tests’ readability, we collect
the test coverage of RUG and human developers and find ten
missing tests for existing human-written tests. We directly
leverage RUG’s generated tests, without changing test bodies
and send them as PRs to the open source projects. To our
surprise, the developers are happy to merge these machine
generated tests. RUG generated a total of 248 unit tests, of
which we submitted 113 to the corresponding crates based on
their quality and priority. So far, 53 of these unit tests have
been merged with positive feedback.

Developers chose not to merge 17 tests for two main
reasons: first, the target functions are imported from external

Crates Base Human RUG
LS RR UF

metrics_evaluation 53.25% 70.45% 69.48% 71.43% 63.31%
coolssh 25.37% N/A 36.76% 31.27% 35.66%
cbored 45.67% 23.51% 50.11% 44.53% 50.70%

rust_mc_proto 16.07% N/A 44.60% 43.49% 45.98%
atomic-waitgroup 36.51% 80.95% 41.27% 36.51% 41.27%

osrm_client 5.29% 10.20% 9.02% 8.04% 9.41%
europe-elects-csv 14.06% N/A 20.31% 18.75% 25.00%

xelis_hash 49.51% 77.67% 80.58% 85.44% 77.18%
behindthename 21.71% 41.09% 43.41% 37.21% 43.41%

utapi-rs 14.24% N/A 15.82% 15.19% 16.46%
mean 28.17% 50.64% 41.14%* 39.18% 40.84%

Table III
ROBUSTNESS EVALUATION OF RUG ON UNLEARNED CRATES AFTER THE

LLM TRAINING CUT-OFF. THE ’N/A’ DENOTES THE CRATES DON’T HAVE
TESTS. ‘*’: THE RUG WITH LS STRATEGY ACHIEVES 48.98% EXCLUDING
THE NO-TEST CRATES, CLOSE TO THE 50.64% COVERAGE BY DEVELOPERS.

libraries(16), and the developers do not intend to include tests;
second, the submitted tests are closed after a long pending
period(1). We are still awaiting feedback on the remaining 43
unit tests. In general, 75. 71% of the tests reviewed are merged
by the developers.
Token Consumption. Although LLMs are getting more and
more cheap nowadays10, automatic tools quickly consume large
number of tokens by sending relevant source code as prompts.
For example, under the GPT-4 model, the cost of the baseline

approach is around $1000. However, with the help of type-
aware caching, RUG only takes 51.3% of the total tokens in the
baseline approach and improves the coverage of the testing
by 10.4%. RUG consumes less tokens because, for each method
under the same structs with dependent types, RUG feeds each
unique dependency to the LLM only once, caching and reusing
the result without saving the prompt. This approach saves
tokens for subsequent functions with the similar dependencies.
In contrast, baseline approaches must feed the entire context,
including transitive dependencies each time, leading to higher
token usage.

E. RQ5: Robustness Evaluation

To evaluate RUG’s robustness, we conduct two experiments
to measure RUG’s performance under unlearned crates and
different candidate selection strategies for corner cases in
§IV. For gpt-3.5-turbo-0125, its knowledge cut-off is
September 2021 [34], and we carefully select ten crates that are
created after January 2022 from crates.io as our benchmark:
coolssh, xelis-hash for algorithm calculations, behindthename,
cbored, utapi for FFI wrappers, metrics-evaluation, europs-
elects-csv for string parsing, osrm, mc-proto for binary data
paring and atomic-waitgroup for concurrency.
Unlearned Crates. The evaluation result is shown in Table III.
Compared with the baseline LLM approach, RUG achieves an
average improvement of 12.93%. When comparing against
human-written tests, excluding the four crates without human
tests, RUG achieves 48.98% on the remaining crates, just 1.66%

10As of March 2024, the cost of 1M tokens as inputs is $30 for GPT-4 and
$0.5 for GPT-3.5

10

https://crates.io/


less than the developers’ tests. In addition, RUG achieves a
higher coverage rate on half of the crates compared to human
developers, showing RUG’s robustness on unlearned crates.
Candidate Selections. Regarding candidate selections, we
compare three selection strategies for the same crates used in
the data leakage analysis. Those selection strategies are widely
used : local crate selection(LS), round robin(RR), and unsafe
first(UF). The LS is the default strategy of RUG, trying to cover
more local types, and only conducts random selection when
there are multiple local candidate types. In addition, we further
evaluated two more strategies: RR tries to fairly cover the
candidate types while selection and UF leverages the program
analysis to find the candidate type with highest number of
unsafe regions, which is close to RPG’s ranking algorithm.
The result of different candidate selections are shown in the
Table III: compared with RR and UF, local crate selection(LS)
prefers to use the instance from the current crate, increasing
the chance of local code coverage. For RR and UF, they may
select the outside instance as final candidate, leading to the
potential drop in the local testing coverage.

VII. RELATED WORK

A. LLM based Tools for Rust Automatic Testing

The powerful induction ability of LLMs shows their applica-
tion in software engineering [25], especially in code generation
testing [31], [35]–[39]. Among these works, RustAssisstant
[30] leverages the iterative communications with LLM to fix
Rust compilation errors. RustGen [7] took the nature English
description as input and output a reasonably functional rust
code. Rust-Lancet [40] automatically fixes the compiler errors
resulting from the violation of the Rust ownership rules. They
are all different applications of LLM compared with RUG.
Regarding unit test generation, CODAMOSA [11] integrates
the traditional SBST approach with LLM to generate unit
test code by asking LLM for mutation seeds when the search
process is stuck. However, CODAMOSA is tailored for the
Python language, which, due to its weak typing, does not
present the same challenges associated with inferring correct
types as seen in strongly typed languages like Rust. Therefore,
the general difficulties related to the synthesis of Rust programs
remain unaddressed, leading to low code coverage. In contrast,
the RUG approach effectively addresses these challenges using
static analysis to guide LLM to infer types.

B. Traditional Automatic Testing Tools

Before the emergence of the LLM, there is already a lot
of work dedicated to building the automatic testing tools,
including searching-based software testing (SBST) and fuzzing.
SBST approach requires the existing calling context for the
target function as input [41]–[51]. Then it uses evolutionary
algorithms to develop new unit tests, aiming to cover sections
of the code that have not been previously tested [9], [52]–[61].
For example, RustyUnit [4] utilizes the DynaMOSA algorithm
to automatically generate the unit test for Rust.

Besides SBST, coverage-guided fuzzing approaches are used
to assess different areas of the software.These approaches are

particularly favored because they are capable of generating
new inputs, thus extending the coverage of the code [3], [5],
[62], [63]. For instance, afl.rs [64] is a fuzzing tool that
depends on manually crafted fuzzing harnesses to probe the
software. The combination of fuzzing with LLM can bypass
the manual work of building a readable fuzzing harness and
automate testing [38], [65]–[69]. Fuzz4All [66] is a recent
work that proposes a universal fuzzy loop powered by LLMs
to find bugs in different languages. However, Fuzz4All aims
to find bugs in language compilers and rarely touches on the
problem of low code coverage for generated code snippets.
RUG builds a fuzzing harness transformer and adds fuzzing to
further expand the coverage of the generated code.

Besides, RULF and RPG are the two related works that focus
on automatically generating the fuzzing harnesses leveraging
the API dependency graph. We note that compared to the API
dependency graph of RULF or RPG, the dependency graph
of type RUG is simplified by removing the function vertices,
leading to a significant reduction in search space during the
graph searching process. With this simplicity, RUG utilizes
LLM to decide the proper sequences of functions to test and
prepare the test sample data, which solves the two challenges
of traditional approaches: huge searching space and lack of an
initial fuzzing corpus.

VIII. LIMITATION

In this section, we discuss the potential limitations of RUG
and possible future improvements. RUG relies on static type
dependency analysis to divide the context for the following
steps. Therefore, for other strong-typed languages such as Java,
there is no fundamental burden to transplant RUG. For weak
typed languages like Python, the accuracy and scope of the
static analysis will affect the quality of the generated tests, and
we argue that this is a general issue for these languages and
other automatic testing tools have similar problems. In addition,
RUG is bonded to the specific version of Rust and a general
implementation can save time to accommodate changes.

To expand the code coverage of the generated tests, RUG
uses fuzzing to explore the input space. In order to launch the
fuzzer, RUG temporally disables all assertions, which might
miss some bugs while the fuzzing process. Apart from that,
RUG’s corpora selection algorithm may lose the code coverage
based on the number limitation of generated tests. For the
generated test, RUG does not consider the framework and
coding style of the existing tests, which can be given as a
sample prompt to LLM for better code quality.

IX. CONCLUSION

In this work, we propose RUG, which leverages LLM
and fuzzing to automatically generate testing code for Rust
projects. RUG proposes a bottom-up approach to address the
difficulties of Rust program synthesis and fuzzing of the Rust
program to expand the coverage. Evaluation shows that RUG
achieves higher coverage than existing tools with efficiency
and scalability.

11



REFERENCES

[1] F. Taufiqurrahman, S. Widowati, and M. J. Alibasa, “The impacts of test
driven development on code coverage,” in 2022 1st International Con-
ference on Software Engineering and Information Technology (ICoSEIT).
IEEE, 2022, pp. 46–50.

[2] M. Siniaalto and P. Abrahamsson, “A comparative case study on the
impact of test-driven development on program design and test coverage,”
in First International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007). IEEE, 2007, pp. 275–284.

[3] M. Davis, S. Choi, S. Estep, B. Myers, and J. Sunshine, “Nanofuzz: A
usable tool for automatic test generation,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1114–1126.

[4] V. Tymofyeyev and G. Fraser, “Search-based test suite generation for
rust,” in International Symposium on Search Based Software Engineering.
Springer, 2022, pp. 3–18.

[5] “American fuzzy lop.” [Online]. Available: https://github.com/google/AFL
[6] Y. Takashima, R. Martins, L. Jia, and C. S. Păsăreanu, “Syrust: automatic

testing of rust libraries with semantic-aware program synthesis,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, 2021, pp. 899–913.

[7] X. Wu, N. Cheriere, C. Zhang, and D. Narayanan, “Rustgen: An
augmentation approach for generating compilable rust code with large
language models,” 2023.

[8] Z. Xie, Y. Chen, C. Zhi, S. Deng, and J. Yin, “Chatunitest: a chatgpt-based
automated unit test generation tool,” arXiv preprint arXiv:2305.04764,
2023.

[9] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, 2011, pp. 416–419.

[10] S. Lukasczyk and G. Fraser, “Pynguin: Automated unit test generation for
python,” in Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings, 2022, pp. 168–172.

[11] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 919–931.

[12] N. Alshahwan, J. Chheda, A. Finegenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated unit
test improvement using large language models at meta,” arXiv preprint
arXiv:2402.09171, 2024.

[13] Sourcegraph, “Cody,” https://sourcegraph.com/cody, 2023, [Online; ac-
cessed 2024-03-22].

[14] GitHub, “Github copilot: Your ai pair programmer,” https://github.com/
features/copilot, 2023, [Online; accessed 2024-03-22].

[15] Rust for Linux Contributors. Rust-for-Linux/linux. GitHub. [Online].
Available: https://github.com/Rust-for-Linux/linux

[16] The Register. Microsoft to explore Windows 11 code written in Rust.
Online article. [Online]. Available: https://www.theregister.com/2023/04/
27/microsoft_windows_rust/

[17] Rust-GPU Contributors. Rust-GPU/Rust-CUDA. GitHub. [Online].
Available: https://github.com/Rust-GPU/Rust-CUDA

[18] Google Security Blog. Supporting Use of Rust in Chromium.
Blog post. [Online]. Available: https://security.googleblog.com/2023/01/
supporting-use-of-rust-in-chromium.html

[19] S. Zhu, Z. Zhang, B. Qin, A. Xiong, and L. Song, “Learning and
programming challenges of rust: A mixed-methods study,” in Proceedings
of the 44th International Conference on Software Engineering, 2022, pp.
1269–1281.

[20] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and
adequacy,” Acm computing surveys (csur), vol. 29, no. 4, pp. 366–427,
1997.

[21] K. Serebryany, “{OSS-Fuzz}-google’s continuous fuzzing service for
open source software,” 2017.

[22] J. Jiang, H. Xu, and Y. Zhou, “Rulf: Rust library fuzzing via api
dependency graph traversal,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 581–592.

[23] Z. Xu, B. Wu, C. Wen, B. Zhang, S. Qin, and M. He, “Rpg: Rust library
fuzzing with pool-based fuzz target generation and generic support,” in
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–13.

[24] OpenAI. Introducing chatgpt. [Online]. Available: https://openai.com/
blog/chatgpt

[25] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” arXiv preprint arXiv:2310.03533, 2023.

[26] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? evaluating and improving chatgpt for unit test
generation,” arXiv preprint arXiv:2305.04207, 2023.

[27] M. Wermelinger, “Using github copilot to solve simple programming
problems,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, 2023, pp. 172–178.

[28] S. Kang, B. Chen, S. Yoo, and J.-G. Lou, “Explainable automated
debugging via large language model-driven scientific debugging,” arXiv
preprint arXiv:2304.02195, 2023.

[29] bincode org, “bincode: A binary encoder/decoder in rust,” https://github.
com/bincode-org/bincode, 2023.

[30] P. Deligiannis, A. Lal, N. Mehrotra, and A. Rastogi, “Fixing rust
compilation errors using llms,” arXiv preprint arXiv:2308.05177, 2023.

[31] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation of
using large language models for automated unit test generation,” IEEE
Transactions on Software Engineering, 2023.

[32] C. LLVM. Source-based code coverage - clang 11 documentation.
LLVM Project. [Online]. Available: https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html

[33] camshaft, “Bolero: fuzzing and property testing front-end framework for
rust.” [Online]. Available: https://github.com/camshaft/bolero

[34] “Openai platform models.” [Online]. Available: https://platform.openai.
com/docs/models/gpt-3-5-turbo

[35] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning
deep semantics for test completion,” in 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2023, pp.
2111–2123.

[36] N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn, “Cat-
lm training language models on aligned code and tests,” in 2023 38th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2023, pp. 409–420.

[37] V. Guilherme and A. Vincenzi, “An initial investigation of chatgpt unit
test generation capability,” in Proceedings of the 8th Brazilian Symposium
on Systematic and Automated Software Testing, 2023, pp. 15–24.

[38] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT interna-
tional symposium on software testing and analysis, 2023, pp. 423–435.

[39] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[40] W. Yang, L. Song, and Y. Xue, “Rust-lancet: Automated ownership-rule-
violation fixing with behavior preservation,” 2024.

[41] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[42] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Transactions on software engineering, no. 3, pp. 215–
222, 1976.

[43] M. Harman, “The current state and future of search based software
engineering,” in Future of Software Engineering (FOSE’07). IEEE,
2007, pp. 342–357.

[44] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Empirical software
engineering and verification. chapter search based software engineering:
techniques, taxonomy, tutorial,” 2012.

[45] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[46] O. Buehler and J. Wegener, “Evolutionary functional testing of an auto-
mated parking system,” in Proceedings of the International Conference
on Computer, Communication and Control Technologies (CCCT’03) and
the 9th. International Conference on Information Systems Analysis and
Synthesis (ISAS’03), Florida, USA, vol. 1. Citeseer, 2003.

[47] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on software engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[48] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006 in-
ternational symposium on Software testing and analysis, 2006, pp. 1–12.

12

https://github.com/google/AFL
https://sourcegraph.com/cody
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/Rust-for-Linux/linux
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://github.com/Rust-GPU/Rust-CUDA
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://github.com/bincode-org/bincode
https://github.com/bincode-org/bincode
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/camshaft/bolero
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo


[49] D. You, Z. Chen, B. Xu, B. Luo, and C. Zhang, “An empirical study on
the effectiveness of time-aware test case prioritization techniques,” in
Proceedings of the 2011 ACM Symposium on Applied Computing, 2011,
pp. 1451–1456.

[50] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” in Proceedings of the
eighteenth international symposium on Software testing and analysis,
2009, pp. 213–224.

[51] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case
prioritization approaches in regression testing: A systematic literature
review,” Information and Software Technology, vol. 93, pp. 74–93, 2018.

[52] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 276–291, 2012.

[53] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and classifi-
cation of test inputs,” in ECOOP 2005-Object-Oriented Programming:
19th European Conference, Glasgow, UK, July 25-29, 2005. Proceedings
19. Springer, 2005, pp. 504–527.

[54] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Ballerina:
Automatic generation and clustering of efficient random unit tests for
multithreaded code,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 727–737.

[55] S. Thummalapenta, J. De Halleux, N. Tillmann, and S. Wadsworth,
“Dygen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs: 4th International Conference,
TAP 2010, Málaga, Spain, July 1-2, 2010. Proceedings 4. Springer,
2010, pp. 77–93.

[56] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and W. Schulte,
“Mseqgen: Object-oriented unit-test generation via mining source code,” in
Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering, 2009, pp. 193–202.

[57] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, pp. 1–37, 2019.

[58] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,

Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[59] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
Automated testing for deep learning frameworks,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 486–498.

[60] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 2, pp. 1–42, 2014.

[61] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim, and
Y. H. Hwang, “Utopia: automatic generation of fuzz driver using unit
tests,” in 2023 IEEE Symposium on Security and Privacy (SP). IEEE,
2023, pp. 2676–2692.

[62] “American fuzzy lop plus plus.” [Online]. Available: https://github.com/
AFLplusplus/AFLplusplus

[63] R.-F. Team, “Rust-fuzz/arbitrary: Generating structured data from
arbitrary, unstructured input.” [Online]. Available: https://github.com/
rust-fuzz/arbitrary

[64] T. rust-fuzz team, “afl.rs: Fuzzing rust code with afl,” https://github.com/
rust-fuzz/afl.rs, 2023, accessed: 2024-03-18.

[65] C. Yang, Z. Zhao, and L. Zhang, “Kernelgpt: Enhanced kernel fuzzing
via large language models,” arXiv preprint arXiv:2401.00563, 2023.

[66] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:
Universal fuzzing with large language models,” Proc. IEEE/ACM ICSE,
2024.

[67] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large language
model guided protocol fuzzing,” in Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS), 2024.

[68] J. Eom, S. Jeong, and T. Kwon, “Covrl: Fuzzing javascript engines with
coverage-guided reinforcement learning for llm-based mutation,” arXiv
preprint arXiv:2402.12222, 2024.

[69] L. Huang, P. Zhao, H. Chen, and L. Ma, “Large language models based
fuzzing techniques: A survey,” arXiv preprint arXiv:2402.00350, 2024.

13

https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://github.com/rust-fuzz/arbitrary
https://github.com/rust-fuzz/arbitrary
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/afl.rs

	Introduction
	Background
	Automatic Unit Testing
	Rust Programming Language

	Challenges
	Motivating Example
	Challenges to Pass the Compiler Check
	Challenges of Low Code Coverage

	 Rug Design
	Testing Context Construction
	Constructing Type Dependency Graphs
	Bottom-Up Code Generation
	Corner Cases

	Fuzzing for Input Exploration
	Fuzzing Harness Transformation
	Fuzzing Corpora Selection


	Implementation
	Static Analysis
	Bottom-up Test Context Generation with LLM
	Fuzzing Transformation and Postprocessing

	Evaluation
	RQ1: Comparison with Traditional Tools
	RQ2: Comparison with LLM-based Tools
	RQ3: Ablation Study
	RQ4: Practical Usability Evaluation
	RQ5: Robustness Evaluation

	Related Work
	LLM based Tools for Rust Automatic Testing
	Traditional Automatic Testing Tools

	Limitation
	Conclusion
	References

