
PYFET: Forensically Equivalent Transformation
for Python Binary Decompilation

Ali Ahad∗, Chijung Jung∗, Ammar Askar†,
Doowon Kim‡, Taesoo Kim†, Yonghwi Kwon∗

∗{aliahad, cj5kd, yongkwon}@virginia.edu †{aaskar, taesoo}@gatech.ac.kr ‡doowon@utk.edu

44th IEEE Symposium on Security and Privacy

Python Malware on the Rise

Python Bytecode, Decompilers, and Failures
• Python malware is compiled to

Bytecode: Challenging to analyze.
• Decompilers come to the rescue!
• But they fail on many binaries.

decompilation
decompilation (fail)

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
• Debugging decompilers requires substantial expertise and effort.

Challenges in Handling Decompilation Errors

Uncompyle6

>93K SLOC

>2K Parsing
Rules

>1.7K Functions

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
• Debugging decompilers requires substantial expertise and effort.

Challenges in Handling Decompilation Errors

Uncompyle6
(Fixed)-------------

(Broken)

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
• Debugging decompilers requires substantial expertise and effort.

2. Multiple decompilers: Not scalable to debug all.

Challenges in Handling Decompilation Errors

Uncompyle6

Unpyc37

Decompyle++

Implemented in
C++

Implemented
 in Python

Uses Grammar
Parsing Rules

Uses Code Logic

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
• Debugging decompilers requires substantial expertise and effort.

2. Multiple decompilers: Not scalable to debug all.

Challenges in Handling Decompilation Errors

Uncompyle6

Unpyc37

Decompyle++

Fixing the failure inducing
file, not decompilers

Identifying
Decompilation

Failure

Detecting a typical Decompilation failure
• Decompilation fails with error

messages.
• Specifies approximate functions

and offset of failure.

decompilation (fail)

Explicit Error: Decompilation
failure with an explicit error

message

Decompilers also fail silently (Implicit Error)!
• Decompiled successfully but generating a wrong code.

Original Program (Ground
truth)

Decompiled Program
with Implicit Error (the ‘else:’ blocks)

Implicit Error: Decompilation
failure without any error

message

Identifying (a few) Implicit Error Patterns

if c1:
␣␣s1
␣␣return s2

if c1:
␣␣s1
return s2

Correct Code Pattern Implicit Error
Patternreturn under the wrong

if.

if c1:
␣␣if c2: s1
else:
␣␣s2

if c1:
␣␣if c2: s1
␣␣else:
␣␣␣␣s2

try: s1
except: s2
else: s3

try: s1
except: s2
s3

for x in y:
␣␣if c1:
␣␣␣␣s1
else:
␣␣s2
␣␣s3

for x in y:
␣␣while c1:
␣␣␣␣s1
␣␣s2
s3

else block wrongly
coupled

new ‘else:’ introduced

while block removed,
new ‘else:’ introduced.

Identifying Implicit Error
Patterns

Original
Source
Code

(3,000 files)

Compile
r

Binary

DecompilerDecompiled
Source
Code

Compare

Detecting: Implicit Errors with the Patterns

DecompilerBinary

if c1:
 s1
return s2

if c1:
 s1
return s2

Correct Code
Pattern

Implicit Error
Pattern

Decompiled
Source Code

if code contains an
implicit error pattern

code Create a
mutation

Decompiled Source
Code (corrected)

if c1:
 s1
return s2

Compiler

Binary
(corrected)

If the corrected instructions found at the same location,
Implicit Error!

(if this is not an implicit error, the corrected/mutated code should not
exist)

if c1:
 s1

return s2

if 010101:
 010101
return 0101

Detected 22,359 Implicit Errors from 5 Decompilers

if c1:
␣␣s1
␣␣return s2

if c1:
␣␣s1
return s2

Identifying
Decompilation

Failure

Applying
Transformation

Identifying
Decompilation

Failure

Successfully
Decompilable Binary

How to transform?

Fixing: Forensically Equivalent Transformation
(FET)
• Forensically Equivalent Transformation
• Careful extension of Semantically Equivalent Transformation
• Preserving forensically meaningful semantics (manually defined) Transformation

Forensically
Equivalent

Transformation

Semantically
Equivalent

Transformation

with open("file", "r") as file:
 return file.read()

with open("file", "r") as file:
 FET_return = file.read()
return FET_return

Original Code

Forensically Equivalent Transformation
try:
 file = open("file", "r")
 return file.read()
except:
 # default handler
finally:
 file.close()

Semantically Equivalent Transformation

Failure Condition:
‘return’ in ‘try-

except’

Fixing: (a few) Transformation Rules

t = x or y
t and z

(x or y) and z

Original Code Transformed Code
Dividing logical expressions

if c1:
 s1
if c2 and not c1:
 s2

if c1:
 s1
elif c2:
 s2

def f(x):
 return x*2f = lambda x: x*2

while c1:
 s1
 break
 FET_null()
s2

while c1:
 s1
 break
s2

Simplifying/flattening
conditionals

Converting lambda function

Eliminating
consecutive control flow

changes

Reason
Parsers fails to understand
chains of logical expressions.

Parser fails to parse chains of
conditionals.

Language features like
‘lambda’ are not supported.

Parser fails to handle multiple
consecutive control flow
changes (e.g., loop back +
break).

Applying
Transformation

Identifying
Decompilation

Failure

Successfully
Decompilable Binary

Where to
transform?

Fixing: Iterative Transformation Process
• Based on Control Flow Graph of the program.
• Starting from the detected/reported error: e.g., 638: JUMP_FORWARD

674: LOAD_FAST
676: RETURN_VALUE

660: LOAD_GLOBAL
 ...
672: RAISE_VARARGS

650: LOAD_GLOBAL
 ...
658: JUMP_FORWARD

640: LOAD_GLOBAL
 ...
648: POP_JUMP_IF_FALSE

638: JUMP_FORWARD

620: POP_BLOCK
 ...
636: STORE_FAST

576: FOR_ITER
 ...
618: JUMP_ABSOLUTE

512: POP_BLOCK
514: JUMP_FORWARD

...

Control Flow Graph

1. Apply Transformation Rules at 638

2. Extend targets:
 All directly reachable nodes from 638.

3. Extend targets:
 All directly reachable nodes from
 already covered nodes.

Explores only 33% of the nodes on average

Resolving Real-world Decompilation Failures
• 38,351 real-world malware samples from ReversingLabs.
• 17,117 (44.6%) malware samples failed to be decompiled.
• Proportionally 3.9 (81%) failed most.

• Followed by 3.8 (66%) and 3.7 (47%)

0

6,000

12,000

18,000

3.9 3.8 3.7 3.6 3.5 3.4 2.7

of

 S
am

pl
es

Python Binary Version

Samples with Decompilation Error Samples without Decompilation Error

2,468
3,045

3,828
5,738

3,254
6,215 637

3,323
114
840

198
1,418

6,911
17,772

(81.1%)
(66.7%) (47.6%)

(19.2%) (13.6%) (14.0%)

(38.9%)# of Samples with Errors
of Total Samples

(Failure Rate (%))

We resolved decompilation failures of all the malware samples
(17,117)!

Case Study: Opcode Remapped & Obfuscated
Binary

Python Binary

Opcode Remapped
Binary

Obfuscated Binary

Customized Python
Compiler

Obfuscator

Python Source Code
(not decompilable)

(not decompilable)
We resolve all! More detail in paper.

Summary

17
K Malware binaries’ decompilation errors resolved.

5 Different Python Decompilers handled.
(Uncompyle6, Decompyle3, Uncompyle2, Uncompile3, Decompyle++)

3 Opcode remapping and obfuscated binaries handled.
(DropBox and druva)

30 Transformation rules developed.

