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Cloud providers as attackers (with root privilege)
• Side-channel inference with low-noise, high-resolution



● Hardware resource isolation
+ Robust defense that mitigates the root causes of leakage
− Software cannot benefit from resource sharing
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● Hardware resource isolation
+ Robust defense that mitigates the root causes of leakage
− Software cannot benefit from resource sharing

● Detection-based defenses
+ Permits resource sharing
− Leaks at a lower rate, or lacks flexibility
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Existing Defenses



• Assumption: SCAs have impact on victim’s performance
• Detect SCAs by observing such performance characteristics [1-3]
• Rely on OS interface to collect microarchitectural information

• Limitations:
• Coarse-grained statistical data
• Limited victim responses

Detection Defenses: Performance Counters
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• Hardware Transactional Memory (HTM) provides safe concurrency 
• Cloak [4] uses Intel® Transactional Synchronization Extensions

(Intel® TSX, an HTM implementation) to mitigate cache side channels

Detection Defenses: HTM

13[4] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong and Efficient Cache Side-Channel Protection using 
Hardware Transactional Memory,” in Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, Canada, Aug. 2017.
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● Missing trusted data sources in TEEs
● Low-quality of available data
● How to react to a potential attack?
● Platform specific
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● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely
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● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely
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The victim always sits at a disadvantaged position

An Irony – Information Asymmetry
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● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely
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An Irony – Information Asymmetry

TEE OS

Can we make detection-based defenses more robust?



● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response
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● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response

● Security
○ Does not expose new information to a potential attacker

● Feasibility
○ Incur minimal hardware modification

● Extensibility
○ Ready for new events in the future
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● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:
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● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:
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● Target: code and data that incur secret-dependent cache accesses
○ E.g., cachelines of AES T-table and encryption operations
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● Target: code and data that incur secret-dependent cache accesses
○ E.g., cachelines of AES T-table and encryption operations
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● Subscription request as a 
specialized memory request

● SENSE status bits in each cache 
entry for status monitoring

● Check the monitoring status 
during eviction

● Inform the notification module 
in the cache request response
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● SENSE control registers

● New ISA instructions

● SENSE hardware fault

● SENSE fault control logic to 
enter the trampoline
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● ABORT
○ Abort the process

● INVARIANT
○ Preserve a safety property

● THRESHOLD
○ Local counter for event quota
○ A policy when the threshold is 

exceeded (e.g., terminate)
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● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker
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● Prime+Probe without coarse-grained timing
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42

Attacker’s Exploitation of SENSE

Prime Evict



● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker

● SENSE does not expose new information to a malicious TEE thread 
○ SENSE provides the same eviction information as Prime+Probe, with less noise
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● The OS is responsible for management tasks
○ OS-application contract

● Malicious OS does not honor such contracts
● Use SENSE to implement a verification logic
● Example: Cache coloring
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Other Use Case: Verifying OS Contracts



● A colored physical address is only accessible by threads with the same color
● Used to isolate cache accesses in SCA mitigations
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● A colored physical address is only accessible by threads with the same color
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● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs
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● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs
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● Gem5 simulation
○ CPU SENSE mode
○ CPU micro-code for event notification
○ Enabling SENSE on cache eviction events

● Basic event handlers for cache evictions
○ ABORT (exit(0))
○ INVARIANT (Refetch the evicted cacheline)
○ THRESHOLD (Number of allowed cache. Terminate if exceeded)
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Implementation



● Harden AES T-table against Prime+Probe
○ Monitors the T-table for cache eviction events
○ INVARIANT event handler
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● Harden AES T-table against Prime+Probe
○ Monitors the T-table for cache eviction events
○ INVARIANT event handler
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Cache hit patterns of the first AES T-Table (Te0) under 
Prime+Probe attack.
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Security Evaluation



● Attacker’s exploitation of SENSE
○ Probe via SENSE is ∼8× faster than probing via timing channel
○ Probe via SENSE has a reduced false positive rate compared to timing channel
→ Efficiency benefits during an actual Prime+Probe attack
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● The performance of SENSE is evaluated on each module:
○ Subscription Module
○ Notification Module
○ Action Module

● PolyBenchC
○ Kernel functions that perform mathematical operations using matrices
○ Kernel functions as critical sections in TEEs monitored by SENSE
○ One matrix is monitored for cache eviction events
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● Initialization: registers trampoline and turns on CPU SENSE mode
● Preparation: prefetching the secret data and mark as monitored
● Average overhead is 1.2%
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Performance overhead of Subscription Module

Performance Evaluation (Subscription Module)



● CPU micro-code for state cleaning and control transfer
● Few events with a large cache size
● Decrease cache size to magnify the behavior
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Performance Evaluation (Notification Module)

Performance overhead of Notification Module



● Dummy handlers that performs simple operations inside a loop
● Increase the loop variable to simulate the increase of handler complexity
● Cache size of 32 kB (effective to show behaviors)
● Not surprisingly, the performance of the handler dominates
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Performance Evaluation (Action Module)

Performance overhead of Action Module



● Addressing information asymmetry can allow TEEs to proactively defend 
themselves against SCAs

● SENSE to turn a side channel exploited by attackers into a direct channel
dedicated to users of TEEs

● Performance overhead of 1.2% under benign situations
● Does not degrade security of the TEE

62
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Conclusion

https://github.com/sslab-gatech/Sense

https://github.com/sslab-gatech/Sense
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