Modulo: Finding Convergence Failure Bugs in
Distributed Systems with Divergence Resync Models

Beom Heyn Kim$', Taesoo Kim$%, and David Lie®

$Samsung Research, "University of Toronto, *Georgia Institute of Technology
{beomheyn kim, tsgates.kim}@samsung.com, lie@eecg.toronto.edu

"’2
BECE UNIVERSITY OF

L‘%; TORONTO

Samsung Research

Background: Various Services Rely on
Replicated Distributed Storage Systems

¥ N 1 Ce Li
ds - S WV Y-

& box , 12 now viceNow © eee]
a> t O N v of?)
< - DE "CHES 20 &

Replicated Distributed Storage Systems are Critical Components

7

.mongoDB® é redis W Q Couchbase

cassandra

b APACHE
9 ZooKeeper

2

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

‘f ZooKeeper / ZOOKEEPER-1319
48 Missing data after restarting+expanding a cluster

v Details
Type: 0 Bug Status: CLOSED
Priority: I @ Blocker I Resolution: Fixed
Affects Version/s: 3.4.0 Fix Version/s: 3.4.1,3.5.0

v Description
The scenario | see is this:

1) Start up a 1-server ZK cluster (the server has ZK ID 0).

2) A client connects to the server, and makes a bunch of znodes, in particular a znode called
“/membership”.

3) Shut down the cluster.

4) Bring up a 2-server ZK cluster, including the original server 0 with its existing data, and a new server
with ZK ID 1.

5) Node 0 has the highest zxid and is elected leader.

6) A client connecting to server 1 tries to "get /membership” and gets back a -101 error code (no such
znode).

7) The same client then tries to "create /membership” and gets back a -110 error code (znode already
exists).

8) Clients connecting to server 0 can successfully "get /membership”.

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

‘{.&l ZooKeeper / ZOOKEEPER-1319
48 Missing data after restarting+expanding a cluster

v Details
Type: o Status: CLOSED Reproduction Step:
Priority: I @ Blocker I Resolution: Fixed
Affects Version/s: 3.4.0 Fix Version/s: 3.4.1,3.5.0 . Start Server O
v Description . Create data items on Server O

The scenario | see is this:

Shutdown Server O

1) Start up a 1-server ZK cluster (the server has ZK ID 0).
2) A client connects to the server, and makes a bunch of znodes, in particular a znode called

Start Server 0 and Server 1

*/membership”, . Clients cannot read data items on
3) Shut down the cluster. Server 1
4) Bring up a 2-server ZK cluster, including the original server 0 with its existing data, and a new server

with ZK 1D 1. . Clients can read data items on
5) Node 0 has the highest zxid and is elected leader. Server 0

6) A client connecting to server 1 tries to "get /membership” and gets back a -101 error code (no such
znode).

7) The same client then tries to "create /membership” and gets back a -110 error code (znode already
exists).
8) Clients connecting to server 0 can successfully "get /membership”.

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

SB ZooKeeper / ZOOKEEPER-1319
L]

r

&8 Missing data after restarting+expanding a cluster

v Details

Reproduction Step:
Type: 0 Bug Status: CLOSED

Priority: @ Blocker Resolution: Fixed

Servers are out-of-sync!
Clients may read inconsistent data and make incorrect decisions!

complains those already exist

with ZK ID 1.
5) Node 0 has the highest zxid and is elected leader.

6) A client connecting to server 1 tries to "get /membership” and gets back a -101 error code (no such
znode).

7) The same client then tries to "create /membership” and gets back a -110 error code (znode already
exists).

8) Clients connecting to server 0 can successfully "get /membership”.

Problem: A Single Bug May Cause Catastrophic
Events due to an Inconsistent View of Databases

ZooKeeper / ZOOKEEPER-1319
Missing data after restarting+expanding a cluster

v Activity

All. Comments Work Log History Activity Transitions

v | Patrick D. Hunt|added a comment - 07/Dec/11 01:29

| see the problem, a change made in ZSOKEEPER=1130 Is causing this regression. setting of
lastProposed in the lead() method of Leader was commented out for some reason. As a result the
new follower is getting an empty diff rather than a snapshot.

This is a serious issue 3s it's causing the follower to get an inconsistent view of the database.JWe'll

need to roll 3.4.1 asap.

Jeremy — Thanks for reporting this issue!

Problem: Bugs are Difficult to Find and Fix

ZooKeeperl/ ZOOKEEPER-1549

Data inconsistency when follower is receiving a DIFF with a dirty
snapshot

v Description

Initial Condition
1. Lets say there are three nodes in the
2. The current epoch is 7.
3. For simplicity of the example, lets sa
4. The zxid is 73
5. All the nodes have seen the change
Step 1
Request with zxid 74 is issued. The lead
and B,C never write the change 74 to t

Long Sequence of Events are Required to be Interleaved.
Z:prezstart,Ais elected as the new lead 9 D|ff|CU|t Bug tO F|nd|

it), then send diff to B, but B died befo
Step 3

B,C restart, A is still down
B.C form the quorum

B is the new leader. Lets say B minCom
epoch is now 8, zxid is 80
Reguest with zxid 81 is successful. On B
Step 4

A starts up. It applies the change in request with zxid 74 to its in-memory data tree

A contacts B to registerAsFollower and provides 74 as its Zxld

Since 71<=74<=81, B decides to send A the diff.

Problem:

The problem with the above sequence is that after truncate the log, A will load the snapshet again which
is not correct.

Problem: Bugs are Difficult to Find and Fix

SW |ZooKeeper]/ ZOOKEEPER-1549

K88 Data inconsistency when follower is receiving a DIFF with a dirty

snapshot
v Details
Type: 0 Bug Status: [OPEN | v Dates
Priority: 2 Major Resolution: Unresolved Created: 10/Sep/12 07:58
Affects Version/s: 343 Fix Version/s: None Updated: 03/Feb/22 08:50
v Sub-Tasks

1.@ Leader should not snapshot uncommitted state [CLoseD Flavio Paiva Junqueira
2. Learner should not snapshot uncommitted state % OPEN Hongchao Deng

3. Change TRUNC to SNAP in sync phase for B9 oeen Unassigned
safety guarantee

1. Created Several Sub-tasks
2. Not Resolved Yet (10 Yrs)

3. There are other similar bugs in Jira (recurring problem)
- Need Automated Bug Finding Tool for These Bugs!

Replicated Distributed Storage Systems
Provide Clients Consistent State/Data

Replicated Distributed Storage System

Put(1) I Get()->1 1

Key Enabler: Convergence Property Keeps
Replicas Consistent

Step 1: A Replica Accepts Clients” Requests

— 8
Put(1) I

Step 2: Replicas Become Converged via
Replication

Replicate

—

Replicate

Put(1) I

Step 3: Clients Read Consistent Data

Problem 1: What if a Replica Fails?

— 8
Put(1) I

Step 1: A Replica Fails and Becomes
Unavailable

Failures
rash.or Network)

15

Step 2: Replication Does Not Occur and
Replicas Remain Diverged

0

Divergence across replicas remains!

16

Step 3: Failure Recovery and Resync Makes
Replicas Converged Again

Resync
Failure Recovery

or Reconnect)

17

Problem 2: Software Bugs in Resync
Mechanisms May Cause Convergence Failures

% Convefgence Failure Bugs (CFBs

I —
(Never Occur)

Convergence

-
—)

Problems Cause Clients to Read Inconsistent
Data

Existing Approaches: Model-based

Approaches and Random Testing Approaches
* Model-Based Testing and Model-Checking

* Problem: State space exploration is generic not targeted, therefore suffers
from state explosion

* Manual Testing and Random Testing

* Problem: state space exploration is neither systematic nor exhaustive,
therefore may miss corner cases

Our Approach: Targeted, Systematic and Exhaustive State Space
Exploration to Overcome Limitation of Existing Approaches

* Model-Based Testing and Model-Checking

* Problem: State space exploration is generic not targeted, therefore suffers
from state explosion
— Targeted State Space Exploration

* Manual Testing and Random Testing

* Problem: state space exploration is neither systematic nor exhaustive,
therefore may miss corner cases

—> Systematic and Exhaustive State Space Exploration

Key Observation 1: Convergence Failure Bugs (CFB)

can be Abstracted in Concise, Reproducible Steps

Crash Replica Aand B

Cli: Put(1)

Replica C: Processing Request
Replica C: Proposing

Replica C: Count for Txn ID
Replica C: Record in Txn log

Crash Replica C

Start Replica A and B

Replica A: Leader election begins
Replica B: Leader election begins
... (Leader election events) ...
Replica A: Following

Replica A: Getting diff from B
Replica B: LEADING

Replica B: Sync with A

Replica B: Quorum is ready

1

|

Crash Replica Aand B

Put(1)

Crash Replica C
Restart Replica A and B

Resync A and B

22

Key Observation 2: Interleave Abstracted

Steps to Find New CFBs

Crash Replica Aand B

Cli: Put(1)

Replica C: Processing Request
Replica C: Proposing

Replica C: Count for Txn ID
Replica C: Record in Txn log

Crash Replica C

Start Replica A and B

Replica A: Leader election begins
Replica B: Leader election begins
... (Leader election events) ...
Replica A: Following

Replica A: Getting diff from B
Replica B: LEADING

Replica B: Sync with A

Replica B: Quorum is ready

1

|

Crash Replica Aand B

Put(1)

Crash Replica C
Restart Replica A and B

Resync A and B

s Pyt(2)

23

Key Idea 1: Using Divergence and Convergence Events
can Even Further Reduce State Exploration

Crash Replica A and B Crash Replica Aand B

Cli: Put(1)

Replica C: Processing Request
Replica C: Proposing

Replica C: Count for Txn ID
Replica C: Record in Txn log
Crash Replica C

Start Replica A and B

Replica A: Leader election begins
Replica B: Leader election begins
... (Leader election events) ... > Convergence
Replica A: Following

Replica A: Getting diff from B

Put(1) messsss—s) Divergence

Crash Replica C
Restart Replica A and B

1|

|

Resync A and B

By Focusing on Interleaving Divergence and Convergence, the state space to explore is further reduced.

24

Key |dea 2: Separating Abstraction from Concrete

Execution (Divergence Resync Model)

System-Under-Test

Divergence Resync Model
(DRM)

25

Key |dea 2: Separating Abstraction from Concrete

Execution (Divergence Resync Model)

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test

- —

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

26

Key |dea 2: Separating Abstraction from Concrete

Execution (Divergence Resync Model)

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test

- —

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

27

Key |dea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test

e
N7

ny|

- —

Schedt

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

1le Generation

28

Key |dea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test

- —

Schedt

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

8 —
“»
S’

Input Generation

1le Generation

29

Key ldea 2: Separating Abstraction from Concrete
Execution (Divergence Resync Model)

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test

- —

\ 4

Schedt

Concrete Execution Model
(CEM)

1le Generation

Benefits of Separating Abstraction from Concrete Execution:
1. An AEM may be used for different systems-under-test

2. The common functionality of CEMs repeatedly implemented can be compiled as a library

Modulo Architecture: Schedule Generator and Concrete Executor

Modulo

31

Modulo Architecture: Users S

necify and Provide a DRM

DRM

Modulo

32

Modulo Architecture: AEM for Schedule Generator

DRM

CEM

Modulo

33

Modulo Architecture: CEM for Concrete Executor

DRM
AEM | CEM
Modulo
‘ Schedule /"Concrete N
Generator Executor
- AEM

CEM

System-Under-Test

_ Aad
p T e

34

Modulo Architecture: AEM State Exploration

DRM
AEM || CEM
Modulo
‘ Schedule /"Concrete N
Generator Executor
- AEM
AEM State
Exploration

CEM

System-Under-Test

e
pT T

35

Modulo Architecture: AEM State Exploration

DRM
AEM || CEM
Modulo
Schedule File§
‘[Schedule = /"Concrete N
chedule
Generator Schedule 2 Executor
-+ AEM : 4
AEM State
Exploration

CEM

System-Under-Test

e
pT T

36

Modulo Architecture: CEM Input Injection

DRM
AEM || CEM
Modulo
Schedule File§
‘[Schedule | /"Concrete D
chedule
Generator I_§ED(;£JU_I9__2, Executor
+ AEM 5
Input
Generation
AEM State CEM State
Exploration Exploration

CEM

Input

System-Under-Test

e
\il

Injection

37

Modulo Architecture: Checking it Convergence
Fails after Each Schedule Execution

Get(X)->0 X:0
Get(Y)->1 a G Y:1
Get(X)->0 G -0

Get(Y)-> Y:2

Modulo Get(X)'>O
Get(Y)->2

Convergence Failure Detected!

38

Abstract Execution Model: Each State Contains State
Variables

replicaState=[]
SO onlineState=[]

39

Abstract Execution Model: User-Provided Parameters
Make the State Space Concrete

numOps = 2
numReplicas = 3

A,B,C

replicaState=[, ,
5o P]

onlineState=[_, ,]

40

Abstract Execution Model: Predefined Write Sequence

IS Generated
setData(X,0) setData(X,1) setData(X,2)

numOps = 2
numReplicas = 3

A,B,C

replicaState=[, ,
5o P]

onlineState=[_, ,]

41

Abstract Execution Model: Writing Monotonically

Increasing Values
setData(X,0) setData(X,1) setData(X,2)

Y

numOps = 2 Values are monotonically increasing
numReplicas = 3

A,B,C

replicaState=[, ,
5o P]

onlineState=[_, ,]

42

Abstract Execution Model: Indexing Each Write

setData(X,0) setData(X,1) setData(X,2)

nuUMOps = 2 Index 0 1 2

numReplicas = 3

A,B,C

replicaState=[, ,
5o P]

onlineState=[_, ,]

43

Abstract Execution Model: Meaning of Each State

Variables
setData(X,0) setData(X,1) setData(X,2)

NUMOps = 2 — Index 0 1 2

numReplicas = 3

AB,C <«

Up to which write —
onlineState=[_, , | Which replicas are available

replicaState=[, ,
5o P]

44

Abstract Execution Model

- Initial State SO

State SO

setData(X,0)——

SO replicaState=[0,0,0]
onlineState=[T,T,T]

45

Abstract Execution Model: Applying a Divergence Transition

State SO
B

setData(X,0)——

Transition T1 D_@ X0
: G X:0 2>setData(X,1):>@
SO replicaState=[0,0,0] 3
onlineState=[T,T,T] X:1 3‘@ X:1

[Tl divergence X }

46

Abstract Execution Model: Updating State Variables

State SO

setData(X,0]

' replicaState=[1,0,1]

S1

State Sl h OnlineState=[F,F’F]

Transition T1

X:1

[Tl divergence X J

2) setData(X,l):@

1=~ xo

3
j\@ X1

8¢ xc
8> X:1

47

Abstract Execution Model: Applying a Convergence Transition

State S1

Transition T2 1
X:0

replicaState=[1,0,1]

S1

onlineState=[F,FF]

]

{TZ convergence X J

Abstract Execution Model: Updating State Variables

State S1

Transition T2 1
X:0

replicaState=[1,0,1]

S1

onlineState=[F,FF]

]

{TZ convergence X J

—

State S2

X:1

Concrete Execution Model: Generating Inputs by
Translating AEM Transitions into Concrete Test Inputs

AEM Transitions

[Tl divergence X J »

Intermediate
Representation

Crash B
Write 1 to X
Crash A and C

"

Concrete Test Inputs

S kill -9
setData(X,1)
Thread.sleep(3000)
S kill -9 <A> <C>

Concrete Execution Model: Generating Inputs by
Translating AEM Transitions into Concrete Test Inputs

Intermediate
AEM Transitions Representation

) Crash B
T1 divergence X » Write 1 to X
CrashAand C

"

Concrete Test Inputs

S kill -9
setData(X,1)
Thread.sleep(3000)
S kill -9 <A> <C>

(TZ convergence XJ » Restart A and B
Wait for Resync

>

$ java ... QuorumPeerMain <A>/zoo.cfg
$ java ... QuorumPeerMain /zoo0.cfg
Scan logs for “LEADING” or “FOLLOWING"

51

Concrete Execution Model: Injecting In

Internal Events

{Tl divergence X }»

{TZ convergence X} »

Crash B
Write 1to X
Crash A and C

Non-determinism Control

Restart A and B
Wait for Resync

)

)

outs Relative to

Input Injection

Internal Events

kill -9

setData(X,1)

Thread.sleep
(3000)

A commits

C commits

Logs

\«; Scanning

A & B resyncs

A: “LEADING”

B: “FOLLOWING”

Time

52

Implementation

e 8.4K LoC in total
e Schedule Generator: 0.3K LoC
* Concrete Executor: 0.8K LoC

* Divergence Resync Models: 7.3K LoC
* AEMs: 2.8K LoC
* CEMs: 4.6K LoC

* Applied to 3 Replicated Distributed Storage Systems

* ZooKeeper
* MongoDB
* Redis

Modulo Found CFBs in Popular Distributed Systems

ZooKeeper Bug #1 (New Bug!) Fail to remove invalid conflicting operations (missing TRUNC invocation)

ZooKeeper Bug #2 (New Bug!) Fail to remove invalid conflicting operations (file handling logic error)

ZooKeeper Bug #3 (New Bug!) §Q/C/Z-DRM Fail to replicate operations due to an incomplete log

ZooKeeper Bug #4(New Bug!) §Q/C/Z-DRM Fail to truncate operations due to a pointer handling mistake

ZooKeeper Bug #5 (New Bug!) §Q/C/Z-DRM Fail to truncate operations due to missing invocation

MongoDB Bug #1 (New Bug!) BQ/C/M-DRM Fail to remove invalid conflicting operations (incomplete timestamp info)

MongoDB Bug #2 Fail to replicate operations (incomplete protocol design)

Redis Bug #1
We Found 11 CFBs:
Redis Bug #2 Newly Discovered 5 CFBs in ZooKeeper and 1 CFB in MongoDB

Detected 1 known CFB in MongoDB and 4 known CFBs in Redis
Redis Bug #3

Redis Bug #4

The Size of State Space to Explore is Small Enough
for Systematic and Exhaustive Search

ZooKeeper’s DRM 6

80
1035
13381
172993

3428
54655
13586
263

8

96

We could systematically and exhaustively complete state space exploration! -

Redis’s DRM (Suspend)
Redis’s DRM (Link)
Redis’s DRM (Crash+Link)

N P N N W W Ul dp W N PR
N NN W B~ U1 A W W W W W

Separating A
Makes ModL

ostraction from Concrete Execution
lo Portable and Extensible

ZooKeeper’s DRM

MongoDB’s DRM

Redis’s DRM (Suspend)

Redis’s DRM (Link)

Redis’s DRM (Crash+Link)

USER

LIB

USER

LIB

USER

LIB

USER

LIB

USER

LIB

955

955

405

955

Portable

(Reused)

620

117

907

39

1240
110

377

959

171

1246

72

2195

Extensible
(Library)

56

Conclusion

* Modulo is effective in finding bugs in real-world distributed systems
* Key Approach: Targeted, Systematic and Exhaustive State Space Exploration
* Key ldeas

* Exploring only interleaving of divergence and convergence
» State space to explore is significantly reduced

* Separating abstraction from concrete execution by decoupling them into AEM and CEM
* Modulo becomes portable and extensible

* Modulo can be extended to find bugs in your distributed systems!
* Github: https://github.com/Kaelus/Modulo

https://github.com/Kaelus/Modulo

Thank You!

Beom Heyn Kim®', Taesoo Kim®¥, and David Lie’

$Samsung Research, "University of Toronto, *Georgia Institute of Technology
{beomheyn.kim, tsgates.kim}@samsung.com, lie@eecg.toronto.edu

58

Abstract Execution Model: Enabled Transitions at S1

State S1

Enabled Transitions at S1

S1 replicaState=[1,0,1] Divergence Convergence

onlineState=[F,FF]
convergence A

convergence Z

Abstract Execution Model: Enabled Transitions at SO

State SO

setData(X,0)——

Enabled Transitions at SO

SO replicaState=[0,0,0]
onlineState=[T,T,T]

Divergence

Convergence

divergence A

divergence Z

60

Abstract Execution Model

- Initial State SO

State SO

setData(X,0)——

SO replicaState=[0,0,0]
onlineState=[T,T,T]

61

Abstract Execution Model: Enabled Transitions at SO

State SO

setData(X,0)——

Enabled Transitions at SO

SO replicaState=[0,0,0]
onlineState=[T,T,T]

Divergence

Convergence

divergence A

divergence Z

62

Abstract Execution Model: Applying a Divergence Transition

State SO
B

setData(X,0)——

Transition T1 D_@ X0
: G X:0 2>setData(X,1):>@
SO replicaState=[0,0,0] 3
onlineState=[T,T,T] X:1 3‘@ X:1

[Tl divergence X }

63

Abstract Execution Model: Updating State Variables

State SO

setData(X,0]

' replicaState=[1,0,1]

S1

State Sl h OnlineState=[F,F’F]

Transition T1

X:1

[Tl divergence X J

2) setData(X,l):@

1=~ xo

3
j\@ X1

8¢ xc
8> X:1

64

Abstract Execution Model: Enabled Transitions at S1

State S1

Enabled Transitions at S1

S1 replicaState=[1,0,1] Divergence Convergence

onlineState=[F,FF]
convergence A

convergence Z

Abstract Execution Model: Applying a Convergence Transition

State S1

Transition T2 1
X:0

replicaState=[1,0,1]

S1

onlineState=[F,FF]

]

{TZ convergence X J

Abstract Execution Model: Updating State Variables

State S1

Transition T2 1
X:0

replicaState=[1,0,1]

S1

onlineState=[F,FF]

]

{TZ convergence X J

—

State S2

X:1

Modulo Architecture: AEM State Exploration

DRM
AEM || CEM
Modulo
Schedule File§
‘[Schedule = /"Concrete N
chedule
Generator Schedule 2 Executor
-+ AEM : 4
AEM State
Exploration

CEM

System-Under-Test

e
pT T

68

Modulo Architecture CEM Input Generation

DRM
AEM || CEM
Modulo
Schedule File§
‘[Schedule | /"Concrete D
chedule
Generator I_§ED(;£JU_I9__2, Executor
+ AEM 5
Input
Generation
AEM State CEM State
Exploration Exploration

CEM

System-Under-Test

e
\il

69

Modulo Architecture: CEM Input Injection

DRM
AEM || CEM
Modulo
Schedule File§
‘[Schedule | /"Concrete D
chedule
Generator I_§ED(;£JU_I9__2, Executor
+ AEM 5
Input
Generation
AEM State CEM State
Exploration Exploration

CEM

Input

System-Under-Test

e
\il

Injection

70

Example: ZooKeeper

* Primary-backup replication

 Quorum for a leader election

* The leader serializes every write operation

* Followers replicate the write sequence directly from the leader
 After crash recovery, leader election and resync automatically begin

Example: ZooKeeper’s Divergence Resync Model

* AEM

* Crash failures only
* Each divergence crashes remaining online replicas at the end
* Each convergence restarts enough number of replicas to form a quorum

* CEM
 To Kill: S kill -9 <A>
e To Write: setData API call (e.g. setData(x,1))
* To Restart: java ...QuorumPeerMain <A>/zoo0.cfg

Implementation: DRM Example Comparison

CEM Lines of Code
(AEM/CEM/Total)

Q/C/Z- Only consider crash failures Using kill -9 for crash USER 54/59/113
DRM Convergence ensures the quorum Confirm the quorum exists before writes LIB 339/620/959
Crashes all replicas at the end of divergence Using log scanning before 3.5, but as of 3.5,
relying on timeouts
Q/C/M- Same as Q/C/Z-DRM Using an API to compare timestamps of the USER 54/117/171
DRM last transaction on each replica LIB 339/907/1246
S/S/R- Only considers suspend failures Using kill =STOP and kill -CONT USER 33/39/72
DRM Considers all replicas initially partitioned Using ‘info” APl and timeout to wait for LIB 955/1240/2195
As recovering suspend failures, establish links resync completion
between the replicas Using ‘slaveof’ API to trigger resync
S/L/R- Only considers link failures ‘slaveof’ API for link failures and recoveries. ~ USER 0/110/110
DRM Replicas initially connected in a single chain Initially, forming links as a single slave chain LIB 955/1240/2195
S/CL/R- Considers both link and crash failures For the offline resync strategy, a script USER 405/377/782
DRM Consider two types of resync strategies: online copying over snapshots and starting up a LIB 955/1240/2195
resync and offline resync replica with the snapshot is used

Schedule generation is implemented in about 281 lines of code, and concrete execution takes about 766 lines

Evaluation: Testing Performance

ZooKeeper Bug #1 Q/C/Z-DRM 11 hours 33 sec

ZooKeeper Bug #2 Q/C/Z-DRM 2 hours 39 sec 11
ZooKeeper Bug #3 Q/C/Z-DRM 23 min 33 sec 7
ZooKeeper Bug #4 Q/C/Z-DRM 47 min 30 sec 10
ZooKeeper Bug #5 Q/C/Z-DRM 20 hours 37 sec 10
MongoDB Bug #1 Q/C/M-DRM 18 min 6 min 3
MongoDB Bug #2 Q/C/M-DRM 4 hours 5 min 5
Redis Bug #1 S/S/R-DRM 6 hours 6 min 6
Redis Bug #2 S/CL/R-DRM 11 min 14 sec 4
Redis Bug #3 S/CL/R-DRM 2 min 6 sec 3

Redis Bug #4 S/L/R-DRM 2 min 33 sec 2

74

Conclusion

* Modulo employs targeted abstraction and concrete execution to
mitigate the traditional state-explosion problems.

* |t does not explore states and state transitions that are not related to the
concepts of convergence and divergence.

Abstract Execution Model: Picking a Convergence Transition

Enabled Transitions at S1

State S1 Divergence Convergence

)
|

r2 converge nce}

[A,B]
convergence
S1 replicaState=[1,0,1] [B,C]
onlineState=[F,FF]
convergence

[A,B,C]

Abstract Execution Model: Picking a Divergence Transition

Enabled Transitions at SO
State SO :
G X:0 Divergence Convergence

setData(X,0)—— divergence A
[0,0,1]
G X:0 divergence
SO replicaState=[0,0,0] [0,1,1]

onlineState=[T,T,T]

divergence
T o J

divergence
[1,1,2]

divergence
[2,2,2]

77

Divergence Resync Model (DRM): Specifics about the
/ooKeeper DRM Example

* ZooKeeper System

* Primary-backup replication scheme (leader and follower in ZooKeeper’s
parlance)

 Quorum is required to elect a leader

* The leader serializes every write operation

* Followers replicate the write sequence directly from the leader

* After crash recovery, leader election and resync automatically begin

* DRM for ZooKeeper Specifics
* Crash failures only
* Each divergence crashes remaining online replicas at the end
* Each convergence restarts enough number of replicas to form a quorum

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

* Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(kl1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

79

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

* Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(kl1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

It will be more targeted approach to find these bugs if we explore
interleaving of relevant events, e.g. Restart, Crash, Put.

80

Key Observation 1: There Exist Externally Reproducible
Convergence Failure Bugs

* Reproducing Steps: (1) Crash A; (2) Crash C; (3) Put(kl1, v1); (4) Crash B; (5)
Restart A; (6) Restart C; (7) Put(k2, v2); (8) Crash A; (9) Crash C; (10) Restart
B; (11) Restart C; (12) Crash B; (13) Put(k3,v3); (14) Crash C; (15) Restart B;
(16) Restart C

It will be more targeted approach to find these bugs if we explore
interleaving of relevant events, e.g. Restart, Crash, Put.

Excluding irrelevant events from state exploration

81

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

* Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

82

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

* Reproduction Step:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;
(5) Restart A; (6) Restart C;
(7) Put(k2, v2); (8) Crash A; (9) Crash C;
(10) Restart B; (11) Restart C;
(12) Crash B; (13) Put(k3,v3); (14) Crash C;
(15) Restart B; (16) Restart C

* Divergence and Convergence:
(1) Divergence [0,1,0];
(2) Convergence [A,C];
(3) Divergence [1,0,1];
(4) Convergence [B,C];
(5) Divergence [0,0,1];
(6) Convergence [B,C];

83

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

* Reproduction Step: ° Divergence and Convergence:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;| (1) Divergence [0,1,0];
(5) Restart A; (6) Restart C; (2) Convergence [A,C];
(7) Put(k2, v2); (8) Crash A; (9) Crash C; (3) Divergence [1,0,1];
(10) Restart B; (11) Restart C; (4) Convergence [B,C];
(12) Crash B; (13) Put(k3,v3); (14) Crash C; (5) Divergence [0,0,1];
(15) Restart B; (16) Restart C (6) Convergence [B,C];

I { Failures Inject Puts Failures J Divergence |

Failure Recoveries Resync Convergence

84

Key Observation 2: Focusing on Divergence and
Convergence Further Reduces the State Space

° Reproduction Step: ° Divergence and Convergence:
(1) Crash A; (2) Crash C; (3) Put(k1, v1); (4) Crash B;| (1) Divergence [0,1,0];
(5) Restart A; (6) Restart C; (2) Convergence [A,C];
(7) Put(k2, v2); (8) Crash A; (9) Crash C; (3) Divergence [1,0,1];
(10) Restart B; (11) Restart C; (4) Convergence [B,C];
(12) Crash B; (13) Put(k3,v3); (14) Crash C; (5) Divergence [0,0,1];
(15) Restart B; (16) Restart C (6) Convergence [B,C];
We can reduce a sequence of low level events into a sequence of higher
level divergence and convergence events.

I { Failures Inject Puts Failures J Divergence |

Failure Recoveries Resync Convergence

85

Related Works: Exhaustive State Search

Suffers from State Explosion

* Model-based testing (OAuthTester, MBTC) and model-checking (PACE,
CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs

* Limitation: state space exploration is usually generic and not targeted,
therefore suffers from the state explosion

Related Works: Non-Systematic State Search
May Miss Bugs

* Model-based testing (OAuthTester, MBTC) and model-checking (PACE,
CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs

* Limitation: state space exploration is usually generic and not targeted,
therefore suffers from the state explosion

* Manual testing and random testing (Jepsen): Scope of testing is
usually targeted to find specific types of bugs

Related Works: Non-Systematic State Search
May Miss Bugs

* Model-based testing (OAuthTester, MBTC) and model-checking (PACE,
CMC, Verisoft, MaceMC, MODIST, CrystalBall, dBug, SAMC, FlyMC,
etc.): employing state-space exploration to systematically check for
the absence of bugs

* Limitation: state space exploration is usually generic and not targeted,
therefore suffers from the state explosion

* Manual testing and random testing (Jepsen): Scope of testing is
usually targeted to find specific types of bugs

* Limitation: state space exploration is neither systematic nor exhaustive,
therefore may miss corner cases

Background: Convergence Property Keeps
Replicas Consistent

Background: Convergence Property Keeps
Replicas Consistent

~

Replicate

Replicate

Background: Convergence Property Keeps
Replicas Consistent

Get(X)->1 1

Background: Divergence Can Be Observed by
Clients

Background: Divergence Can Be Observed by
Clients

4‘;

Replicate

Background: Divergence Can Be Observed by
Clients

Get(X)->0 1

Background: Failures Extends Divergence’s
Lifetime Until Recovery and Resync

Background: Recovery and Resync Reduces
Divergence and Restores Convergence

M-

X=0

Fallure Recover
Reconnect)

Background: Recovery and Resync Removes
Divergence and Restores Convergence

Background: Software Bugs in Resync
Mechanisms May Cause Convergence Failures

Convergen e

Divergence and Convergence

Replicated Distributed Storage Systems
“—

Operation
Requests

Client Applications

99

Divergence and Convergence

Replicated Distributed Storage Systems
“—

Client Applications

100

Divergence and Convergence

Replicated Distributed Storage Systems
“—

Client Applications

101

Divergence and Convergence

Divergence: A process that replicas become different

Convergence: A process that replicas become equivalent
— ,

—

Replicated Distributed Storage Systems
“—

Client Applications

102

Convergence Property

—

Replicated Distributed Storage Systems

Convergence Property

¥

Client Applications

!

]

103

Consistency Models

~—~

Replicated DistMuted Storage Systems

Convergence Failures

f 1 3

Client Applications

104

Convergence Failure Bugs (CFBs) Can Occur

Distributed storage

Client

1) put(x,0)

105

Convergence Failure Bugs (CFBs) Can Occur

Distributed storage

Client 9 X:0
1) put(X,0)

Divergencel i ——

4
6 X:O
5 >Put(X,1)%
7
X:1 %)le

Crash or Connection Failures

106

Convergence Failure Bugs (CFBs) Can Occur

Distributed storage 8 X-0
rFeE=========%= l : ’

Client 9 X:0)
= e
1) Put(X,0) X:1

Convergence

Divergencel i ——

4
6 X:O
5 >Put(x,1)z>:aq>\
7
X:1 %)le

Crash or Connection Failures

107

Convergence Failure Bugs (CFBs) Can Occu

Distributed storage 8 X-0
rFeE=========%= l : ’

Client 9 X:0
1) put(X,0)

| ha X:0 D X:0
Divergencel e R —— e

C A
X:1
5 >Put(x,1)z>:aq>\

Crash or Connection Failures

R

108

Convergence Failure Bugs (CFBs) Can Occur

Distributed storage

Client

1) put(x,0)

Divergencel L e e - — = —

4
6 X:0
5) Put(X,1)
X:1

Crash or Connection Fa

7
X:1

ilures

X:1 G 1

Convergence

(nev
x1

Convergence
Failure!

er occurs)
109

Convergence Failure Bugs (CFBs) Can Occur

Distributed storage

Client 9 X:0
1) put(X,0)

Divergencel L e e - — = —

4
6 X:0
5) Put(X,1)
X:1 % 1

Crash or Connection Failures

Convergence

Convergence Failures = Incorrect Decisions of C

lient Apps

Goal: Finding Convergence Failure Bugs!

X:1 G 1

)
X:0

(nev
x1

Convergence
Failure!

er occurs)
110

Limitations of Existing Techniques

* Model-based testing and model-checking: employing state-space
exploration to systematically check for the absence of bugs
* Limitation: state space exploration is usually generic and not targeted,
therefore suffers from the state explosion

* Manual testing and random testing: Scope of testing is usually
targeted to find specific types of bugs

 Limitation: state space exploration is neither systematic nor exhaustive,
therefore may miss corner cases

» Modulo: Using a targeted approach to abstraction and concrete
execution based on that abstraction to overcome those limitations

111

Data Consistency?

Wait for Replication? I Just show stale data?

How much stale?

Client Applications

112

Data Consistency?

Strict Ordering?

Replicated Distributed Storage Systems
“—

Client Applications

113

Consistency Models

—

Replicated Distributed Storage Systems

Consistency Models

Client Applications

114

Consistency Models

Convergence Property
Replicated Distributed Storage Systems

Consistency Models

!

Client Applications

115

]

Model-based Testing with Divergence Resync Models

System-Under-Test
(SUT)

-
S0 N
14

Divergence Resync Model
(DRM)

116

Model-based Testing with Divergence Resync Models

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test
(SUT)

AEY R

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

\ 4

117

Model-based Testing with Divergence Resync Models

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test
(SUT)

i\‘;,i . —)

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

118

Model-based Testing with Divergence Resync Models

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test
(SUT)

i\‘;',i . —)

Schedt

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

1le Generation

119

Model-based Testing with Divergence Resync Models

Modelling the Target
Abstract Behavior

Divergence Resync Model
(DRM)

Abstract Execution Model
(AEM)

System-Under-Test
(SUT)

-
S0 N
14

- —

Schedt

Concrete Execution Model
(CEM)

Modelling the Target
Concrete Behavior

8 —
90
S’

Input Generation

1le Generation

120

Differences in DRMs

* Q/C/Z-DRM CEM

* Before version 3.5, scanning log to see each replica switches their roles after
leader election to wait for the resync completion

 Since version 3.5, log scanning is no longer reliable, thus fall back to time
delay

Differences in DRMs

* Q/C/Z-DRM CEM

* Before version 3.5, scanning log to see each replica switches their roles after
leader election to wait for the resync completion

 Since version 3.5, log scanning is no longer reliable, thus fall back to time
delay
* Q/C/M-DRM
* For MongoDB, but AEM is same as Q/C/Z-DRM

* For CEM, it uses an API to get timestamps of the last transaction on each
replica to confirm that resync completes

Differences in DRMs

* Q/C/Z-DRM CEM

e Before version 3.5, scanning log to see each replica switches their roles after leader
election to wait for the resync completion

e Since version 3.5, log scanning is no longer reliable, thus fall back to time delay

* Q/C/M-DRM
* For MongoDB, but AEM is same as Q/C/Z-DRM

* For CEM, it uses an API to get timestamps of the last transaction on each replica to
confirm that resync completes

* S/S/R-DRM, S/L/R-DRM, S/CL/R-DRM

 Models for Redis uses more failure models, including link failures which requires
extended AEM to keep track the status of network links between replicas

Divergence Resync Model (DRM): Differences
in DRMs

 DRM for ZooKeeper

e Before version 3.5, scanning log to see each replica switches their roles after leader
election to wait for the resync completion

e Since version 3.5, log scanning is no longer reliable, thus fall back to time delay

* DRM for MongoDB
* For MongoDB, but AEM is same as the DRM for ZooKeeper

* For CEM, it uses an API to get timestamps of the last transaction on each replica to
confirm that resync completes

e DRMs for Redis

 Models for Redis uses more failure models, including link failures which requires
extended AEM to keep track the status of network links between replicas

Modulo Architecture | Verification Result

DRM | AX=BX=CX
AEM || CEM
\ 4
Modulo CEM | System-Under-Test
Schedule File§
‘[Schedule | . (Concrete $ kill -9
Generator | soiciiisop o CXecutor | setData(x,1)
. AEM | : Divergence: Thread.sleep(3000)
d [1,0,1] ~ S kill -9 <A> <C>
Convergence:
) | [AB]
: / $ java ... <A>/zo00.cfg
: » S java ... /zoo0.cfg
AEM State CEM State Scan logs ...
Exploration | Exploration

State Space Size
_m

Q/C/z

2 3 80

3 3 1035

4 3 13381

> 3 172993

3 4 3428

3 5 54655
Y 2 4 13586
Y 2 3 263
S/CL/R 1 = 5

2 2 96

126

Discussion

* Methodology
* First, write DRMs in a top-down approach

* Second, focus on the specific behavior that is important to manifest target
bugs

* Third, pay attention to configuration parameters of the system-under-test

* Modulo requires users manual effort to provide DRMs

* Target users are developers with expertise who are interested in stress the
specific behavior of the system-under-test.

* For novice users, we expect that it requires about 2 weeks to learn about the
system-under-test and about 2 weeks to write DRMs

» Effective DRMs do require a good intuition and insight about target bugs

Conclusion

* Modulo employs targeted abstraction and concrete execution to
mitigate the traditional state-explosion problems.

* |t does not explore states and state transitions that are not related to the
concepts of convergence and divergence.

 Our work identified several factors that lead to CFBs:

* (1) employing several resync or failure-handling mechanisms whose
interactions are difficult to foresee

* (2) hard limits or inadequate designs for handling large amounts of
divergence

* (3) assumptions about length of time that replicas may have failed and
failures that span events like leader transitions.

* Modulo’s performance is heavily affected to delays from executing
and controlling the real distributed system

