
RAKIS: Secure Fast I/O Primitives
Across Trust Boundaries on Intel SGX

Mansour Alharthi, Fan Sang, Dmitrii Kuvaiskii, Mona Vij and Taesoo Kim

• TEEs offers a secure execution
environment for applications.

• Intel SGX, introduced in 2015, still sees
applications today, particularly in cloud
computing.

• Intel SGX offers lightweight TEE with
encrypted enclaves.
• Applications enter enclaves, where

execution is secure - even from privileged
entities like the OS.

• Applications exit enclaves and go back to
normal execution.

Trusted Execution Environments (TEEs)

Figure credit: https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-web-based-training.html

Cannot

access

2

• Enclave programs have restricted
access to OS services.

• To make a syscall, the enclave program
must:

1. Copy syscall data to untrusted memory.

2. Exit the encalve.

3. Perform the syscall outside the enclave.

4. Re-enter the enclave and copy the result
inside.

• This means significant cost for IO
operations.

Intel SGX – Enclave Programs

Figure credit: https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sgx-web-based-training.html

Cannot

syscall

3

• Enclave entry/exit costs a minimum of 8200 CPU cycles; not including data
transfer cost [1].
• This context switch cost is applied to all IO calls, i.e. per every user send()/recv() call.

• Our experiments show that I/O-intensive programs can run up to 5x slower inside
SGX enclaves.
• The main cause is the need to exit the enclave and reenter per IO syscall.

Intel SGX - I/O cost

[1]: Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with HotCalls: A Fast Interface for SGX Secure Enclaves.

4

• Utilize kernel-bypass libraries inside
SGX enclaves.

• Limitations of this approach:
1. Significant increase in TCB size.

➢ More attack surface & security risks.

2. Difficulty in deployment.
➢ Limits adoption and increases

compatibility challenges.

3. Inclusion of unnecessary components.
➢ Requires heavy OS features like thread

scheduling, which are unnecessary for
lightweight enclave programs.

State-of-the-art: Direct I/O inside SGX

5

RAKIS - Goals

• Enable fast I/O primitives inside SGX enclaves that:
1. Maintains the security guarantees of Intel SGX.

2. Minimal increase in TCB size.

3. Run unmodified user programs.

• To achieve its goals, RAKIS leverages two recently introduced Linux kernel I/O
primitives:

1. eXpress Data Path (XDP).

2. io_uring.

6

Fast I/O Kernel Primitives (FIOKPs)

• eXpress Data Path (XDP): Enables high-performance packet processing at the
earliest point in the Linux kernel.

• io_uring: Enables efficient asynchronous I/O operations.

• FIOKPs:
• Enhance I/O performance by reducing system call overhead.

• Utilize shared memory and ring buffers for operations.

7

Fast I/O Kernel Primitives (FIOKPs)

• Recently, the Linux kernel introduced new I/O primitives:
• eXpress Data Path (XDP).

• io_uring.

• These primitives primarily uses shared memory and ring buffers for operations.

• They enhance I/O performance by eliminating the overhead associated with
syscalls and context switches.

8

Fast I/O Kernel Primitives (FIOKPs)

• Recently, the Linux kernel introduced new I/O primitives:
• eXpress Data Path (XDP).

• io_uring.

• These primitives primarily uses shared memory and ring buffers for operations.

• They enhance I/O performance by eliminating the overhead associated with
syscalls and context switches.

9

Fast I/O Kernel Primitives (FIOKPs)

• Recently, the Linux kernel introduced new I/O primitives:
• eXpress Data Path (XDP).

• io_uring.

• These primitives primarily uses shared memory and ring buffers for operations.

• They enhance I/O performance by eliminating the overhead associated with
syscalls and context switches.

10

RAKIS - Challenges

1. FIOKPs and their userspace libraries assume a trusted OS.
• This assumption does not extend to enclave programs.

2. FIOKPs have in-compatible IO interfaces to regular IO syscalls.
• This necessitates modifications to enclave programs.

3. FIOKPs services do not match enclave program expectations.
• XDP operate on layer-2 data-frames only.

• io_uring only handles asynchronous syscalls.

11

RAKIS: Design

12

RAKIS: Design - Enclave Modules

13

RAKIS: Design - Enclave Modules

14

RAKIS: Design - Userspace Modules

15

RAKIS: Design - Service Module

• Bridges the functionality gap between
FIOKPs and unmodified user
applications.

• Enables seamless integration with
the POSIX syscall API.

16

RAKIS: Design - FastPath Module

• Facilitates data delivery
from/into the enclave via
FIOKPs.

• Handles all untrusted
interactions with the host OS.

• Utilizes only the shared
untrusted memory without
requiring any enclave exits.

17

RAKIS: Design - Monitor Module

• FIOKP requires occasional syscalls to function properly.

• The Monitor Module oversees FIOKPs data structures within
shared untrusted memory and issue needed syscalls to operate
the FIOKPs.

• Operates independently without direct communication with any
of RAKIS's enclave modules.

18

RAKIS: Design - FastPath Module

• Ensures robust security by testing RAKIS's trusted components with two distinct binaries:
• Verification binary: Executes model checking on the FastPath Module.
• Fuzzing binary: integrated with the Service Module UDP/IP stack for fuzz testing.

19

RAKIS: Performance Evaluation

• Five runtime environments:
1. Native: host OS(program).

2. Gramine-Direct: host OS(Gramine(program)).

3. RAKIS-Direct: host OS(RAKIS(program)).

4. Gramine-SGX: host OS(SGX_Enclave(Gramine(program)).

5. RAKIS-SGX: host OS(SGX_Enclave(RAKIS(program)).

• Six workloads:
1. iperf (UDP IO).

2. Curl (UDP IO).

3. Memcached (UDP IO).

4. fstime (File IO).

5. Redis (TCP IO).

6. MCrypt (File IO).

20

RAKIS: Performance Evaluation (Curl – UDP IO over
XDP)

RAKIS-SGX vs. NATIVE:

Negligible overhead.

RAKIS-SGX vs. Gramine-SGX:

3x faster download times.

21

RAKIS: Performance Evaluation (memcached – UDP IO
over XDP)

RAKIS-SGX vs. NATIVE:

Negligible overhead.

RAKIS-SGX vs. Gramine-SGX:

4.6x increase in throughput.

22

RAKIS: Performance Evaluation (Redis – TCP IO over
io_uring)

RAKIS-SGX vs. NATIVE:

40% overhead.

RAKIS-SGX vs. Gramine-SGX:

2.6x increase in throughput.

23

RAKIS: Simpler, Lighter, and More Efficient

• RAKIS does not require any special hardware.
• Only requires new kernels where XDP and io_uring is supported.

• RAKIS have a small footprint.
• Less than 8K LoC.

• Tested with Symbolic execution and fuzzing.

• Tailored for user workload.
• Does not necessitate heavy OS features.

• Tunable CPU cores and memory footprint.

24

Conclusion

• RAKIS securely enables fast IO primitves inside SGX enclaves.
• Runs unmodified user programs.

• Small & extensively tested TCB.

• Easy to deploy.

• Resource efficient.

• Achieves an average improvement of 2.8x compared to Gramine-SGX across all workloads.

• Open source:
• https://github.com/sslab-gatech/RAKIS

25

https://github.com/sslab-gatech/RAKIS

Q&A
• Mansour Alharthi.

• 6th year Ph.D student @ GeorgiaTech

• Email: mansourah@gatech.edu

	Slide 1: RAKIS: Secure Fast I/O Primitives Across Trust Boundaries on Intel SGX
	Slide 2: Trusted Execution Environments (TEEs)
	Slide 3: Intel SGX – Enclave Programs
	Slide 4: Intel SGX - I/O cost
	Slide 5: State-of-the-art: Direct I/O inside SGX
	Slide 6: RAKIS - Goals
	Slide 7: Fast I/O Kernel Primitives (FIOKPs)
	Slide 8: Fast I/O Kernel Primitives (FIOKPs)
	Slide 9: Fast I/O Kernel Primitives (FIOKPs)
	Slide 10: Fast I/O Kernel Primitives (FIOKPs)
	Slide 11: RAKIS - Challenges
	Slide 12: RAKIS: Design
	Slide 13: RAKIS: Design - Enclave Modules
	Slide 14: RAKIS: Design - Enclave Modules
	Slide 15: RAKIS: Design - Userspace Modules
	Slide 16: RAKIS: Design - Service Module
	Slide 17: RAKIS: Design - FastPath Module
	Slide 18: RAKIS: Design - Monitor Module
	Slide 19: RAKIS: Design - FastPath Module
	Slide 20: RAKIS: Performance Evaluation
	Slide 21: RAKIS: Performance Evaluation (Curl – UDP IO over XDP)
	Slide 22: RAKIS: Performance Evaluation (memcached – UDP IO over XDP)
	Slide 23: RAKIS: Performance Evaluation (Redis – TCP IO over io_uring)
	Slide 24: RAKIS: Simpler, Lighter, and More Efficient
	Slide 25: Conclusion
	Slide 26: Q&A

