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Linux kernel is an attractive attack target

• Widely used
• Mobile devices, Servers, and IoT devices

• Increasing number of vulnerabilities and exploit techniques
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Protecting Access Control to Prevent Attacks
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PeTAL’s Data Flow Integrity

DFI is known to be performance-heavy

• Selectively protect access control-related data

• Leverage hardware extensions : ARM MTE for objects, PAC for pointers
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Key questions:

1. What should be protected?

2. How should they be protected?
Kernel objects



Access Control System

6

Policy

: Data defining the allowed access

Enforcement

: Code enforcing the access control

Resource

: Data being protected



Linux Kernel Access Control System
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Linux Kernel Access Control System
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↳ passed: open file.

Attack 1: Corrupting Policy
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↳ passed: open file.
DAC permission check (cred, inode, mode)
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Attack 2: Bypassing Enforcement & Corrupting Resource
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PeTAL’s Access Control Integrity

Policy Integrity

: Ensure policy is not corrupted

Complete Enforcement

: Ensure enforcement is 

always enforced when 
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1. What should be protected?
Policy should be protected

Resource should also be protected

DAC permission check (cred, inode, mode)
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↳ passed: open file.

Collecting Policy and Resource
from user interfaces
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↳ passed: open file.

Collecting Policy and Resource
from user interfaces
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PeTAL’s Data Flow Integrity
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2. How should they be protected?

• Selectively protect access control-related data

• Leverage hardware extensions : ARM MTE for objects, PAC for pointers



ARM MTE and PAC

Memory Tagging Extensions (MTE)

• Memory object protection

• Hardware memory tagging/tag checking

• Dedicated tag storage in physical memory
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Protecting Objects with ARM MTE
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Protecting Pointers with ARM PAC
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Complementary relationship of MTE and PAC

MTE Tag Reuse
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Complementary Relationship between MTE/PAC

PAC Temporal Reuse
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PeTAL Implementation
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Performance Evaluation

• Evaluation setup
• Samsung Galaxy S22 – supports PAC and MTE*

    * MTE was enabled with the assistance of Samsung Electronics

• Android kernel 5.10.136

• Kernel workloads
• LMBench 1.18x (MTE async) / 1.32x (MTE sync)

• User workloads
• Nbench: 1.00x / LevelDB 1.03x / Apache httpd: 1.04x (MTE sync)

• Security evaluations in the paper
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Summary

• PeTAL defines Access Control integrity for the Linux kernel.

• PeTAL proposes a novel way to identify protection targets 

leveraging the kernel’s user interfaces.

• PeTAL’s DFI solution based on ARM MTE and PAC 

demonstrates acceptable performance overhead.
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Thank you!
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Threat Model and Assumptions

• Hardware
AArch64, ARM MTE PAC

• Kernel
• State-of-the-art self-protections (e.g., ASLR, NX/DEP, SMAP, CFI)

• 1+ Memory coruption vulnerabilities

• Attack vector
• Memory corruption attack through vulnerable system calls

• Corrupting access control policies/resources

• Out of scope
• Access control system implementation error

• Page allocator error (e.g., GPU driver vulnerabilities)

• In-kernel executions (e.g., eBPF)

• Hardware side-channel attacks (e.g., Spectre, PACMAN, TikTag)
24



Correctness of the Static Analyses

• Static Taint Analysis
• Goal: Collect kernel objects/pointers used as policy or resource from 

the user intefaces
• Manual inspection

• 3 false positives due to complex data flows

• No false negatives

• Coarse-grained Points-to Analysis
• Goal: Classify instructions to enforce the DFI

• Privileged / Non-privileged / Mixed

• Emperical verification
• The PeTAL-hardened kernel worked on QEMU and the Galaxy device
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