
PeTAL: Ensuring Access Control Integrity
against Data-only Attacks on Linux

Juhee Kim, Jinbum Park, Yoochan Lee,

Chengyu Song, Taesoo Kim, Byoungyoung Lee

Linux kernel is an attractive attack target

• Widely used
• Mobile devices, Servers, and IoT devices

• Increasing number of vulnerabilities and exploit techniques

2CVEdetails.com

Kernel

Access control-related

kernel data

Attacker

modprobe_path

struct cred

struct file

Kernel Privilege Escalation Attacks

3

/etc/shadow

File File

/home/attacker/

my_file

Access control

Kernel

Privilege

: Low

/etc/shadow

File File

/home/attacker/

my_file

Access control

Kernel

Attacker

Privilege

: High

Vulnerable

SYSCALLs

modprobe_path

struct cred

struct file

Memory

Corruption

Attacker

Protecting Access Control to Prevent Attacks

4

File File

/home/attacker/

my_file

Access control

Kernel

Attacker

Privilege

: Low

Kernel

struct cred

struct file

modprobe_path

Access control-related

kernel data

Vulnerable

SYSCALLs

Attacker

/etc/shadow

Attacker

Privilege

: Low

/etc/shadow

File File

/home/attacker/

my_file

Kernel

Access control

PeTAL’s Data Flow Integrity

DFI is known to be performance-heavy

• Selectively protect access control-related data

• Leverage hardware extensions : ARM MTE for objects, PAC for pointers

5

P PAC

T MTE

P
P

P
P

P P

T

T

T

TT

T

Key questions:

1. What should be protected?

2. How should they be protected?
Kernel objects

Access Control System

6

Policy

: Data defining the allowed access

Enforcement

: Code enforcing the access control

Resource

: Data being protected

Linux Kernel Access Control System

7

Kernel

Policy

: cred, uid, owner, mode

Enforcement

: DAC permission check

Resource

: files, fdt, fd, mode, mapping

open(‘/home/attacker/my_file’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct

task_struct

cred

struct cred

owner: attacker

mode : rw / r-

struct inode

mode

mapping

struct file
struct

task_struct

files fdt

struct

files_struct

fd

struct

fdtable

Access Control System

↳ success: Grant file access
 by creating a file descriptor & return fd

→ fd
User

Linux Kernel Access Control System

8

Kernel

Policy

: cred, uid, owner, mode

Enforcement

: DAC permission check

Resource

: files, fdt, fd, mode, mapping

open(‘/etc/shadow’, write)

DAC permission check (cred, inode, mode)

uid: attacker

struct

task_struct

cred

struct cred

owner: root

mode : rw / --

struct inode

Access Control System

↳ fail: return –EACCES.

→ -EACCES
User

↳ passed: open file.

Attack 1: Corrupting Policy

9

Kernel

DAC permission check (cred, inode, mode)

open('/etc/shadow’ , write)

↳ success: Grant file access
 by creating a file descriptor & return fd

uid

struct

task_struct

cred

struct cred

owner

mode

struct inode

Vulnerable SYSCALLs

Policy

: cred, uid, owner, mode

Enforcement

: DAC permission check

Resource

: files, fdt, fd, mode, mapping

Access Control System

mode

mapping

struct file
struct

task_struct

files fdt

struct

files_struct

fd

struct

fdtable

→ fd
Attacker

↳ passed: open file.
DAC permission check (cred, inode, mode)

uid

struct

task_struct

cred

struct cred

owner

mode

struct inode

Attack 2: Bypassing Enforcement & Corrupting Resource

10

Kernel

mode

mapping

struct file
struct

task_struct

files fdt

struct

files_struct

fd

struct

fdtable

Vulnerable SYSCALLs

Bypass permission check

 ↳ Grant file access by forging file descriptor

Policy

: cred, uid, owner, mode

Enforcement

: DAC permission check

Resource

: files, fdt, fd, mode, mapping

Access Control System

→ fd
Attacker

PeTAL’s Access Control Integrity

Policy Integrity

: Ensure policy is not corrupted

Complete Enforcement

: Ensure enforcement is

always enforced when

resource is accessed

uid

capabilities

struct

task_struct

cred

struct cred

owner

mode

struct inode

11

1. What should be protected?
Policy should be protected

Resource should also be protected

DAC permission check (cred, inode, mode)

mode

mapping

struct file
struct

task_struct

files fdt

struct

files_struct

fd

struct

fdtable

↳ passed: open file.

Collecting Policy and Resource
from user interfaces

12

Resource

Deny

Kernel

User

User interface

handler

System calls e.g., SYSCALL_open()

Pseudo filesystems e.g., /sys/kernel/modeprobe_path

Allow

Error code

Access Control

↳ passed: open file.

Collecting Policy and Resource
from user interfaces

13

Enforcement

Permission check

Policy

Kernel

User

Static Taint

Analysis

System calls e.g., SYSCALL_open()

Pseudo filesystems e.g., /sys/kernel/modeprobe_path

Error code

Fail

Resource

Success

copy_to/from_user()

raw data

Static Taint

Analysis

PeTAL’s Data Flow Integrity

14

P PAC

T MTE

current

struct task_struct

cred

struct inode
inode_hashtable

struct

files_struct

fdt fd

struct

fdtable

files

i_mode

i_uid

struct cred

uid
struct file

f_mode

P

P

P

P

P P

T

T

T

TT

T

Heap object

Pointer

Global Variable

2. How should they be protected?

• Selectively protect access control-related data

• Leverage hardware extensions : ARM MTE for objects, PAC for pointers

ARM MTE and PAC

Memory Tagging Extensions (MTE)

• Memory object protection

• Hardware memory tagging/tag checking

• Dedicated tag storage in physical memory

15

obj2

&obj1
T1

Pointer

obj1

obj3

&obj2
T2

&obj2
T3

T1

T2

T3

ObjectAccess

Tag Check Fault

Pointer Authentication Code (PAC)

• Pointer protection

• Hardware pointer signing/authentication

• PAC keys in hardware registers

• Additional PAC context (tweak)

&obj

Pointer
Memory

&obj

&obj

✓

✓
Auth

Load

Sign

Store

Authentication Failure

&other_obj

Auth
𝙓

Context

PAC

Protecting Objects with ARM MTE

16

obj2

&obj1

Privileged Pointer

obj1

obj3

&obj2

&obj2

T1

T2

T3

Privileged object
Non-privileged

Pointer

obj2

&obj1 obj1

obj3

&obj2

&obj2

T0

T0

T0

Non-privileged

object

Random Tag (Tag 1-14)

Enforce Pointer’s tag on access

Fixed Tag (Tag 0)

Enforce tag 0 on access

Privileged Objects:

Objects that contain policy, resource, or

their pointer

Non-privileged Objects:

Other objects

T1

T2

T3

T0

T0

T0

Protecting Pointers with ARM PAC

17

&nonpriv_obj

Non-privileged Pointer

Memory

&nonpriv_obj

&nonpriv_obj

?

?

-

Store

Load

PAC Sign/Authentication No PAC Sign/Authentication

Privileged Pointers:

Pointers to privileged objects

Non-privileged Pointers:

Other pointers

&priv_obj

&priv_obj

Privileged Pointer
Memory

&priv_obj

✓

✓

Sign

Store

Load

Auth

Arbitrary

read/write

&priv_obj

Authentication Failure

PAC

Pointer storage address as PAC Context

→ Bind PAC to the stored address

𝙓

Complementary relationship of MTE and PAC

MTE Tag Reuse

18

&priv1
T1

Object1 Object2

&priv2
T2

Leak pointer

&priv1
T1

&priv1
T1

Corrupt pointer

Prevent with PAC
: PAC is bound to the pointer stored address

&priv1
T1

Object1 Object2

&priv2
T2PAC1

Authentication

Failure

Leak pointer

&priv1
T1 PAC1

PAC2
&priv1

T1

Corrupt pointer

PAC1

No Tag Check

Fault

Complementary Relationship between MTE/PAC

PAC Temporal Reuse

19

Prevent with MTE

Object1

&obj1

Object2&obj2

Corrupt pointer

Leak Pointer

Freed

&priv1

&priv1
PAC

&priv2&priv1
PAC

&obj1

Object2
&obj2

Corrupt pointer

Leak Pointer

&priv1
PAC

&priv2
PAC

T4

T3 T4

Tag check fault

!=T3 T4

No Authentication

Failure

PeTAL Implementation

20

Clang/LLVM IR Pass

Linux kernel

source code
vmlinux.bc

wllvm

Priv/Non-priv Obj access

Priv/Non-priv Ptr access

Privileged

Objects

Privileged

Pointers

Struct Types, GV Names

PeX - indcall resolution

PeTAL-

hardened

Kernel

PeTAL

Inter-procedural

Points-to Analysis

Data Flow Integrity

Instrumentation

AArch64

PACMTE

Static Taint Analysis

User Interfaces

Syscalls Pseudo-fs

Performance Evaluation

• Evaluation setup
• Samsung Galaxy S22 – supports PAC and MTE*

 * MTE was enabled with the assistance of Samsung Electronics

• Android kernel 5.10.136

• Kernel workloads
• LMBench 1.18x (MTE async) / 1.32x (MTE sync)

• User workloads
• Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

• Security evaluations in the paper

21

Summary

• PeTAL defines Access Control integrity for the Linux kernel.

• PeTAL proposes a novel way to identify protection targets

leveraging the kernel’s user interfaces.

• PeTAL’s DFI solution based on ARM MTE and PAC

demonstrates acceptable performance overhead.

22

Thank you!

23

Threat Model and Assumptions

• Hardware
AArch64, ARM MTE PAC

• Kernel
• State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFI)

• 1+ Memory coruption vulnerabilities

• Attack vector
• Memory corruption attack through vulnerable system calls

• Corrupting access control policies/resources

• Out of scope
• Access control system implementation error

• Page allocator error (e.g., GPU driver vulnerabilities)

• In-kernel executions (e.g., eBPF)

• Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)
24

Correctness of the Static Analyses

• Static Taint Analysis
• Goal: Collect kernel objects/pointers used as policy or resource from

the user intefaces
• Manual inspection

• 3 false positives due to complex data flows

• No false negatives

• Coarse-grained Points-to Analysis
• Goal: Classify instructions to enforce the DFI

• Privileged / Non-privileged / Mixed

• Emperical verification
• The PeTAL-hardened kernel worked on QEMU and the Galaxy device

25

	Slide 1: PeTAL: Ensuring Access Control Integrity against Data-only Attacks on Linux
	Slide 2: Linux kernel is an attractive attack target
	Slide 3: Kernel Privilege Escalation Attacks
	Slide 4: Protecting Access Control to Prevent Attacks
	Slide 5: PeTAL’s Data Flow Integrity
	Slide 6: Access Control System
	Slide 7: Linux Kernel Access Control System
	Slide 8: Linux Kernel Access Control System
	Slide 9: Attack 1: Corrupting Policy
	Slide 10: Attack 2: Bypassing Enforcement & Corrupting Resource
	Slide 11: PeTAL’s Access Control Integrity
	Slide 12: Collecting Policy and Resource from user interfaces
	Slide 13: Collecting Policy and Resource from user interfaces
	Slide 14: PeTAL’s Data Flow Integrity
	Slide 15: ARM MTE and PAC
	Slide 16: Protecting Objects with ARM MTE
	Slide 17: Protecting Pointers with ARM PAC
	Slide 18: Complementary relationship of MTE and PAC
	Slide 19: Complementary Relationship between MTE/PAC
	Slide 20: PeTAL Implementation
	Slide 21: Performance Evaluation
	Slide 22: Summary
	Slide 23: Thank you!
	Slide 24: Threat Model and Assumptions
	Slide 25: Correctness of the Static Analyses

