
Application-Informed
Kernel Synchronization Primitives
Sujin Park Irina Calciu Taesoo Kim Sanidhya KashyapDiyu Zhou Yuchen Qian

Locks are critical for application performance

2

of threads

0

15

30

45

1 2 4 8 16 28 56 84 112 140 168 196 224

O
ps

/µ
se

c

One lock cannot rule all scenarios

3

of threads

Read-intensive workload Write-intensive workload

0

15

30

45

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

O
ps

/µ
se

c

0

1

2

3

4

5

1 2 4 8 16 28 56 84 11
2

14
0

16
8

19
6

22
4

O
ps

/µ
se

c

Depending on scenarios, different lock perform best

4

Hardware Software

NUMA (non-uniform memory access)

Accessing local socket data is faster

than remote socket data

AMP (Asymmetric multicore processors)

Locks considering hardware

5

Faster performance cores and slower

efficiency cores in one processor

Cache

Memory

Cache

Memory

Socket 1 Socket 2

Local
Access

Remote
Access

• Read / write ratio?

• Length of critical section?

• Any specific threads need to be prioritized?

Locks considering software requirements

6

Kernel locks also affect application performance

7

Kernel lock

Application
User space

Kernel space
SYSCALL

Kernel lock

Application
User space

Kernel space
SYSCALL

8

• Application-agnostic

• Invisible to application developers

• Generic design to support common cases

Kernel locks also affect application performance

…But difficult to change

1. Modify kernel

2. Compile kernel

3. Install new kernel

4. Reboot

9

• Application-agnostic

• Invisible to application developers

• Generic design to support common cases

Kernel lock

Application
User space

Kernel space
SYSCALL

Issue with current kernel locks

10

Lock implementations are application agnostic

Only a few locks contend for given application

Difficult to implement a new lock design

The solution − SynCord

11

➞ Let application developers safely change locks in the kernel on the fly

➞ Modify set of locks at various granularities

➞ Expose set of APIs to easily write various lock policies

Lock implementations are application agnostic

Only a few locks contend for given application

Difficult to implement a new lock design

Key behavior of queue-based lock

12

Resource

Thread

To access shared resource, thread needs to acquire lock

Key behavior of queue-based lock

13

Resource

Thread

Lock acquired

If lock is free, thread directly acquires lock

Key behavior of queue-based lock

14

Resource

Lock
holder Waiter Waiter Waiter

Lock acquired

Since lock is already held, other threads join waiting queue

Key behavior of queue-based lock

15

Resource

Reorder waiters in the queue to group waiters from same socket (ShflLock1, CNA2)

Lock
holder Waiter Waiter Waiter

Lock acquired
Reorder waiting queue

1. Scalable and Practical Locking With Shuffling. SOSP ‘19
2. Compact NUMA-aware Locks. EuroSys ‘19

Key behavior of queue-based lock

16

Resource

Release lock when thread finishes using resource

Lock acquired

Lock released

Waiter Waiter Waiter

Reorder waiting queue

Key behavior of queue-based lock

17

Resource

Next waiter acquire lock

Lock acquired

Lock released

Waiter Waiter Waiter

Reorder waiting queue

Lock
holder

SynCord exposes kernel locks’ key behaviors as APIs

18

Resource

And 7 more APIs!

Waiter Waiter

lock_acquired (lock)

lock_released (lock)

bool should_reorder (lock, anchor_node, curr_node)

Lock
holder

move if true

SynCord overview with NUMA-aware example
• NUMA (non-uniform memory access)

Accessing local socket memory is faster than

remote socket memory

Cache

Memory

Cache

Memory

Socket 1 Socket 2

Local
Access

Remote
Access

Lock
holder

Waiter Waiter Waiter

Resource

19

• NUMA (non-uniform memory access)

Accessing local socket memory is faster than

remote socket memory

Cache

Memory

Cache

Memory

Socket 1 Socket 2

Local
Access

Remote
Access

Lock
holder

Waiter Waiter Waiter

Resource

Minimize cache line bouncing

grouped

SynCord overview with NUMA-aware example

20

❶ User writes custom lock policy
and specify target point

SynCord overview with NUMA-aware example

rename_lockTarget point:

21

❶ User writes custom lock policy
and specify target point

SynCord overview with NUMA-aware example

❷ Compile
program

❸ Load
and verify

Bytecode Verifier

9

SynCord

rename_lock

22

❶ User writes custom lock policy
and specify target point

SynCord overview with NUMA-aware example

❸ Load
and verify

Bytecode Verifier

rename_lock

SynCord

➞ No arbitrary memory update
ümemory access

ühelper functions

ü code termination
➞ Lock policy must not hang

➞ Only allowlisted functions

can be called

❷ Compile
program

23

SynCord overview with NUMA-aware example

❸ Load
and verify

Bytecode Verifier

❹ If failed, notify users

Lock
Patcher❹ Passed

9

SynCord

❶ User writes custom lock policy
and specify target point

❷ Compile
program

rename_lock

24

SynCord overview with NUMA-aware example

❸ Load
and verify

Bytecode Verifier

❹ If failed, notify users

Lock
Patcher❹ Passed

9

SynCord

❺ Notify user on patch complete
❶ User writes custom lock policy

and specify target point

❷ Compile
program

rename_lock

25

SynCord overview with NUMA-aware example

26

Syncord-NUMA

static-NUMA

stock

Rename files in a directory

1 socket >1 socket

2.5x Throughput

Performance similar to
its static implementation

of threads

O
ps

/µ
se

c

• Verifier + API design à sandboxed impact

• Mechanism remains intact

27

What if a user provide wrong code?

Resource

Waiter Waiter

lock_acquired(lock)

lock_released(lock)

bool should_reorder (lock, anchor_node, curr_node)

Lock
holder

• Only provide hint for reordering
• Runtime check to prevent starvation

Read-only

Never break mutual exclusion

Can do
Prioritize/penalize specific threads

Run additional code blocks in

hooking points

Affect performance

Affect fairness

Can’t do

Break mutual exclusion

Change underlying mechanism

Change lock type

What user can do & can’t do with SynCord

28

1. NUMA-aware lock

2. Asymmetric multicore lock

3. Scheduler-cooperative lock

4. Biased per-CPU readers-writer lock

5. Dynamic lock profiling

Usecases

29

HW: NUMA

HW: AMP+NUMA

SW: Length of CS HW: NUMA

Customized for

SW: Read-intensive HW: NUMA

Lockstat VS Dynamic lock profiling
• In-kernel lock statistic tool • Implemented with SynCord APIs

• System-wide tracing • Can trace single lock instance

• Enabled in compile time • Dynamically enabled

• More memory usage from booting • No memory overhead once disabled

Dynamic lock profiling

30

0
20
40
60
80

1 2 4 8 16 28 56 84 112 140 168 196 224
threads

Sl
ow

do
w

n
%

Dynamic lock profiling: avg critical section length

31

Resource

Waiter Waiter Waiter

Dynamic lock profiling: avg critical section length

32

Resource

Waiter Waiter WaiterLock
holder

lock_acquired(lock)

Dynamic lock profiling: avg critical section length

33

Resource

Waiter Waiter WaiterLock
holder

lock_acquired(lock)

Auxiliary data structures

Conclusion

34

§ Kernel locks are basic building of concurrent OSes
• Affect performance and scalability of applications
• Out of reach of application developers

§ SYNCORD Framework
• Allow users to fine-tune locking primitives dynamically
• Exposes a set of user implementable APIs
• No need to reinstall the kernel or reboot the system

§ Application can now address pathological locking cases

Thank you!

