®44th IEEE Symposium on Security and Privacy

PYFET: Forensically Equivalent Transformation
for Python Binary Decompilation

Ali Ahad*, Chijung Jung*, Ammar Askar",
Doowon Kim?*, Taesoo Kim™, Yonghwi Kwon*

*{aliahad, cj5kd, yongkwon}@virginia.edu t{aaskar, taesoo}@gatech.ac.kr = fdoowon@utk.edu

U IVERSITY G : THE UNIVERSITY OF
TVIRGINIA kb TENNESSEE

KNOXVILLE

% of overall question views each month

9%

6

3°

3

3°

0%

Python Malware on the Rise

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

y d
/i Python malware is using a devious new
technique

By Sead Fadilpasic¢ published December 19, 2022

Y, d Crooks are using new tricks to keep their payloads hidden
PyPl malware creators are starting to
employ Anti-Debug techniques

By Andrey Polkovnychenko l December 13, 2022
@ 8 min read sHare: (F) () ()

MALICIOUS PACKAGES

The JFrog Security Research team continuously monitors popular open-source software (OSS) repositories with our
2012 automated tooling, and reports any vulnerabilities or malicious packages discovered to repository maintainers and
the wider community.

Python Malware On The Rise

Cyborg Labs | July 14,2020

serious malware over the past 30 years has been written in Assembly or
such as C, C++, and Delphi. However, ever-increasing over the past decade, a
ware has been written in interpreted languages, such as Python. The low barrier

rapid development process, and massive library collection has made Python

b

Malicious Python Trojan Impersonates
SentinelOne Security Client

A fully functional SentinelOne client is actually a Trojan horse that hides malicious code within; it
was found lurking in the Python Package Index repository ecosystem.

- Robert Lemos
e Contributing Writer, Dark Reading December 19, 2022

POP_EXCEPT
JUMP_FORWARD
END_FINALLY

o oG
POP_JUMP_IF_TK
LOAD_FAST
EXTENDED_ARG
POP_JUMP_IF_FALSE

SETUP_LOOP
LOAD_FAST
GET_ITER
FOR_ITER
STORE_FAST

LOAD_GLOBAL
LOAD_GLOBAL
LOAD_CONST
BINARY_SUBSCR
LOAD_CONST
LOAD_CONST
CALL_FUNCTION_KW
SETUP_WITH
STORE_FAST

LOAD_FAST

LOAD_METHOD

CALL_METHOD
FAST

* Python malware is compiled to
Bytecode: Challenging to analyze.

* Decompilers come to the rescue!

* But they fail on many binaries.

(to 642)

(self_spread)
(512)

(to 672)
(self_spread)

(o 872) decompilation (fail)

(self_spread)

(512)

(to 672)

(self_spread)

(512)

(to 672)

\self_spread)
2)

“to 750)

(to 750)
(working)

(to 748)
(token)

(open)
(argv)
()]

('utf-8")

(('encoding',))

(2 total positional and keyword args)
(to 712)

(file)

(file)

(read)

(0 positional arguments)
(content)

def main-—— This code section failed:

L. 116

656_658
660
662_664
666

668_670
672_0
672_1
672_2
672_3

744_746
748
750_0
750_1

Parse error at o

LOAD_GLOBAL
LOAD_STR
BINARY_ADD
STORE_FAST

LOAD_FAST

POP_JUMP_IF_FALSE

COME_FROM
COME_FROM
COME_FROM
COME_FROM

JUMP_BACK
POP_BLOCK
COME_FROM_LOOP
COME_FROM

near

750
662
656
650
644

678

672
668

Python Bytecode, Decompilers, and Failures

ROAMING
"\\.cache~$"

‘cache_path'

'self_spread'
'to 672"
'self_spread'
'to 750'

'662"

'656"

'650"

'644'

‘to 678"

‘672"
‘668"’

instruction at offset 750_0

Challenges in Handling Decompilation Errors

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
* Debugging decompilers requires substantial expertise and effort.

>2K Parsing
Rules
B
def error_la(...): > > 6
>93K SLOC >1.7K Functions

Uncompyleb

Challenges in Handling Decompilation Errors

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
* Debugging decompilers requires substantial expertise and effort.

Uncompyleb
--{Fixed)}--
(Broken)

Challenges in Handling Decompilation Errors

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
* Debugging decompilers requires substantial expertise and effort.

2. Multiple decompilers: Not scalable to debug all.

Uses Grammar o — M
Parsing Rules

Uncompyle6 Implemented
in Python
VAR

Unpyc37

Uses Code Logic
°€3 E \@ Implemented in
C++

Decompyle++

11010

Challenges in Handling Decompilation Errors

1. Asymmetric Warfare: Decompilers are easy to break but hard to fix.
* Debugging decompilers requires substantial expertise and effort.

2. Multiple decompilers: Not scalable to debug all.

o = 2
ol |
B
Uncompyleb6
F—@
Unpyc37

—@

Decompyle++

Fixing the failure inducing
file, not decompilers

ldentifying
Decompilation
Failure

Detecting a typical Decompilation failure

* Decompilation fails with error
messages.

— This code section fai

 Specifies approximate functions
and offset of failure.

POP_EXCEPT
JUMP_FORWARD (to 642)
END_FINALLY

LOAD_FAST (self_spread)

EXTENDED_ARG (512)

POP_JUMP_IF_TRUE (to 672)

LOAD_FAST (self_spread) N o o
EXTENDED_ARG (512) I f I
POPOINGCIETRE (t0.672) decompilation (fai
LOAD_FAST (self_spread)

EXTENDED_ARG (512)

POP_JUMP_IF_TRUE (to 672)

LOAD_FAST (self_spread)

EXTENDED_ARG (512)

POP_JUMP_IF_TRUE (to 672)

LOAD_FAST (self_spread)

EXTENDED_ARG (512)

POP_JUMP_IF_FALSE (to 750)

Explicit Error: Decompilation
M failure with an explicit error

LOAD_GL!(

LOAD_Cot

BINARY_!

LOAD_CoO!

LOAD_Cot

CALL_FUNCTION_KwW (2 total positional and keyword args)
SETUP_WITH (to 712)

STORE_FAST (file)

LOAD_FAST (file)

LOAD_METHOD (read) 36 Parse error at or near ' instruction at offset 750_0
CALL_METHOD (0 positional arguments)

STORE_FAST (content)

Decompilers also fail silently (Implicit Error)!

* Decompiled successfully but generating a wrong code.

Implicit Error: Decompilation

failure without any error
message

else:

decode = struct.pack("!2L", ve, v1) decode = struct.pack('!12L', v@, v1)
output = str().join(chr(ord(x) ~ ord(y)) for x, y in zip(vector, decode)) output = str().join((chr(ord(x) ~ ord(y)) for x, y in zip(vector, decode)))

vector = block vector = block
result.append(output) result.append(output)
return str().join(result).rstrip(padding else:

Original Program (Ground Decompiled Program
truth) with Implicit Error (the ‘else:’ blocks)

Identifying (a few) Implicit Error Patterns

Identifying Implicit Error Correct Code Pattern Implicit Error
Patterns
Original Compile
Source r
Code
(3,004 files)
Compare Binary
for x in y: while block removed, fo'“.:c(ifl‘ y:
, . if c1:
=L __while c1: new ‘else:” introduced. =+ X
' s1 b
““S“z“ else:
Decompiled Decompiler it S22
Source s3 -
Code i

Detecting: Implicit Errors with the Patterns

Correct Code Implicit Error
if c1: if c1:
.51 _...s1
return s2 _,_return s2

if cl:
sl
return s2

return s2
== if code contains an

implicit error pattern

1

Bmary Decompiler
Decompiled code Create a Decompiled Source
Source Code mutation Code (corrected)
if 010101: Compiler
['_ 210101]

Detected 22,359 Implicit Errors from 5 Decompilers

ldentifying
Decompilation
Failure

How to transform?
ldentifying Applying Successfully

Decompilation Transformation Decompilable Binan
Failure

Fixing: Forensically Equivalent Transformation
(FET)

* Forensically Equivalent Transformation
» Careful extension of Semantically Equivalent Transformation
* Preserving forensically meaningful semantics (manually defined)

Transformation
Original Code

with open("file", "r") as file:
jIEreturn file.read()

//\

Forensically
Equivalent
Tro: on

Forensically Equivalent Transformation Semantically Equivalent Transformation
with open("file", "r") as file: ﬂtr‘y:
FET return = file.read() file = open("file", "r")
return FET_return \\// ;{D\:r‘etir‘n file.read()
et

Failure Condition:
‘return’ in ‘try-
except’

Fixing: (a few) Transformation Rules

Original Code

(x or y) and z

if cl:
sl

elif c2:
s2

f = lambda x: x*2

while c1:
sl
break
s2

Dividing logical expressions

Simplifying/flattening

coTTaitioTals

Converting lambda function

Eliminating
consecutive control flow

changes

Transformed Code

t=xory
t and z

if cl:
sl

if c2 and not cl:
Ss2

def f(x):
return x*2

while c1:

sl

break

FET null()
s2

Reason

Parsers fails to understand
chains of logical expressions.

Parser fails to parse chains of
conditionals.

Language features like
‘lambda’ are not supported.

Parser fails to handle multiple
consecutive control flow
changes (e.g., loop back +
break).

Where to

transform?

ldentifying
Decompilation
Failure

£}

Applying
Transformation

Successfully
Decompilable Binar:

Fixing: Iterative Transformation Process

e Based on Control Flow Graph of the program.
e Starting from the detected/reported error: e.g., 638: JUMP_FORWARD

Control Flow Graph

1. Apply Transformation Rules at 638

2. Extend targets:
All directly reachable nodes from 638.

3. Extend targets:
All directly reachable nodes from
YYYYYY already covered nodes.

Explores only 33% of the nodes on average

Resolving Real-world Decompilation Failures

38,351 real-world malware samples from ReversinglLab
. N AEVERSI
« 17,117 (44.6%) malware samples failed to be decompil
* Proportionally 3.9 (81%) failed most. |

* Followed by 3.8 (66%) and 3.7 (47%)

(Failure Rate (%))

of Samples with Errors
of Total Samples

18,000
(66.7%) (47.6%)

12,000 (81.1%) 378 3254

2,468 5738 6,215
6,000 3,045

o NN BN

3.9 3.8 3.7
Python Binary Version

of Samples

W Samples with Decompilation Error Samples without Decompilation Error

We resolved decompilation failures of all the malware samples
(17,117)!

Case Study: Opcode Remapped & Obfuscated
Binary

-

Python Source Code Customized Python Opcode Remapped
Compiler (not dggeynpilable)

Obfuscator Obfuscated Binarv

We resolve all! More detail in paper.

Summary

Malware binaries’ decompilation errors resolv

5 Different Python Decompilers handled.

(Uncompyle6, Decompyle3, Uncompyle2, Uncompile3, Decompyle++)

3 Opcode remapping and obfuscated binaries handl
(DropBox and druva)

30 Transformation rules developed.

