
SENSE
Enhancing Microarchitectural Awareness

for TEEs via Subscription-Based Notification
Fan Sang1, Jaehyuk Lee1, Xiaokuan Zhang3, Meng Xu4,

Scott Constable2, Yuan Xiao2, Michael Steiner2, Mona Vij2, Taesoo Kim1

1Georgia Institute of Technology, 2Intel, 3George Mason University, 4University of Waterloo



Trusted Computing Base (TCB)

2

TEE 101

Code

Data

Privileged software 
(e.g., OS, hypervisor)

TEE-capable CPU
Enclave

Isolated
memory region



Trusted Computing Base (TCB)

3

Access Deny

TEE 101

Code

Data

Privileged software 
(e.g., OS, hypervisor)

TEE-capable CPU
Enclave

Isolated
memory region

Strict memory 
access control

Software attacks
(e.g., accessing enclave 

memory ranges)



Trusted Computing Base (TCB)

4

Decrypt

Encrypt

Physical attacks
(e.g., memory snooping)

Software attacks
(e.g., accessing enclave 

memory ranges)

Access Deny

TEE 101

Code

Data

Privileged software 
(e.g., OS, hypervisor)

TEE-capable CPU
Enclave

Isolated
memory region

Strict memory 
access control

Memory 
encryption



Trusted Computing Base (TCB)

5

Decrypt

Encrypt

Physical attacks
(e.g., memory snooping)

Access Deny

TEE 101

Code

Data

Privileged software 
(e.g., OS, hypervisor)

TEE-capable CPU
Enclave

Isolated
memory region

Strict memory 
access control

Memory 
encryption

Remote
attestation

Software attacks
(e.g., accessing enclave 

memory ranges)



6

Achilles’ Heel: Side-Channel Attacks (SCAs)

Code

Data

Privileged software 
(e.g., OS, hypervisor)

Enclave
TEE-capable CPU

Trusted Computing Base (TCB)



Trusted Computing Base (TCB)

7

Achilles’ Heel: Side-Channel Attacks (SCAs)

Code

Data

Privileged software 
(e.g., OS, hypervisor)

Enclave

Shared Stateful Resources
(e.g., Cache, Page table, etc.)

TEE-capable CPU



Trusted Computing Base (TCB)

8

Achilles’ Heel: Side-Channel Attacks (SCAs)

Code

Data

Privileged software 
(e.g., OS, hypervisor)

Enclave

Shared Stateful Resources
(e.g., Cache, Page table, etc.)Privileged Attacker

Side-channel Attacks

TEE-capable CPU



Trusted Computing Base (TCB)

9

Achilles’ Heel: Side-Channel Attacks (SCAs)

Code

Data

Privileged software 
(e.g., OS, hypervisor)

Enclave

Shared Stateful Resources
(e.g., Cache, Page table, etc.)Privileged Attacker

Side-channel Attacks

TEE-capable CPU

Cloud providers as attackers (with root privilege)
• Side-channel inference with low-noise, high-resolution



● Hardware resource isolation
+ Robust defense that mitigates the root causes of leakage
− Software cannot benefit from resource sharing

10

Existing Defenses



● Hardware resource isolation
+ Robust defense that mitigates the root causes of leakage
− Software cannot benefit from resource sharing

● Detection-based defenses
+ Permits resource sharing
− Leaks at a lower rate, or lacks flexibility

11

Existing Defenses



• Assumption: SCAs have impact on victim’s performance
• Detect SCAs by observing such performance characteristics [1-3]
• Rely on OS interface to collect microarchitectural information

• Limitations:
• Coarse-grained statistical data
• Limited victim responses

Detection Defenses: Performance Counters

12

[1] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based side-channel attacks using hardware performance 
counters,” Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.
[2] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing channels on shared processor hardware,” in Proceedings of the 
47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Cambridge, UK, Dec. 2014.
[3] Replayconfusion: Detecting cache-based covert channel attacks using record and replay,” in Proceedings of the 49th Annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, Oct. 2016.



• Hardware Transactional Memory (HTM) provides safe concurrency 
• Cloak [4] uses Intel® Transactional Synchronization Extensions

(Intel® TSX, an HTM implementation) to mitigate cache side channels

Detection Defenses: HTM

13[4] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong and Efficient Cache Side-Channel Protection using 
Hardware Transactional Memory,” in Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, Canada, Aug. 2017.



● Missing trusted data sources in TEEs

14

Detection-Based Defenses under TEE

TEE OS



● Missing trusted data sources in TEEs
● Low-quality of available data

15

Detection-Based Defenses under TEE

TEE OS



● Missing trusted data sources in TEEs
● Low-quality of available data
● How to react to a potential attack?

16

Detection-Based Defenses under TEE

TEE OS



● Missing trusted data sources in TEEs
● Low-quality of available data
● How to react to a potential attack?
● Platform specific

17

Detection-Based Defenses under TEE

TEE OS

Gen7

Gen6

Upgrade



● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely

18

An Irony – Information Asymmetry

TEE OS



● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely

19

The victim always sits at a disadvantaged position

An Irony – Information Asymmetry

TEE OS



● TEE as a security container is constraining victims’ ability to reliably 
gather SCA signals 
○ Lack runtime awareness of the microarchitectural context

● The attacker gathers various microarchitectural signals freely

20

An Irony – Information Asymmetry

TEE OS

Can we make detection-based defenses more robust?



● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response

21

Goals of SENSE

TEE
OS

Side channel Direct channel



● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response

● Security
○ Does not expose new information to a potential attacker

22

Goals of SENSE

TEE
OS

Side channel Direct channel



● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response

● Security
○ Does not expose new information to a potential attacker

● Feasibility
○ Incur minimal hardware modification

23

Goals of SENSE

TEE
OS

Side channel Direct channel



● Information symmetry
○ Provide microarchitectural information to TEE and allow proactive response

● Security
○ Does not expose new information to a potential attacker

● Feasibility
○ Incur minimal hardware modification

● Extensibility
○ Ready for new events in the future

24

Goals of SENSE

TEE
OS

Side channel Direct channel



● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:

25

Overview of SENSE



● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:

26

Overview of SENSE

Subscribe to an event (e.g., eviction of selected cache lines)



● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:

27

Overview of SENSE

Subscribe

Notify

to an event (e.g., eviction of selected cache lines)

the subscriber when an event is detected



● An architectural extension that directly exposes microarchitectural
events to userspace TEEs, using three steps:

28

Overview of SENSE

Subscribe

Notify

Act

to an event (e.g., eviction of selected cache lines)

the subscriber when an event is detected

with actions specified in TEE software



29

Enclave App

SENSE mode start

SENSE mode end

Init. Sub.

subscribe

Critical section

SE
N

SE
 b

lo
ck

SENSE in Action



30

Enclave App

SENSE mode start

SENSE mode end

Init. Sub.

subscribe

Critical section

SE
N

SE
 b

lo
ck

Trampoline

Clear states

Notification

SENSE in Action



31

Enclave App

SENSE mode start

SENSE mode end

Init. Sub.

subscribe

Critical section

SE
N

SE
 b

lo
ck

Trampoline

Clear states

Resume execution

Notification

Event Handler

SENSE mode restart

Save context

Restore context

RET

Handle event

Action

…

SENSE in Action



32

Enclave App

SENSE mode start

SENSE mode end

Init. Sub.

subscribe

Critical section

SE
N

SE
 b

lo
ck

Trampoline

Clear states

Resume execution

Notification

Event Handler

SENSE mode restart

Save context

Restore context

RET

Handle event

Action

…

SENSE in Action



● Target: code and data that incur secret-dependent cache accesses
○ E.g., cachelines of AES T-table and encryption operations

33

Mitigating Cache SCAs



● Target: code and data that incur secret-dependent cache accesses
○ E.g., cachelines of AES T-table and encryption operations

34

Evict a target cacheline

Mitigating Cache SCAs



● Target: code and data that incur secret-dependent cache accesses
○ E.g., cachelines of AES T-table and encryption operations

35

Evict a target cacheline

Refetch the evicted cacheline

Mitigating Cache SCAs

SENSE



36

Shared Cache Main 
Memory

SSStatus

cache entries

Tag DataSS_Fault

Su
bs
cr
ip
tio
n

M
od
ul
e

Access
PREFETCH_SS

Eviction
Logic

Cache request

CPU 
Core

CPU 
Core

CPU 
Core

CPU 
Core

trampoline:
SS handler

ABORT

INVARIANT

THRESHOLD…

Enclave App
Enclave start

Enclave end

Subscribe

Execution Engine

CR.SS_MODE

CR_SS_TRAMP

control registers

Load-Store Unit
Memory (Load/Store) Instructions

Front Commit

Control Unit

SS Fault Logic #SS

TLB

Action
Module

Notification
Module

SS_Fault?

SENSE
mode

Architecture

Added Component



● Subscription request as a 
specialized memory request

● SENSE status bits in each cache 
entry for status monitoring

● Check the monitoring status 
during eviction

● Inform the notification module 
in the cache request response

37

Subscription Module
CPU 
Core

CPU 
Core

CPU 
Core

CPU 
Core

Execution Engine

CR.SS_MODE

CR_SS_TRAMP

control registers

Load-Store Unit
Memory (Load/Store) Instructions

Front Commit

Control Unit

SS Fault Logic #SS

TLB
Notification
Module

SS_Fault?

SENSE
modeEnclave end

trampoline:
SS handler

Enclave start
Subscribe

Enclave App

ABORT

INVARIANT

THRESHOLD…

Action
Module

Shared Cache Main 
Memory

SSStatus

cache entries

Tag DataSS_Fault

Su
bs
cr
ip
tio
n

M
od
ul
e

Access
PREFETCH_SS

Eviction
Logic

Cache request

Added Component



● SENSE control registers

● New ISA instructions

● SENSE hardware fault

● SENSE fault control logic to 
enter the trampoline

38

CPU 
Core

CPU 
Core

CPU 
Core

CPU 
Core

Execution Engine

CR.SS_MODE

CR_SS_TRAMP

control registers

Load-Store Unit
Memory (Load/Store) Instructions

Front Commit

Control Unit

SS Fault Logic #SS

TLB
Notification
Module

SS_Fault?

SENSE
mode

Notification Module

Shared Cache Main 
Memory

SSStatus

cache entries

Tag DataSS_Fault Added Component

Su
bs
cr
ip
tio
n

M
od
ul
e

Access
PREFETCH_SS

Eviction
Logic

Cache request

Enclave end

trampoline:
SS handler

Enclave start
Subscribe

Enclave App

ABORT

INVARIANT

THRESHOLD…

Action
Module



CPU 
Core

CPU 
Core

CPU 
Core

CPU 
Core

Execution Engine

CR.SS_MODE

CR_SS_TRAMP

control registers

Load-Store Unit
Memory (Load/Store) Instructions

Front Commit

Control Unit

SS Fault Logic #SS

TLB
Notification
Module

SS_Fault?

SENSE
mode

● ABORT
○ Abort the process

● INVARIANT
○ Preserve a safety property

● THRESHOLD
○ Local counter for event quota
○ A policy when the threshold is 

exceeded (e.g., terminate)

39

Action Module

Shared Cache Main 
Memory

SSStatus

cache entries

Tag DataSS_Fault Added Component

Su
bs
cr
ip
tio
n

M
od
ul
e

Access
PREFETCH_SS

Eviction
Logic

Cache request

Enclave end

trampoline:
SS handler

Enclave start
Subscribe

Enclave App

ABORT

INVARIANT

THRESHOLD…

Action
Module



● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker

40

Attacker’s Exploitation of SENSE



● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker

41

Attacker’s Exploitation of SENSE

Prime



● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker

42

Attacker’s Exploitation of SENSE

Prime Evict



● Prime+Probe without coarse-grained timing
○ SENSE promptly delivers notifications to the attacker

● SENSE does not expose new information to a malicious TEE thread 
○ SENSE provides the same eviction information as Prime+Probe, with less noise

43

Attacker’s Exploitation of SENSE

Prime Evict

Probe

Fast Fast Fast Slow

SENSE delivers 
a notification



● The OS is responsible for management tasks
○ OS-application contract

● Malicious OS does not honor such contracts
● Use SENSE to implement a verification logic
● Example: Cache coloring

44

Other Use Case: Verifying OS Contracts



● A colored physical address is only accessible by threads with the same color
● Used to isolate cache accesses in SCA mitigations

45

Other Use Case: Verifying OS Contracts



● A colored physical address is only accessible by threads with the same color
● Used to isolate cache accesses in SCA mitigations

46

Other Use Case: Verifying OS Contracts



● A colored physical address is only accessible by threads with the same color
● Used to isolate cache accesses in SCA mitigations

47

Other Use Case: Verifying OS Contracts

SENSE



● A colored physical address is only accessible by threads with the same color
● Used to isolate cache accesses in SCA mitigations

48

Other Use Case: Verifying OS Contracts

SENSE



● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs

49

Other Use Case: On-demand Library Loading

ENSE



● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs

50

Other Use Case: On-demand Library Loading



● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs

51

Other Use Case: On-demand Library Loading

SENSE



● Software-based SCA mitigations have heavy performance overhead
● The overhead is paid regardless of the presence of SCAs
● Ideally, only pay the overhead when necessary

○ Application starts using an optimized library
○ Load the secure version of library if there is a sign of SCAs

52

Other Use Case: On-demand Library Loading

SENSE



● Gem5 simulation
○ CPU SENSE mode
○ CPU micro-code for event notification
○ Enabling SENSE on cache eviction events

● Basic event handlers for cache evictions
○ ABORT (exit(0))
○ INVARIANT (Refetch the evicted cacheline)
○ THRESHOLD (Number of allowed cache. Terminate if exceeded)

53

Implementation



● Harden AES T-table against Prime+Probe
○ Monitors the T-table for cache eviction events
○ INVARIANT event handler

54

Security Evaluation



● Harden AES T-table against Prime+Probe
○ Monitors the T-table for cache eviction events
○ INVARIANT event handler

55

Cache hit patterns of the first AES T-Table (Te0) under 
Prime+Probe attack.

Without SENSE With SENSE + cache 
INVARIANT handler

Security Evaluation



● Attacker’s exploitation of SENSE
○ Probe via SENSE is ∼8× faster than probing via timing channel
○ Probe via SENSE has a reduced false positive rate compared to timing channel
→ Efficiency benefits during an actual Prime+Probe attack

56

Security Evaluation



● Attacker’s exploitation of SENSE
○ Probe via SENSE is ∼8× faster than probing via timing channel
○ Probe via SENSE has a reduced false positive rate compared to timing channel
→ Efficiency benefits during an actual Prime+Probe attack

57

Cache hit patterns of the first AES T-Table (Te0) under 
Prime+Probe attack.

Without SENSE With SENSE

Security Evaluation



● The performance of SENSE is evaluated on each module:
○ Subscription Module
○ Notification Module
○ Action Module

● PolyBenchC
○ Kernel functions that perform mathematical operations using matrices
○ Kernel functions as critical sections in TEEs monitored by SENSE
○ One matrix is monitored for cache eviction events

58

Performance Evaluation



● Initialization: registers trampoline and turns on CPU SENSE mode
● Preparation: prefetching the secret data and mark as monitored
● Average overhead is 1.2%

59

Performance overhead of Subscription Module

Performance Evaluation (Subscription Module)



● CPU micro-code for state cleaning and control transfer
● Few events with a large cache size
● Decrease cache size to magnify the behavior

60

Performance Evaluation (Notification Module)

Performance overhead of Notification Module



● Dummy handlers that performs simple operations inside a loop
● Increase the loop variable to simulate the increase of handler complexity
● Cache size of 32 kB (effective to show behaviors)
● Not surprisingly, the performance of the handler dominates

61

Performance Evaluation (Action Module)

Performance overhead of Action Module



● Addressing information asymmetry can allow TEEs to proactively defend 
themselves against SCAs

● SENSE to turn a side channel exploited by attackers into a direct channel
dedicated to users of TEEs

● Performance overhead of 1.2% under benign situations
● Does not degrade security of the TEE

62

Conclusion



● Addressing information asymmetry can allow TEEs to proactively defend 
themselves against SCAs

● SENSE to turn a side channel exploited by attackers into a direct channel
dedicated to users of TEEs

● Performance overhead of 1.2% under benign situations
● Does not degrade security of the TEE

63

Conclusion

https://github.com/sslab-gatech/Sense

https://github.com/sslab-gatech/Sense


*fsang@gatech.edu

Thank You! (And Q&A)

Fan Sang*,1, Jaehyuk Lee1, Xiaokuan Zhang3, Meng Xu4,

Scott Constable†,2, Yuan Xiao2, Michael Steiner2, Mona Vij2, Taesoo Kim1

1Georgia Institute of Technology, 2Intel, 3George Mason University, 4University of Waterloo

†scott.d.constable@intel.com


