
Modulo: Finding Convergence Failure Bugs in
Distributed Systems with Divergence Resync Models

Beom Heyn Kim§†, Taesoo Kim§‡, and David Lie†

§Samsung Research, †University of Toronto, ‡Georgia Institute of Technology
{beomheyn.kim, tsgates.kim}@samsung.com, lie@eecg.toronto.edu

1

Background: Various Services Rely on
Replicated Distributed Storage Systems

Replicated Distributed Storage Systems are Critical Components

2

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

3

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

4

Reproduction Step:

1. Start Server 0
2. Create data items on Server 0
3. Shutdown Server 0
4. Start Server 0 and Server 1
5. Clients cannot read data items on

Server 1
6. Clients can read data items on

Server 0

Reproduction Step:
1. Start Server 0

2. Create data items on Server 0
3. Shutdown Server 0

4. Start Server 0 and Server 1
5. Clients cannot read data items on

Server 1
6. Clients cannot re-create the same

data items, because Server 0
complains those already exist

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

5

Servers are out-of-sync!
Clients may read inconsistent data and make incorrect decisions!

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

6

Problem: Bugs are Difficult to Find and Fix

7

Long Sequence of Events are Required to be Interleaved.
à Difficult Bug to Find!

Problem: Bugs are Difficult to Find and Fix

8

1. Created Several Sub-tasks
2. Not Resolved Yet (10 Yrs)

3. There are other similar bugs in Jira (recurring problem)
à Need Automated Bug Finding Tool for These Bugs!

Replicated Distributed Storage Systems
Provide Clients Consistent State/Data

9

Client 1

Put(1)

Client 2

Get()->1

Replicated Distributed Storage System

Key Enabler: Convergence Property Keeps
Replicas Consistent

10

Client 1 Client 2

0

0

0

Step 1: A Replica Accepts Clients’ Requests

11

Client 1 Client 2

1

0

0

Put(1)

Step 2: Replicas Become Converged via
Replication

12

Client 1 Client 2

1

1

1

Put(1)

Replicate

Replicate

Step 3: Clients Read Consistent Data

13

Client 1 Client 2

1

1

1

Get()->1

Problem 1: What if a Replica Fails?

14

Client 1 Client 2

1

0

0

Put(1)

Step 1: A Replica Fails and Becomes
Unavailable

15

Client 1 Client 2

1

0

0

Failures
(Crash or Network)

Step 2: Replication Does Not Occur and
Replicas Remain Diverged

16

Client 1 Client 2

1

0

0

Failures
(Crash or Network)Divergence across replicas remains!

Step 3: Failure Recovery and Resync Makes
Replicas Converged Again

17

Client 1 Client 2

1

1

1

Failure Recovery
(Restart or Reconnect)

Resync

Resync

Problem 2: Software Bugs in Resync
Mechanisms May Cause Convergence Failures

18

Client 1 Client 2

1

1

0

Convergence
Failure!

(Never Occur)

Convergence Failure Bugs (CFBs)

Problems Cause Clients to Read Inconsistent
Data

19

Client 1 Client 2

1

1

0

Get()->0

Existing Approaches: Model-based
Approaches and Random Testing Approaches
• Model-Based Testing and Model-Checking
• Problem: State space exploration is generic not targeted, therefore suffers

from state explosion

• Manual Testing and Random Testing
• Problem: state space exploration is neither systematic nor exhaustive,

therefore may miss corner cases

20

Our Approach: Targeted, Systematic and Exhaustive State Space
Exploration to Overcome Limitation of Existing Approaches

• Model-Based Testing and Model-Checking
• Problem: State space exploration is generic not targeted, therefore suffers

from state explosion
à Targeted State Space Exploration

• Manual Testing and Random Testing
• Problem: state space exploration is neither systematic nor exhaustive,

therefore may miss corner cases
à Systematic and Exhaustive State Space Exploration

21

Key Observation 1: Convergence Failure Bugs (CFB)
can be Abstracted in Concise, Reproducible Steps

22

Crash Replica A and B
Cli: Put(1)
Replica C: Processing Request
Replica C: Proposing
Replica C: Count for Txn ID
Replica C: Record in Txn log
Crash Replica C
Start Replica A and B
Replica A: Leader election begins
Replica B: Leader election begins
… (Leader election events) …
Replica A: Following
Replica A: Getting diff from B
Replica B: LEADING
Replica B: Sync with A
Replica B: Quorum is ready

Crash Replica A and B

Put(1)

Crash Replica C
Restart Replica A and B

Resync A and B

Key Observation 2: Interleave Abstracted
Steps to Find New CFBs

23

Crash Replica A and B
Cli: Put(1)
Replica C: Processing Request
Replica C: Proposing
Replica C: Count for Txn ID
Replica C: Record in Txn log
Crash Replica C
Start Replica A and B
Replica A: Leader election begins
Replica B: Leader election begins
… (Leader election events) …
Replica A: Following
Replica A: Getting diff from B
Replica B: LEADING
Replica B: Sync with A
Replica B: Quorum is ready

Crash Replica A and B

Put(1)

Crash Replica C
Restart Replica A and B

Resync A and B

Put(2)

Key Idea 1: Using Divergence and Convergence Events
can Even Further Reduce State Exploration

24

Crash Replica A and B
Cli: Put(1)
Replica C: Processing Request
Replica C: Proposing
Replica C: Count for Txn ID
Replica C: Record in Txn log
Crash Replica C
Start Replica A and B
Replica A: Leader election begins
Replica B: Leader election begins
… (Leader election events) …
Replica A: Following
Replica A: Getting diff from B
Replica B: LEADING
Replica B: Sync with A
Replica B: Quorum is ready

Crash Replica A and B

Put(1)

Crash Replica C
Restart Replica A and B

Resync A and B

Divergence

Convergence

By Focusing on Interleaving Divergence and Convergence, the state space to explore is further reduced.

Divergence Resync Model
(DRM)

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

System-Under-Test

25

Divergence Resync Model
(DRM)

System-Under-Test

26

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Divergence Resync Model
(DRM)

System-Under-Test

27

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Divergence Resync Model
(DRM)

System-Under-Test

28

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Schedule Generation

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Divergence Resync Model
(DRM)

System-Under-Test

29

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Schedule Generation

__________+++

Input Generation

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Divergence Resync Model
(DRM)

System-Under-Test

30

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Schedule Generation

__________+++

Input Generation

Key Idea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Benefits of Separating Abstraction from Concrete Execution:
1. An AEM may be used for different systems-under-test

2. The common functionality of CEMs repeatedly implemented can be compiled as a library

Schedule
Generator

Concrete
Executor

Modulo

Modulo Architecture: Schedule Generator and Concrete Executor

31

Schedule
Generator

Concrete
Executor

Modulo

Modulo Architecture: Users Specify and Provide a DRM

32

DRM
AEM CEM

Schedule
Generator

Concrete
Executor

Modulo

AEM

Modulo Architecture: AEM for Schedule Generator
DRM

AEM CEM

33

Schedule
Generator

Concrete
Executor

Modulo CEM System-Under-Test

AEM

Modulo Architecture: CEM for Concrete Executor
DRM

AEM CEM

34

Schedule
Generator

Concrete
Executor

Modulo CEM System-Under-Test

AEM State
Exploration

AEM

Modulo Architecture: AEM State Exploration
DRM

AEM CEM

35

Schedule
Generator

Concrete
Executor

Modulo CEM System-Under-Test

AEM State
Exploration

AEM

DRM
AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

36

Modulo Architecture: AEM State Exploration

Schedule
Generator

Concrete
Executor

Modulo

CEM State
Exploration

CEM System-Under-Test

AEM State
Exploration

AEM

...

Modulo Architecture: CEM Input Injection
DRM

AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

37

Input
Generation Input Injection

Modulo Architecture: Checking if Convergence
Fails after Each Schedule Execution

38

A
B

CX:0
Y:2

X:0
Y:1

X:0
Y:2

Modulo

Get(X)->0
Get(Y)->1

Get(X)->0
Get(Y)->2

Get(X)->0
Get(Y)->2

Convergence Failure Detected!

Abstract Execution Model: Each State Contains State
Variables

replicaState=[]
onlineState=[]

39

S0

replicaState=[_,_,_]
onlineState=[_,_,_]

40

S0

numOps = 2
numReplicas = 3

A,B,C

Abstract Execution Model: User-Provided Parameters
Make the State Space Concrete

replicaState=[_,_,_]
onlineState=[_,_,_]

41

S0

numOps = 2
numReplicas = 3

A,B,C

setData(X,0) setData(X,1) setData(X,2)

Abstract Execution Model: Predefined Write Sequence
is Generated

Abstract Execution Model: Writing Monotonically
Increasing Values

replicaState=[_,_,_]
onlineState=[_,_,_]

42

S0

numOps = 2
numReplicas = 3

A,B,C

setData(X,0) setData(X,1) setData(X,2)

Values are monotonically increasing

replicaState=[_,_,_]
onlineState=[_,_,_]

43

S0

numOps = 2
numReplicas = 3

A,B,C

setData(X,0) setData(X,1) setData(X,2)

Abstract Execution Model: Indexing Each Write

0Index 1 2

replicaState=[_,_,_]
onlineState=[_,_,_]

44

S0

numOps = 2
numReplicas = 3

A,B,C

0

setData(X,0) setData(X,1) setData(X,2)
Index 1 2

Up to which write
Which replicas are available

Abstract Execution Model: Meaning of Each State
Variables

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

45

S0

setData(X,0)

Abstract Execution Model: Initial State S0

Abstract Execution Model: Applying a Divergence Transition

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

46

S0

setData(X,0)

A
B

C
setData(X,1)

X:1 3

1 X:0

X:1

A
B

CX:1
4

X:0

X:14

Transition T1

divergence XT1

2

Abstract Execution Model: Updating State Variables

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

47

S0

setData(X,0)

A
B

C
setData(X,1)

X:1 3

1 X:0

X:1

A
B

CX:1
4

X:0

X:14

Transition T1

A
B

CX:1

State S1
replicaState=[1,0,1]
onlineState=[F,F,F]S1

X:1

X:0

divergence XT1

2

Abstract Execution Model: Applying a Convergence Transition

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

Transition T2

A
B

CX:1

1

1
X:0

X:1

A
B

CX:1

2 X:1

X:1

T2 convergence X

Abstract Execution Model: Updating State Variables

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

Transition T2

A
B

CX:1

1

1
X:0

X:1

A
B

CX:1

2 X:1

X:1

replicaState=[1,1,1]
onlineState=[T,T,F]

A
B

C

State S2

S0

S2

X:1

X:1

X:1

T2 convergence X

Concrete Execution Model: Generating Inputs by
Translating AEM Transitions into Concrete Test Inputs

50

Crash B
Write 1 to X
Crash A and C

AEM Transitions
Intermediate

Representation Concrete Test Inputs

$ kill -9
setData(X,1)
Thread.sleep(3000)
$ kill -9 <A> <C>

divergence XT1

51

Crash B
Write 1 to X
Crash A and C

T2 convergence X Restart A and B
Wait for Resync

AEM Transitions
Intermediate

Representation Concrete Test Inputs

$ kill -9
setData(X,1)
Thread.sleep(3000)
$ kill -9 <A> <C>

$ java … QuorumPeerMain <A>/zoo.cfg
$ java … QuorumPeerMain /zoo.cfg
Scan logs for “LEADING” or “FOLLOWING"

Concrete Execution Model: Generating Inputs by
Translating AEM Transitions into Concrete Test Inputs

divergence XT1

52

Crash B
Write 1 to X
Crash A and C

Restart A and B
Wait for Resync

Input Injection Internal Events

kill -9

A: “LEADING”

A & B resyncs

C commits

java … <A>

setData(X,1) …

B: “FOLLOWING”

Thread.sleep
(3000)

kill -9 <A> <C>

… Time
Delay

… …

Time

…

Scanning
Logs

… …

Non-determinism Control

java …

A commits

Scan log …

Concrete Execution Model: Injecting Inputs Relative to
Internal Events

T2 convergence X

divergence XT1

Implementation

• 8.4K LoC in total
• Schedule Generator: 0.3K LoC
• Concrete Executor: 0.8K LoC
• Divergence Resync Models: 7.3K LoC

• AEMs: 2.8K LoC
• CEMs: 4.6K LoC

• Applied to 3 Replicated Distributed Storage Systems
• ZooKeeper
• MongoDB
• Redis

53

Modulo Found CFBs in Popular Distributed Systems
Bug ID DRM Root Cause
ZooKeeper Bug #1 (New Bug!) Q/C/Z-DRM Fail to remove invalid conflicting operations (missing TRUNC invocation)

ZooKeeper Bug #2 (New Bug!) Q/C/Z-DRM Fail to remove invalid conflicting operations (file handling logic error)

ZooKeeper Bug #3 (New Bug!) Q/C/Z-DRM Fail to replicate operations due to an incomplete log

ZooKeeper Bug #4(New Bug!) Q/C/Z-DRM Fail to truncate operations due to a pointer handling mistake

ZooKeeper Bug #5 (New Bug!) Q/C/Z-DRM Fail to truncate operations due to missing invocation

MongoDB Bug #1 (New Bug!) Q/C/M-DRM Fail to remove invalid conflicting operations (incomplete timestamp info)

MongoDB Bug #2 Q/C/M-DRM Fail to replicate operations (incomplete protocol design)

Redis Bug #1 S/S/R-DRM Fail to remove invalid conflicting operations and replicate operations
(incomplete protocol design)

Redis Bug #2 S/CL/R-DRM Fail to replicate operations (lacking resync related info)

Redis Bug #3 S/CL/R-DRM Fail to replicate operations (lacking resync related info)

Redis Bug #4 S/L/R-DRM Fail to remove invalid conflicting operations (incomplete protocol design)
54

We Found 11 CFBs:
Newly Discovered 5 CFBs in ZooKeeper and 1 CFB in MongoDB
Detected 1 known CFB in MongoDB and 4 known CFBs in Redis

The Size of State Space to Explore is Small Enough
for Systematic and Exhaustive Search

55

DRM numOps numReplicas # of Schedules

ZooKeeper’s DRM 1 3 6

2 3 80

3 3 1035

4 3 13381

5 3 172993

3 4 3428

3 5 54655

Redis’s DRM (Suspend) 2 4 13586

Redis’s DRM (Link) 2 3 263

Redis’s DRM (Crash+Link) 1 2 8

2 2 96

We could systematically and exhaustively complete state space exploration!

Separating Abstraction from Concrete Execution
Makes Modulo Portable and Extensible

56

DRM USER/LIB AEM CEM Total

ZooKeeper’s DRM USER 54 59 113

LIB 339 620 959

MongoDB’s DRM USER 54 117 171

LIB 339 907 1246

Redis’s DRM (Suspend) USER 33 39 72

LIB 955 1240 2195

Redis’s DRM (Link) USER 0 110 110

LIB 955 1240 2195

Redis’s DRM (Crash+Link) USER 405 377 782

LIB 955 1240 2195

Portable
(Reused)

Extensible
(Library)

Conclusion

• Modulo is effective in finding bugs in real-world distributed systems
• Key Approach: Targeted, Systematic and Exhaustive State Space Exploration
• Key Ideas

• Exploring only interleaving of divergence and convergence
• State space to explore is significantly reduced

• Separating abstraction from concrete execution by decoupling them into AEM and CEM
• Modulo becomes portable and extensible

• Modulo can be extended to find bugs in your distributed systems!
• Github: https://github.com/Kaelus/Modulo

57

https://github.com/Kaelus/Modulo

Beom Heyn Kim§†, Taesoo Kim§‡, and David Lie†

§Samsung Research, †University of Toronto, ‡Georgia Institute of Technology
{beomheyn.kim, tsgates.kim}@samsung.com, lie@eecg.toronto.edu

Thank You!

58

Abstract Execution Model: Enabled Transitions at S1

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

convergence A

…

Enabled Transitions at S1
Divergence Convergence

convergence Z

Abstract Execution Model: Enabled Transitions at S0

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

60

S0

setData(X,0)

divergence A

…

Enabled Transitions at S0
Divergence Convergence

divergence Z

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

61

S0

setData(X,0)

Abstract Execution Model: Initial State S0

Abstract Execution Model: Enabled Transitions at S0

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

62

S0

setData(X,0)

divergence A

…

Enabled Transitions at S0
Divergence Convergence

divergence Z

Abstract Execution Model: Applying a Divergence Transition

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

63

S0

setData(X,0)

A
B

C
setData(X,1)

X:1 3

1 X:0

X:1

A
B

CX:1
4

X:0

X:14

Transition T1

divergence XT1

2

Abstract Execution Model: Updating State Variables

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

64

S0

setData(X,0)

A
B

C
setData(X,1)

X:1 3

1 X:0

X:1

A
B

CX:1
4

X:0

X:14

Transition T1

A
B

CX:1

State S1
replicaState=[1,0,1]
onlineState=[F,F,F]S1

X:1

X:0

divergence XT1

2

Abstract Execution Model: Enabled Transitions at S1

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

convergence A

…

Enabled Transitions at S1
Divergence Convergence

convergence Z

Abstract Execution Model: Applying a Convergence Transition

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

Transition T2

A
B

CX:1

1

1
X:0

X:1

A
B

CX:1

2 X:1

X:1

T2 convergence X

Abstract Execution Model: Updating State Variables

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

Transition T2

A
B

CX:1

1

1
X:0

X:1

A
B

CX:1

2 X:1

X:1

replicaState=[1,1,1]
onlineState=[T,T,F]

A
B

C

State S2

S0

S2

X:1

X:1

X:1

T2 convergence X

Schedule
Generator

Concrete
Executor

Modulo CEM System-Under-Test

AEM State
Exploration

AEM

DRM
AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

68

Modulo Architecture: AEM State Exploration

Schedule
Generator

Concrete
Executor

Modulo

CEM State
Exploration

CEM System-Under-Test

AEM State
Exploration

AEM

Modulo Architecture CEM Input Generation
DRM

AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

69

Input
Generation

Schedule
Generator

Concrete
Executor

Modulo

CEM State
Exploration

CEM System-Under-Test

AEM State
Exploration

AEM

...

Modulo Architecture: CEM Input Injection
DRM

AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

70

Input
Generation Input Injection

• Primary-backup replication
• Quorum for a leader election
• The leader serializes every write operation
• Followers replicate the write sequence directly from the leader
• After crash recovery, leader election and resync automatically begin

71

Example: ZooKeeper

• AEM
• Crash failures only
• Each divergence crashes remaining online replicas at the end
• Each convergence restarts enough number of replicas to form a quorum

• CEM
• To Kill: $ kill -9 <A>
• To Write: setData API call (e.g. setData(x,1))
• To Restart: java …QuorumPeerMain <A>/zoo.cfg

72

Example: ZooKeeper’s Divergence Resync Model

Implementation: DRM Example Comparison

73

Name AEM CEM Lines of Code
(AEM/CEM/Total)

Q/C/Z-
DRM

Only consider crash failures
Convergence ensures the quorum
Crashes all replicas at the end of divergence

Using kill -9 for crash
Confirm the quorum exists before writes
Using log scanning before 3.5, but as of 3.5,
relying on timeouts

USER 54/59/113
LIB 339/620/959

Q/C/M-
DRM

Same as Q/C/Z-DRM Using an API to compare timestamps of the
last transaction on each replica

USER 54/117/171
LIB 339/907/1246

S/S/R-
DRM

Only considers suspend failures
Considers all replicas initially partitioned
As recovering suspend failures, establish links
between the replicas

Using kill –STOP and kill –CONT
Using ‘info’ API and timeout to wait for
resync completion
Using ‘slaveof’ API to trigger resync

USER 33/39/72
LIB 955/1240/2195

S/L/R-
DRM

Only considers link failures
Replicas initially connected in a single chain

‘slaveof’ API for link failures and recoveries.
Initially, forming links as a single slave chain

USER 0/110/110
LIB 955/1240/2195

S/CL/R-
DRM

Considers both link and crash failures
Consider two types of resync strategies: online
resync and offline resync

For the offline resync strategy, a script
copying over snapshots and starting up a
replica with the snapshot is used

USER 405/377/782
LIB 955/1240/2195

Schedule generation is implemented in about 281 lines of code, and concrete execution takes about 766 lines

Evaluation: Testing Performance

74

Bug ID DRM Elapsed Time Time/Schedule # of Transitions

ZooKeeper Bug #1 Q/C/Z-DRM 11 hours 33 sec 11

ZooKeeper Bug #2 Q/C/Z-DRM 2 hours 39 sec 11

ZooKeeper Bug #3 Q/C/Z-DRM 23 min 33 sec 7

ZooKeeper Bug #4 Q/C/Z-DRM 47 min 30 sec 10

ZooKeeper Bug #5 Q/C/Z-DRM 20 hours 37 sec 10

MongoDB Bug #1 Q/C/M-DRM 18 min 6 min 3

MongoDB Bug #2 Q/C/M-DRM 4 hours 5 min 5

Redis Bug #1 S/S/R-DRM 6 hours 6 min 6

Redis Bug #2 S/CL/R-DRM 11 min 14 sec 4

Redis Bug #3 S/CL/R-DRM 2 min 6 sec 3

Redis Bug #4 S/L/R-DRM 2 min 33 sec 2

Conclusion
• Modulo employs targeted abstraction and concrete execution to

mitigate the traditional state-explosion problems.
• It does not explore states and state transitions that are not related to the

concepts of convergence and divergence.

75

T2

Abstract Execution Model: Picking a Convergence Transition

A
B

CX:1

X:0

X:1

State S1

replicaState=[1,0,1]
onlineState=[F,F,F]S1

Enabled Transitions at S1
Divergence Convergence

convergence
[A,B]

…

convergence
[B,C]

convergence
[A,B,C]

T1

Abstract Execution Model: Picking a Divergence Transition

replicaState=[0,0,0]
onlineState=[T,T,T]

A
B

CX:0

X:0

X:0

State S0

S0

77

S0

setData(X,0) divergence A
[0,0,1]

divergence
[0,1,1]

divergence
[1,1,2]

…
divergence

[1,0,1]

Enabled Transitions at S0
Divergence Convergence

…

divergence
[2,2,2]

…

• ZooKeeper System
• Primary-backup replication scheme (leader and follower in ZooKeeper’s

parlance)
• Quorum is required to elect a leader
• The leader serializes every write operation
• Followers replicate the write sequence directly from the leader
• After crash recovery, leader election and resync automatically begin

• DRM for ZooKeeper Specifics
• Crash failures only
• Each divergence crashes remaining online replicas at the end
• Each convergence restarts enough number of replicas to form a quorum

78

Divergence Resync Model (DRM): Specifics about the
ZooKeeper DRM Example

• Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

79

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

• Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

80

It will be more targeted approach to find these bugs if we explore
interleaving of relevant events, e.g. Restart, Crash, Put.

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

• Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

81

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

Excluding irrelevant events from state exploration

It will be more targeted approach to find these bugs if we explore
interleaving of relevant events, e.g. Restart, Crash, Put.

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

82

• Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

• Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

• Divergence and Convergence:
(1) Divergence [0,1,0];
(2) Convergence [A,C];
(3) Divergence [1,0,1];
(4) Convergence [B,C];
(5) Divergence [0,0,1];
(6) Convergence [B,C];

83

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

• Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

• Divergence and Convergence:
(1) Divergence [0,1,0];
(2) Convergence [A,C];
(3) Divergence [1,0,1];
(4) Convergence [B,C];
(5) Divergence [0,0,1];
(6) Convergence [B,C];

Divergence

Convergence

Failures

Failure Recoveries

Inject Puts Failures

Resync

84

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

• Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

• Divergence and Convergence:
(1) Divergence [0,1,0];
(2) Convergence [A,C];
(3) Divergence [1,0,1];
(4) Convergence [B,C];
(5) Divergence [0,0,1];
(6) Convergence [B,C];

We can reduce a sequence of low level events into a sequence of higher
level divergence and convergence events.

Divergence

Convergence

Failures

Failure Recoveries

Inject Puts Failures

Resync

85

Related Works: Exhaustive State Search
Suffers from State Explosion
• Model-based testing (OAuthTester, MBTC) and model-checking (PACE,

CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs
• Limitation: state space exploration is usually generic and not targeted,

therefore suffers from the state explosion

86

Related Works: Non-Systematic State Search
May Miss Bugs
• Model-based testing (OAuthTester, MBTC) and model-checking (PACE,

CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs
• Limitation: state space exploration is usually generic and not targeted,

therefore suffers from the state explosion

• Manual testing and random testing (Jepsen): Scope of testing is
usually targeted to find specific types of bugs

87

Related Works: Non-Systematic State Search
May Miss Bugs
• Model-based testing (OAuthTester, MBTC) and model-checking (PACE,

CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs
• Limitation: state space exploration is usually generic and not targeted,

therefore suffers from the state explosion

• Manual testing and random testing (Jepsen): Scope of testing is
usually targeted to find specific types of bugs
• Limitation: state space exploration is neither systematic nor exhaustive,

therefore may miss corner cases

88

Background: Convergence Property Keeps
Replicas Consistent

89

Client 1

Put(X,1)

Client 2

X=1

X=0

X=0

Background: Convergence Property Keeps
Replicas Consistent

90

Client 1 Client 2

X=1

X=1

X=1

Replicate

Replicate

Background: Convergence Property Keeps
Replicas Consistent

91

Client 1 Client 2

X=1

X=1

X=1

Get(X)->1

Background: Divergence Can Be Observed by
Clients

92

Client 1

Put(X,1)

Client 2

X=1

X=0

X=0

Background: Divergence Can Be Observed by
Clients

93

Client 1 Client 2

X=1

X=1

X=0

Replicate

Background: Divergence Can Be Observed by
Clients

94

Client 1 Client 2

X=1

X=1

X=0

Get(X)->0

Background: Failures Extends Divergence’s
Lifetime Until Recovery and Resync

95

Client 1 Client 2

X=1

X=1

X=0

Failures
(Crash or Network)

Background: Recovery and Resync Reduces
Divergence and Restores Convergence

96

Client 1 Client 2

X=1

X=1

X=0

Failure Recovery
(Restart or Reconnect)

Background: Recovery and Resync Removes
Divergence and Restores Convergence

97

Client 1 Client 2

X=1

X=1

X=1

Resync

Background: Software Bugs in Resync
Mechanisms May Cause Convergence Failures

98

Client 1 Client 2

X=1

X=1

X=0

Resync

Convergence
Failure!

(Never Occur)

Convergence Failure Bugs
(CFBs)

Divergence and Convergence

Replicated Distributed Storage Systems

Operation
Requests

Client Applications
99

Divergence and Convergence

Replicated Distributed Storage Systems

Client Applications
100

Divergence and Convergence

Replicated Distributed Storage Systems

Client Applications
101

Divergence and Convergence

Replicated Distributed Storage Systems

Divergence: A process that replicas become different
Convergence: A process that replicas become equivalent

Client Applications
102

Convergence Property

Convergence Property
Replicated Distributed Storage Systems

Client Applications
103

Consistency Models

Consistency Models
Replicated Distributed Storage Systems

Client Applications
104

Convergence Failures

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

1
2

3

3

105

Distributed storage

Client

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

A
B

C
Put(X,1)

X:1

X:0

X:1

1
2

3

3

5
6

4

7

106

Divergence

Crash or Connection Failures

Client

Distributed storage

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

A
B

C
Put(X,1)

X:1

X:0

X:1

1
2

3

3

5
6

4

7

A
B

CX:1

X:0

X:1

8

107

Divergence

Convergence

Client

Crash or Connection Failures

Distributed storage

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

A
B

C
Put(X,1)

X:1

X:0

X:1

1
2

3

3

5
6

4

7

A
B

CX:1

X:0

X:1

A
B

CX:1

X:0

X:1

8

9

108

Divergence

Convergence

Client

A
B

CX:1

X:1

X:1

10
Crash or Connection Failures

Distributed storage

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

A
B

C
Put(X,1)

X:1

X:0

X:1

1
2

3

3

5
6

4

7

A
B

CX:1

X:0

X:1

A
B

CX:1

X:0

X:1

A
B

CX:1

X:1

X:1

8

9

10

109

Divergence

Convergence

X:0

Convergence Failure
Bugs (CFBs)

Convergence
Failure!
(never occurs)

Crash or Connection Failures

Client

Distributed storage

Convergence Failure Bugs (CFBs) Can Occur

A
B

C
Put(X,0)

X:0

X:0

X:0

A
B

C
Put(X,1)

X:1

X:0

X:1

1
2

3

3

5
6

4

7

A
B

CX:1

X:0

X:1

A
B

CX:1

X:0

X:1

A
B

CX:1

X:1

X:1

8

9

10

110

Divergence

Convergence

X:0

Convergence Failure
Bugs (CFBs)

Convergence
Failure!
(never occurs)

Crash or Connection Failures

Client

Distributed storage

Convergence Failures à Incorrect Decisions of Client Apps
Goal: Finding Convergence Failure Bugs!

Limitations of Existing Techniques
• Model-based testing and model-checking: employing state-space

exploration to systematically check for the absence of bugs
• Limitation: state space exploration is usually generic and not targeted,

therefore suffers from the state explosion

• Manual testing and random testing: Scope of testing is usually
targeted to find specific types of bugs
• Limitation: state space exploration is neither systematic nor exhaustive,

therefore may miss corner cases

111

Modulo: Using a targeted approach to abstraction and concrete
execution based on that abstraction to overcome those limitations

Data Consistency?

Replicated Distributed Storage Systems

Client Applications
112

Wait for Replication? Just show stale data?
How much stale?

Data Consistency?

Replicated Distributed Storage Systems

Client Applications
113

Strict Ordering?
How to determine the order?

Consistency Models

Consistency Models
Replicated Distributed Storage Systems

OrderTiming

Client Applications
114

Consistency Models

Consistency Models
Replicated Distributed Storage Systems

Client Applications
115

Convergence Property

Divergence Resync Model
(DRM)

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

116

Divergence Resync Model
(DRM)

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

117

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Divergence Resync Model
(DRM)

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

118

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Divergence Resync Model
(DRM)

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

119

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Schedule Generation

Divergence Resync Model
(DRM)

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

120

Abstract Execution Model
(AEM)

Concrete Execution Model
(CEM)

Modelling the Target
Abstract Behavior

Modelling the Target
Concrete Behavior

Schedule Generation

__________+++

Input Generation

Differences in DRMs

• Q/C/Z-DRM CEM
• Before version 3.5, scanning log to see each replica switches their roles after

leader election to wait for the resync completion
• Since version 3.5, log scanning is no longer reliable, thus fall back to time

delay

121

Differences in DRMs

• Q/C/Z-DRM CEM
• Before version 3.5, scanning log to see each replica switches their roles after

leader election to wait for the resync completion
• Since version 3.5, log scanning is no longer reliable, thus fall back to time

delay

• Q/C/M-DRM
• For MongoDB, but AEM is same as Q/C/Z-DRM
• For CEM, it uses an API to get timestamps of the last transaction on each

replica to confirm that resync completes

122

Differences in DRMs

• Q/C/Z-DRM CEM
• Before version 3.5, scanning log to see each replica switches their roles after leader

election to wait for the resync completion
• Since version 3.5, log scanning is no longer reliable, thus fall back to time delay

• Q/C/M-DRM
• For MongoDB, but AEM is same as Q/C/Z-DRM
• For CEM, it uses an API to get timestamps of the last transaction on each replica to

confirm that resync completes

• S/S/R-DRM, S/L/R-DRM, S/CL/R-DRM
• Models for Redis uses more failure models, including link failures which requires

extended AEM to keep track the status of network links between replicas

123

Divergence Resync Model (DRM): Differences
in DRMs
• DRM for ZooKeeper

• Before version 3.5, scanning log to see each replica switches their roles after leader
election to wait for the resync completion

• Since version 3.5, log scanning is no longer reliable, thus fall back to time delay

• DRM for MongoDB
• For MongoDB, but AEM is same as the DRM for ZooKeeper
• For CEM, it uses an API to get timestamps of the last transaction on each replica to

confirm that resync completes

• DRMs for Redis
• Models for Redis uses more failure models, including link failures which requires

extended AEM to keep track the status of network links between replicas

124

Schedule
Generator

Concrete
Executor
Divergence:

[1,0,1]

Convergence:
[A,B]

Modulo

CEM State
Exploration

CEM System-Under-Test

Verification Result
A.X = B.X = C.X

AEM State
Exploration

AEM

...

Modulo Architecture
DRM

AEM CEM

Schedule Files

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

125

$ java … <A>/zoo.cfg
$ java … /zoo.cfg
Scan logs …

$ kill -9
setData(X,1)
Thread.sleep(3000)
$ kill -9 <A> <C>

State Space Size

126

DRM numOps numReplicas # of Schedules

Q/C/Z 1 3 6

2 3 80

3 3 1035

4 3 13381

5 3 172993

3 4 3428

3 5 54655

S/S/R 2 4 13586

S/L/R 2 3 263

S/CL/R 1 2 8

2 2 96

Discussion

• Methodology
• First, write DRMs in a top-down approach
• Second, focus on the specific behavior that is important to manifest target

bugs
• Third, pay attention to configuration parameters of the system-under-test

• Modulo requires users manual effort to provide DRMs
• Target users are developers with expertise who are interested in stress the

specific behavior of the system-under-test.
• For novice users, we expect that it requires about 2 weeks to learn about the

system-under-test and about 2 weeks to write DRMs
• Effective DRMs do require a good intuition and insight about target bugs

127

Conclusion
• Modulo employs targeted abstraction and concrete execution to

mitigate the traditional state-explosion problems.
• It does not explore states and state transitions that are not related to the

concepts of convergence and divergence.

• Our work identified several factors that lead to CFBs:
• (1) employing several resync or failure-handling mechanisms whose

interactions are difficult to foresee
• (2) hard limits or inadequate designs for handling large amounts of

divergence
• (3) assumptions about length of time that replicas may have failed and

failures that span events like leader transitions.

• Modulo’s performance is heavily affected to delays from executing
and controlling the real distributed system

128

