
In-Kernel Control-Flow Integrity on Commodity OSes
using ARM Pointer Authentication

Sungbae Yoo1*, Jinbum Park1*, Seolheui Kim1, Yeji Kim1, Taesoo Kim1 2

1 Samsung Research

2 Georgia Institute of Technology

* Primary Co-Authors

2022 Samsung Research. All rights reserved

Problem: Memory Corruptions are Major Concern in OSes

• 189 memory unsafe CVEs in Linux from 2021 to 2022

• Common attack vector: code-reuse attacks

Pointer A USE

Pointer B An attacker manipulates function
pointers or return addresses

2022 Samsung Research. All rights reserved

Promising Defense: Control-flow Integrity (CFI)

• Ensures control-flow transfers remain intact at runtime

Pointer A USE

Pointer B

Control-flow Integrity

An attacker fails to change control-flow

CFI checks if the control-flow transfer is allowed

2022 Samsung Research. All rights reserved

State-of-the-art of CFI for Commodity OSes

• Type-based CFI
• Google’s

Still shows large number of allowed target

→ Problem: too course-grained

• Hardware-based CFI
• iOS Kernel, PARTS, PATTER

Several vulnerabilities to misuse HW
→ Problem: too error-prone

2022 Samsung Research. All rights reserved

Our Approach: Fine-grained CFI with Hardware Support

• Key idea: Leveraging the common design idioms in OSes

 Approach 1: Adopting the latest HW-based protection

 Approach 2: Static validator to avoid mistakes

More
fine-grained

2022 Samsung Research. All rights reserved

Pointer

• ARM PA ensures the integrity of pointers at runtime

• PAC signs a pointer

Key Enabler: ARM Pointer Authentication (PA)

Pointer Pointersigning USEauthenticatingPA Code

Signed pointer with the context

Private Key

Context

Pointer

QARMA64

2022 Samsung Research. All rights reserved

• ARM PA ensures the integrity of pointers at runtime

• AUT checks the integrity of a pointer and restores the pointer

Key Enabler: ARM Pointer Authentication (PA)

Pointer Pointer USE

QARMA64Private Key

Context

Pointersigning PA Code

Signed pointer with the context

PA code
matches?

YES

authenticating

2022 Samsung Research. All rights reserved

How to properly Set “context” for Better Precision?

• Naïve solution: using zero
• # allowed targets : 30K – in Linux

• Strawman solution: using type
• Max. # allowed targets : 1K - int (*) (struct platform_device *) in Linux

All Function pointers
in Linux: 30K

Signed Pointer
w/ ctx zero

Signed Pointer
w/ ctx type A

authenticating

authenticating

USE

USE

Type B : 500

Type A :1K

2022 Samsung Research. All rights reserved

Attack Vectors: Replaying or Substitution

• Re-uses an indirect call with the same context

Pointer A Signed Pointer A w/ ctx C

Signed Pointer B w/ ctx C
An attacker finds the signed

with the same context

signing USE

And then,
replaces

authenticating

2022 Samsung Research. All rights reserved

Solution: Using more Idiom in Kernel Objects

struct irqaction {
irq_handler_t handler;
const char *name;
…

}

Int request_percpu_irq(unsigned int irq,
irq_handler_t handler,
const char *devname, …) {

struct irqaction *action = …;
action->name = devname;
action->handler = handler;
…

}

• An example of actual code in Linux

int __init arch_timer_register(void) {
…
err = request_percpu_irq(ppi,

arch_timer_handler_phys,
"arch_timer", …);

…
}

How can we make the context for this
as unique as possible?

Function pointer type

Structure name

Constant field
using as a identifier

2022 Samsung Research. All rights reserved

struct irqaction {
irq_handler_t handler;
const char *name;

}

void func1() {
struct irqaction *o = …;
o->name = “o1”;
o->handler = ⌖

}

struct irqaction {
irq_handler_t handler;
const char *name;

}

1

Solution: Using more Idiom in Kernel Objects

void func1() {
struct irqaction *o = …;
o->name = “o1”;
o->handler = ⌖

}

Layer Context

Type Irqhandler_t

Object struct.irqaction

Objbind o->name (“o1”)

⨁

⨁

PAC(&target, context)

• Unique, Invariant, Movable (compatible with memcpy)

381

5

The number of allowed targets

struct irqaction {
irq_handler_t handler;
const char *name;

}

2022 Samsung Research. All rights reserved

Two Other Attack Vectors: Forging and TOCTOU

• Forging attack
• Generates a signed pointer using signing gadgets

• Time-of-check to time-of-use (TOCTOU)
• Manipulates spilled and restored pointers before it uses

Problem: Complex optimization passes in the compiler
inadvertently causes the bugs!

Pointer A Signed Pointer B w/ ctx C

An attacker replaces before signing

signing USEauthenticating

Pointer B

Pointer A Signed Pointer A w/ ctx C

An attacker replaces before use

signing USEauthenticating

Pointer B

2022 Samsung Research. All rights reserved

Problem: Complex Optimization Passes in Compiler

• Highly sophisticated modern compiler frameworks

• Unpredictable produced binaries

• Optimizations could spill out registers to memory

Code

Other
passes

Other
passes

PA
pass

Front-End IR
ARM64

Back-End
Final binary

x = GET_ADDR(func2)
x = SIGN(x, context)
STORE(x, o->fp)

adrp x1, func2
… (unpredictable!)
pacia x1, x2
… (unpredictable!)
str x1, [x3]

2022 Samsung Research. All rights reserved

Static Validator: Correctness Check of the Final Binary

1. Complete protection
: All indirect branches have to be authenticated before use

2. No time-of-check-time-of-use (TOCTOU)
: Raw pointers after PA instructions are never stored back in memory

3. No signing oracle
: There must be no gadget that signs an attacker-chosen pointer

4. No unchecked control-flow change
: All direct modifications of program counter register must be validated

2022 Samsung Research. All rights reserved

X0 good_func

X1 Context

X2

…

…

Problem: Preemption Hijacking Attack

• Attackers can occur preemption when they want in kernel

• Preemption context save/restore can be used as a signing oracle

…
adr x0, good_func
pacia x0, x1
str x0, [x2]
…

CPU Context Memory

Preemption context

function pointer

1. An attacker
occurs preemption
at an arbitrary moment

3. An attacker
replaces the
saved registers
to a malicious
pointer

5. Then,
The malicious
Pointer will
be signed

2. The CPU context is
stored to memory

4. The CPU context is
loaded from memory

signed malicious_func

malicious_funcsigned
malicious_func

Context

good_funcmalicious_func

2022 Samsung Research. All rights reserved

Solution : Preemption Context Protection

• Whole preemption context signing via key-chaining technique
• Prevents substitution attack to part of preemption context

Context’s address

Current timestamp

signing

Reg0

signing

signingReg1

Reg2

signing

…
signingRegmax pac

time_pac

Two variables are added
into preemption context

Pointer B

Preemption
context

An attacker fails
to replace part
of preemption
context

Pointer A

2022 Samsung Research. All rights reserved

• Enumerates all possible PA code bits (generally 215)

Another Attack Vector : Brute-forcing in Kernel

An attacker tries every possible PA Code
with Pointer B until succeed

Jackpot!

Pointer A Signed Pointer A w/ ctx Csigning USEauthenticating

Signed Pointer B w/ ctx CPointer B
candidate

PA Code
Candidate

+

Solution: If an attack is detected, just panicking
giving delays with increasing exponentially

inadequate for kernel

2022 Samsung Research. All rights reserved

System Overview: PAL

Context Analyzer
(Semi automated tool) Static validator

PA-protected
kernel binary

(w/o validation)

Annotated kernel code

Precision analysis report

Compiler
instrumentation

Kernel Infrastructure Validated
PA-protected
kernel binary

precision
level

Manual
annotation
(optional) If not

validated,
Feedback!

If validated

Kernel
code

①

②

③

2022 Samsung Research. All rights reserved

• Applied to Linux(Tizen, Apple M1 mini), FreeBSD

• PAL
• GCC plugin (forward-edge) : 3,632 LoC (C++)

• GCC (backward-edge) : 127 LoC changes

• Static validator : 848 LoC (Python)

• Context analyzer : 1943 Loc (C++)

• Infrastructure
• Linux: 491 LoC changes

• FreeBSD: 258 LoC changes

Implementation

2022 Samsung Research. All rights reserved

• Google’s - Allowed targets for indirect calls

• iOS kernel – Indirect calls sharing the same context

Evaluation – Comparing with other approaches

#contexts iOS Kernel PAL

≤5 62.2 % 94.9 %

>100 21.2 % 0.0 %

Max 6,513 70

#targets Google’s
PAL

+Type +Object +objbind

≤5 55.0% 84.9% 88.6% 90.8%

>100 7.0% 2.8% 1.6% 0.08%

Max 1,153 35,264 30,622 207

2022 Samsung Research. All rights reserved

Evaluation - Performance

• Micro-benchmark : LMBench
• Latency: 0-3μs (median. 7%)

• Macro-benchmark : Apache
• RPi3: 1.06%, Mac mini: 0.75%

• Binary increase
5.12.0-rc-1/Mac mini 4.19.49/RPi3 FreeBSD/Qemu

Stock 123.5 MB 19.9 MB 5.9 MB

w/ PAL 130.7 MB 23.0 MB 6.4 MB

Overhead 7.2 / 5.8% 3.1 / 15.6% 0.5 / 8.5%

2022 Samsung Research. All rights reserved

• PAL is a new in-kernel CFI based on ARM PA
• Leverage the common design idioms in OSes

• Check the correctness of the final binary

• PAL considers kernel’s characteristics such as preemption

• PAL is fully evaluated on real HW supporting ARM PA
• Negligible overhead in most workloads

Conclusion

Thank you

Contacts :
sungbae.yoo@samsung.com / ysbnim@gmail.com
jinb.park@samsung.com / jinb.park7@gmail.com

Source code (To be released)
https://github.com/SamsungLabs/PALinux

mailto:sungbae.yoo@samsung.com
mailto:ysbnim@gmail.com
mailto:jinb.park@samsung.com
mailto:jinb.park7@gmail.com
https://github.com/SamsungLabs/PALinux

