
DynaGraph: Dynamic Graph Neural Networks at Scale
Mingyu Guan

Georgia Institute of Technology
Atlanta, USA

Anand Padmanabha Iyer
Microsoft Research
Redmond, USA

Taesoo Kim
Georgia Institute of Technology

Atlanta, USA

Abstract
In this paper, we present DynaGraph, a system that supports dy-
namic Graph Neural Networks (GNNs) efficiently. Based on the
observation that existing proposals for dynamic GNN architec-
tures combine techniques for structural and temporal information
encoding independently, DynaGraph proposes novel techniques
that enable cross optimizations across these tasks. It uses cached
message passing and timestep fusion to significantly reduce the
overhead associated with dynamic GNN processing. It further pro-
poses a simple distributed data-parallel dynamic graph processing
strategy that enables scalable dynamic GNN computation. Our eval-
uation of DynaGraph on a variety of dynamic GNN architectures
and use cases shows a speedup of up to 2.7× compared to existing
state-of-the-art frameworks.

1 Introduction
The recent past has seen an increasing interest in Graph Neural
Networks (GNNs) due to their ability to produce superior results in a
wide variety of domains ranging from social networks to chemistry
and even medicine [32, 36, 39, 45]. GNNs enable such applications
by generating embeddings of graph entities—the nodes and edges—
using a combination of graph structure and feature information.
Today, a wide variety of GNN architectures exist that vary in how
the embeddings are generated. To support these GNN architectures,
state-of-the-art GNN frameworks have incorporated optimizations
that enable them to handle large graphs, with billions of nodes and
edges [8, 9, 21, 30, 35, 46, 49–51].

While existing GNN frameworks have enabled scalability, ease of
programming, and several other desirable properties, they currently
assume that the input graph is static: that is, the nodes, edges and
features associated with the graph do not change once ingested into
the framework. However, real-world graphs are dynamic in nature
- they evolve over time. For instance, social network graphs evolve
as new users join and content is generated, knowledge graphs are
constantly augmented with new information, and drug interaction
networks evolve over time with new interaction trial results [1,
27, 29]. The ability to process dynamic graphs can be useful for
many scenarios that can benefit from GNNs. For instance, traffic
forecasting systems can predict future traffic statistics based on
historical data flows with the help of GNNs [28, 57, 59]. Thus,
supporting dynamic graphs is a requirement for enabling many
GNN applications.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9384-3/22/06.
https://doi.org/10.1145/3534540.3534691

In this paper, we focus on efficient dynamic GNN training. The
natural way to support dynamic graphs is to view them as a series of
static snapshots, as proposed by existing time-evolving graph pro-
cessing systems [19, 26, 34]. While the main task in time-evolving
graph processing systems is to execute graph algorithms on a se-
ries of snapshots of the graph, dynamic GNNs have the additional
task of capturing the temporal dependencies. Consequently, the
general approach in dynamic GNN is to combine spatial embed-
ding techniques that leverage structural information in the graph
with temporal information encoding techniques that capture the
dynamicity aspect in the generated embeddings [3, 28, 33, 38, 43].
The spatial embedding is enabled by static GNN techniques, such
as GCNs [15, 25, 54] and GAT [47], whereas a common approach
to capture temporal encoding is to use Recurrent Neural Networks
(RNNs) such as LSTMs [17] or GRUs [6]. Hence, existing dynamic
GNN proposals combine GNNs and RNNs by stacking them in
an alternating fashion [33, 43], integrating GNN and RNN oper-
ations [3, 38, 43, 59], or using autoencoding or generative mod-
els [13, 14]. Unfortunately, all these approaches lead to significant
performance issues and create scalability bottlenecks.

We present DynaGraph1, a system that enables efficient dy-
namic GNN training. DynaGraph is based on the observation that
the root of inefficiencies in existing dynamic GNN proposals stem
from the fact that they combine the structural and temporal embed-
ding operations independently. As a result, they miss opportunities
to optimize many underlying operations. Thus, DynaGraph fo-
cuses on reducing or eliminating such inefficiencies by leveraging
the computational structure of spatial and temporal embedding
generation and exploiting opportunities to utilize this knowledge
across them. DynaGraph proposes three techniques to provide
efficient training of dynamic GNNs.

First, DynaGraph proposes cached message passing as a tech-
nique to eliminate redundant neighborhood aggregation. This is
based on our observation that the popular approach to combining
GNN and RNN is by replacing the matrix multiplication in the RNN
using graph convolution operations. We denote this combination
as GraphRNN cell. As a result, each GraphRNN cell would consist
of multiple GNN operations. For instance, a LSTM-based dynamic
GNN (GraphLSTM) cell consists of 8 GNN operations. While each
gate of GraphRNN ingests two kinds of operations—time-dependent
and time-independent, each kind performs neighborhood aggrega-
tion independently on different inputs. However, inputs are shared
or partially shared across gates and performed neighborhood aggre-
gation on the same snapshot at a timestep. For example, four gates
of a GraghLSTM all take node features as inputs for time-dependent
GNN operations and hiddens from the previous timestep for time-
dependent GNN operations. DynaGraph uses this cross-operation
information to build cached message passing, where messages be-
tween graph entities are cached at the destination and reused. To

1for Dynamic Graph Neural Network Processing System.

1

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3534540.3534691
https://creativecommons.org/licenses/by/4.0/

Figure 1: Dynamic GNNs combine techniques for structural information encoding (e.g., GNNs) with techniques for temporal information
encoding (e.g., RNNs). While there are many ways to combine GNNs and RNNs, the most adopted approach is to replace the matrix multi-
plications in the RNN, such as LSTMs or GRUs, with graph convolution 𝐺𝑐𝑜𝑛𝑣 . Time-independent graph convolutions in the orange boxes
take current nodes representation 𝑥𝑡 as inputs, while time-dependent graph convolutions in the blue boxes depend on the hiddens ℎ𝑡−1 from
previous timesteps.

identify redundancy in such messages, DynaGraph uses a simple
interface that uniquely identifies messages across spatial and tem-
poral operations and caches them for future use. It then exposes
the cache using the well-known PUT and GET interface.

Second, it uses time-step fusion to reduce the underutilization
of GPUs for small real-world datasets. We base this on our ob-
servation that existing dynamic graphs for various applications
typically have a small number of input features, often nodes in the
graphs are associated with less than a few 10s of features. Moreover,
spatio-temporal graphs, in which node features change over time
while the underlying graph structure is static, are widely used in
various applications such as traffic forecasting[56] and pandemic
forecasting[22]. Due to the static graph structure, the neighborhood
aggregation of time-independent GNNs across timesteps can be
fused to one to save computation. DynaGraph leverages this in-
formation and fuses the inputs for time-independent operations in
dynamic GNN, thus reduce redundant neighborhood aggregation
and avoiding GPU underutilization.

Third, DynaGraph proposes a data-parallel execution model for
dynamic GNN training in a distributed setting. We observe that
existing frameworks that support distributed GNN training, such
as DGL, use graph partitioning on a single graph (snapshot) as a
primary technique to distribute work across machines. However,
dynamic GNNs typically have a large number of snapshots of the
graph, where they are trained in a sequence manner. Extending the
same approach to distributing dynamic GNNs results in poor per-
formance due to partitioning and communication overhead. Instead,
DynaGraph proposes partitioning the snapshots at sequence level
across the GPUs in the cluster. It then executes the GNN-RNN oper-
ation in a data-parallel fashion, thus providing efficient distributed
training.

The combination of these techniques enables DynaGraph to
outperform existing state-of-the-art GNN processing frameworks
for dynamic GNN training. For instance, on awide range of dynamic
GNN architectures, DynaGraph is able to provide up to 2.7× faster

training times compared to DGL [50] and PyG Temporal [8, 40],
two popular GNN training frameworks.

2 Background

2.1 Dynamic Graph Neural Networks

While most GNNs consider the input graph to be static, real-world
graphs tend to be dynamic and vary over time. Examples of dy-
namic graphs can be seen in almost all domains that GNNs are
suited for, ranging from social media to medicine. Consequently,
machine learning researchers have investigated dynamic GNN ar-
chitectures: [28, 57, 59] apply dynamic GNNs for traffic forecasting
to predict the future traffic speeds of a sensor network given his-
toric traffic speeds and road networks. Dynamic GNNs have also
been used for epidemiological reporting tasks [37, 41]. Other appli-
cations of dynamic GNNs include fraud detection [31, 48, 52] and
human motion prediction [55].

Dynamic GNNs have focused on two aspects of dynamicity:
the dynamicity of the graph structure, and the dynamicity of the
input features. The graph structure and the input features can be
independently dynamic; for instance, the features may remain static
while the structure changes over time, and vice-versa. For example,
spatio-temporal GNNs [28, 55, 57], one kind of dynamic GNNs, are
designed specifically for graphs where the structure of the graph is
static and only the input features change over time.

The general approach in dynamic GNN is to combine techniques
for structural information encoding with techniques for temporal
information encoding. The common practice is to use a GNN to en-
code the structural information, while Recurrent Neural Networks
(RNNs) or self-attention networks are used to encode temporal
information [40, 44].

2.2 Challenges in Dynamic GNN Training

Though dynamic GNNs have been shown to be effective for a wide
variety of tasks, efficiently training dynamic GNNs faces many
challenges.

2

Figure 2: (a) Existing systems apply graph convolution operations independently on gates in each iteration,which results in duplicatemessages
𝑚𝑥𝑡 and𝑚ℎ𝑡−1 being generated and communicated. (b) DynaGraph proposes computing these messages only once, then caching and reusing
them across gates to reduce computation and communication. For GraphLSTM, whenOnlyGate i needs to compute the intermediatemessages
-𝑚𝑥𝑡 and𝑚ℎ𝑡−1 . DynaGraph stores the𝑚𝑥𝑡 and𝑚ℎ𝑡−1 in the cache, which can be reused by other Gates instead of recomputing them.

2.2.1 Challenge #1: Redundant Neighborhood Aggregation
As we discussed earlier (§2.1), dynamic GNNs replace matrix multi-
plications in each of the gates of RNNs with GNN layers (fig. 1). Just
as RNNs consist of two classes of matrix multiplications [58]—those
that depend solely on the inputs and those which have recursive
dependence on previous states, we can categorize the GNNs in the
dynamic GNN into two categories. The first only depends on the
input features of the nodes, while the second depends on previous
hidden states. There is no redundancy in matrix multiplications
of RNNs since they use different weights. However, for dynamic
GNNs, graph convolutions operated on the same graph and node
features perform the same neighborhood aggregation, before any
linear transformation involving weights, resulting in poor perfor-
mance. Hence, this challenge is unique to dynamic GNNs but not
applicable to RNNs.

2.2.2 Challenge #2: Ineffectiveness of Graph/Feature Par-
titioning in Distributed Training State-of-the-art distributed
GNN frameworks, such as Deep Graph Library (DGL), only sup-
ports static GNNs in distributed settings. Since static GNNs only
need to process a single graph, DGL partitions both the graph struc-
ture and node/edge features across machines and then uses data
parallelism to train a static GNN. A natural approach to extending
this to dynamic GNNs is to partition each snapshot individually
so that the machines can compute them in parallel. However, this
scheme is inefficient for two reasons. First, the number of snapshots
in a dynamic graph dataset can be very large, ranging from 100s
to many 1000s. Partitioning and maintaining a large number of
snapshots can be expensive. Second, the graph structure and the
node/edge features in each snapshot may vary, which means that
partitioning them may lead to poor performance due to communi-
cation requirements.

3 Dynamic GNN Training with DynaGraph
DynaGraph is based on our key observation that existing ap-
proaches to dynamic GNN processing are by combining GNN and
RNN operations independently (§2). Consequently, the graph con-
volutions dominate the execution time. DynaGraph proposes a

new, efficient way of dynamic GNN training that reduces the over-
head by cross-layer optimizations across GNN and RNN operations.
To do so, DynaGraph incorporates many techniques, which we
describe in detail in this section.

3.1 Cached Message Passing

Generally, many GNN models can fit into the message passing
paradigm proposed by [10], which consists of two main steps: 1)
Aggregate neighbor’s representation for each node with certain
reduce function such as summation and average; 2) Apply a linear
projection to the aggregated representation followed by a non-
linearity.

In each iteration, each gate of a GraphRNN cell computes two
graph convolutions. However, we notice that the convolution oper-
ations across all gates result in generating the same intermediate
message passing results𝑚𝑥𝑡 for all time-independent graph con-
volutions and 𝑚ℎ𝑡−1 for all time-dependent graph convolutions,
respectively, where 𝑥𝑡 is current node representation and ℎ𝑡−1 is
previous hidden states 2. This is because𝑚𝑥𝑡 (𝑚ℎ𝑡−1) only depends
on 𝑥𝑡 (ℎ𝑡−1) and the graph properties such as structure and
edge weights, which is the same for all gates. As an example,
we split graph convolutions in GraphLSTM into two steps in fig. 2
(a): 1) compute intermediate message passing results𝑚𝑥𝑡 (𝑚ℎ𝑡−1)
and 2) compute final output of graph convolution 𝑔𝑥𝑡 (𝑔ℎ𝑡−1) using
𝑚𝑥𝑡 (𝑚ℎ𝑡−1). Here, we notice that across the gates, the same𝑚𝑥𝑡

(𝑚ℎ𝑡−1) are generated multiple times during the graph convolution
operation. This results in large overhead, especially in distributed
settings. Thus, DynaGraph proposes caching these messages and
reusing them across gates in an iteration.

Moreover, it is common that dynamic GNNs are trained in a
sliding-window fashion using a sequence of snapshots, which pre-
dicts either next timestep or multiple future time steps. Unlike other
deep learning tasks, it is special that timesteps as labels (ground
truth) in current sequence may be inputs in subsequent sequence(s)

2The time-dependent graph convolution in Gate h of GraphGRU should be computed
separately, as it depends on the results of Gate r as shown in fig. 1.

3

in time-series forecasting tasks. For example, let 𝑆𝑡 be the snap-
shot at time 𝑡 , 𝑆1 to 𝑆4 are used as inputs to predict 𝑆5 in the first
sequence. Next, the sliding window moves forward one timestep
so that 𝑆2 to 𝑆5 are used as inputs to predict 𝑆6 in the second se-
quence, and so on and so forth. This brings another opportunity
to reuse intermediate message passing results across snapshots
since the neighborhood aggregation has already been performed
on some input snapshots when they were used as labels in previous
sequence(s).

As shown in fig. 2 (b), for each snapshot, DynaGraph uses a
dedicated cache to store intermediate messages if needed (please
see §3.4 for a description of DynaGraph ’s API that enables this).
The cache store resides in GPU if it has enough memory; otherwise,
CPU cache is used for large intermediate messages. The cached
messages are uniquely identified by the snapshot index and graph
convolution inputs (node features or hiddens). When new messages
need to be generated, DynaGraph checks its cache to determine
whether there is an existing cached message that can be reused.
If so, the cached message can be reused thus avoiding the need
for computation and communication; otherwise, the intermediate
messages need to be computed from scratch and cached if they can
be reused. When the training process on a snapshot as both input
and label is finished, the cache store would automatically evict all
cached messages for that snapshot. Users can also evict the cached
messages earlier by an explicit evict call if they cannot be reused
anymore.

3.2 Input Timestep Fusion

Similar to traditional RNNs, gates of GraphRNN operate on time-
dependent and time-independent inputs. We notice that the time-
independent graph convolution operation operates independently
at each timestep. This is necessary for graphs where the underlying
structure changes over time as the convolution results depend
on it. However, for spatio-temporal graphs, it is not efficient to
execute time-independent operations separately at each time step,
especially when nodes have low dimensional features, which results
in substantial overhead to the execution time. Fortunately, it is
relatively straightforward to mitigate this overhead. DynaGraph
uses input timestep fusion to achieve this.

For each GraphRNN cell, DynaGraph first concatenates the
inputs along the timestep dimension. Then it executes a single graph
convolution operation on the concatenated inputs for all timesteps
in the sequence. We note that this optimization brings more benefits
for small datasets, especially when GPU is underutilized due to
small graph size or low dimensional features.

3.3 Distributed Training

Though most available real-world datasets for dynamic GNNs have
relatively small graph structures and/or low dimensional features,
we see a clear future direction to enable dynamic GNNs for large-
scale graphs that have millions or even billions of nodes and edges.
In addition, dynamic graphs can be quite large due to the num-
ber of snapshots they contain. As an example, in the METR-LA
dataset, while each individual snapshot is fairly small, the number
of snapshots is large making the dataset very large(§5). Moreover,
with sequence modeling, dynamic GNNs are trained on a sequence
of snapshots in a sliding-window fashion which further increases

the size of samples. Thus, DynaGraph supports distributed execu-
tion of dynamic GNN training for scalability.

3.3.1 GraphPartitioning Unlike the state-of-the-art static GNN
frameworks, which partitions at snapshot/graph level to train a
static GNN, DynaGraph partitions dynamic datasets at a sequence
level considering the temporal dimension. For each sequence of
snapshots, DynaGraph partitions it across machines as even as
possible. We use a simple random partition scheme to distribute
data evenly across devices based on the number of nodes, features,
and timesteps. Specifically, if node A in the first snapshot reside in a
device, node A in the subsequent snapshot(s) of the same sequence
also belongs to the same device. This simple partition scheme en-
ables data-parallel distributed execution of dynamic GNN training
by ensuring that the same nodes across snapshots in a sequence
reside in the same device to reduce network communication of
nodes exchanging.

3.3.2 Data-parallel Execution To enable distributed training
for dynamic GNNs, we partition sequences of snapshots randomly
and evenly across nodes. Note that if the underlying graph structure
is static, we only store one copy of that instead of replicating it in
memory; otherwise, graph structures get partitioned and fed into
training together with its associated snapshots. Moreover, unlike
existing GNN systems, which replicate snapshots in time-series
forecasting tasks, DynaGraph uses a sliding window to iterate
over the datasets to achieve memory-efficient training. Each GPU
computes the forward and backward phase for its minibatch in-
dependently and then synchronize the model parameters across
them.

3.4 DynaGraph API

class GCN(nn.module):
def __init__(in_feats, out_feats):
linear = nn.Linear(in_feats, out_feats)

generate messages
def msg_udf(g, feats, u, v): return msg
reduce aggregated messages
def reduce_udf(agg_msg): return sum(agg_msg)
compute new representation
def update(msg_rst):
return linear(msg_rst)

def forward(g, feats):
msg_rst = msg_pass(g, feats, msg_udf, reduce_udf).cache

↩→ ()
return update(msg_rst)

gcrn = integrate(GraphLSTM, GCN)
seq2seq_gcrn = stack_seq_model(in_feats, out_feats,

↩→ num_layers, gcrn)

Listing 1: Using DynaGraph ’s API to implement a seq2seq GCRN-
LSTM model.

DynaGraph exposes all its optimization via a simple API that
makes it easy for a developer to leverage it in a new dynamic GNN
architectures. The API, shown in table 1, consists of the following
five functions:

• cache stores intermedia message passing result in global
cache if it has not been cached yet; otherwise, do nothing.

4

API Description
cache() cache caller function outputs; do nothing if already cached.
msg_pass(g, feats,
msg_udf, reduce_udf)

Computes intermediate message passing results based on user-defined message
function msg_udf and reduce function reduce_udf .

update(msg_rst) Computes output representation from intermediate message passing results.
integrate(rnn, gnn) Integrates a GNN into a GraphRNN to create a dynamic GNN.
stack_seq_model(in_feats,
out_feats, num_layers, gcrn) Stacks dynamic GNN layers to an encoder-decoder structure.

Table 1: The simple APIs exposed by DynaGraph for dynamic GNNs.

• msg_pass is a user-provided function to generate interme-
diate message passing results based on user-defined message
function and reduce function.

• update is a user-provided function to generate hidden rep-
resentation by applying zero or more element-wise and non-
element-wise NN operations on intermediate message pass-
ing result.

• integrate integrates a GNN into aGraphRNN, such as Graph-
GRU and GraphLSTM.

• stack_seq_model stacks dynamic GNN layers to an encoder-
decoder seq2seq model.

Listing 1 outlines how GCRN-LSTM [43] can be implemented
in DynaGraph. Using DynaGraph’s API, the developer can build
dynamic GNNs simply and optimizations discussed in §3 can be
done under the hood. To define a GCN layer, the developer first
defines the msg_pass function that aggregates the representation
of its neighborhoods by applying summation (see reduce_udf) over
the incoming source vertex representation (seemsg_udf). Note that
in forward function, msg_pass calls cache() to cache the outputs
if not yet cached; otherwise it performs no operation. Next, the
intermediate message passing results are fed into a fully connected
layer (see update). The developer then can use integrate function to
integrate GCN into LSTM to create a dynamic GNN layer. Moreover,
if a seq2seq structure is needed, stack_seq_model can be used to eas-
ily stack the dynamic GNN layers to an encoder-decoder structure,
which enables optimizations specially for seq2seq structures behind
the scenes, such as timesteps fusion and reuse message passing re-
sults across snapshots. We discuss DynaGraph’s implementation
details in §4.

4 Implementation

DynaGraph is implemented on top of DeepGraph Library (DGL) [50]
, a popular open-source framework for training GNNmodels.Dyna-
Graph uses DGL as a graph propagation engine for neighborhood
aggregation using message passing primitives and other graph re-
lated operations, and PyTorch as the neural network execution
runtime. We extended DGL in multiple ways to support the opti-
mizations of fusing timesteps, caching and reusing message passing
results, as well as distributed Dynamic GNN training. First, we
implement the optimization of input timestep fusion for seq2seq
models by automatically concatenating time-independent inputs
along the feature dimension as a single tensor and splitting the
outputs back for each snapshot. Second, we enable reusing interme-
diate message passing results using caching. DynaGraph caches

Graph Nodes Features Snapshots

METR-LA [20] 207 2 34,272
PEMS-BAY [28] 325 2 52,116
METR-LA-Large 423,936 128 34,272
PEMS-BAY-Large 665,600 128 52,116

Chickenpox Hungary [40] 20 4 522
Wikipedia Math [40] 1068 8 731
Windmill Output [40] 319 8 17,472

Table 2: Graph datasets used in evaluating DynaGraph.

the outputs of msg_pass (see §3.4) if not yet cached. We imple-
ment a dictionary on each snapshot to be a mutable mapping to
the cached results. When performing the repeated message passing
operations, cached results can be extracted and reused to save com-
putational overhead. Last, we implement graph partitioning and
data-parallel model for distributed dynamic GNN training. We parti-
tion sequences of snapshots randomly and evenly across nodes. We
repeat the random partition every epoch to guarantee randomness.
We wrap a user-defined dynamic GNN model with DistributedDat-
aParallel() from PyTorch for weight synchronization and update.

5 Evaluation
We evaluateDynaGraph on several real-world graphs and dynamic
GNN architectures. The key results from our evaluation are:

• DynaGraph is able to improve performance compared to
DGL by up to 2.5× and PyG Temporal by up to 2.7×.

• DynaGraph exhibits superior scaling characteristics com-
pared to DGL, and its benefits increase as the number of
GPUs in the cluster increase.DynaGraph’s distributed train-
ing technique is able to match the published accuracy results
for known training tasks.

Experimental Setup: All of our experiments were conducted
on a GPU cluster with 8 nodes, each of which has dual 12-core Intel
Xeon Gold 6226 CPU, 384 GB of RAM, and two NVIDIA Tesla V100
16 GB GPUs, if not specified. GPUs on the same node are connected
via a shared PCIe interconnect, and nodes are connected via a 10
Gbps Ethernet interface. All servers run 64-bit Red Hat Enterprise
Linux 7.6 with CUDA library v11.1, PyTorch v1.9.0, DGL v0.7, and
Pytorch Geometric v2.0.2.

Datasets & Comparison:We list the five graphs we use in our
experiments in table 2. The first two are traffic forecasting datasets
from [28]: METR-LA [20], collected from 207 loop detectors on high-
ways in Los Angeles County in aggregated 5-minute intervals for 4
months, and PEMS-Bay [28] collected from 325 traffic sensors in the
Bay Area for 6 months. When training on these two datasets, 70%

5

Dataset Model DGL DynaGraph Speedup

METR-LA
DCRNN 97.51 68.36 1.43x
GCRN-GRU 97.04 60.69 1.60x
GCRN-LSTM 138.26 59.85 2.31x

PEMS-BAY
DCRNN 146.22 102.97 1.42x
GCRN-GRU 155.12 92.84 1.67x
GCRN-LSTM 217.23 96.97 2.24x

Table 3: DynaGraph is able to gain up to 2.31× improvement in epoch time (sec) over DGL on a single machine.

Dataset Model PyG Temporal DynaGraph Speedup

Chickenpox Hungary

TGCN 2.17 0.98 2.21x
GC-LSTM 2.44 1.06 2.30x
GCRN-GRU 3.07 1.61 1.91x
GCRN-LSTM 4.61 1.71 2.70x

Wikipedia Math

TGCN 3.76 1.62 2.32x
GC-LSTM 3.97 1.80 2.21x
GCRN-GRU 4.51 2.74 1.65x
GCRN-LSTM 5.88 2.54 2.31x

Windmill Output

TGCN -† -† -†
GC-LSTM 89.02 41.99 2.12x
GCRN-GRU 111.93 68.97 1.62x
GCRN-LSTM 149.38 65.52 2.28x

† : Not available since baseline runs out of memory.
Table 4: DynaGraph is able to gain up to 2.7× improvement in epoch time (sec) over PyG Temporal on a single machine.

of data is used for training, 20% is used for testing while the remain-
ing 10% for validation, which follows DCRNN [28] paper and DGL
settings. The latter three—Chickenpox Hungary [41], Wikipedia
Math [40], Windmill Output [40]—were released recently by PyG
Temporal. When training on these two datasets, 90% of data is
used for training, 10% is used for testing, as used in PyG Tempo-
ral paper [40]. We compare DynaGraph against DGL [50] and
PyG Temporal [8, 40], two popular state-of-the-art GNN processing
frameworks.We note that PyG does not support distributed training,
and DGL’s distributed training only support static graphs - only a
single distributed graph (DistGraph) is allowed according to their of-
ficial document. Hence, we apply the same distributed data-parallel
model as DynaGraph on DGL, denoted as DGL-P, but without the
overhead reduction techniques that it incorporates (timestep fusion
and cached message passing). Since available real-world datasets
such as METR-LA and PEMS-Bay, are not large enough for the
cluster settings we use (e.g., 8 or 16 GPUs), we increase the size
of the dataset by simply replicating the dataset many times
so as to obtain large-scale datasets, i.e., METR-LA-Large and
PEMS-Bay-Large, that can benefit from distributed training. For
example, in METR-LA-Large, a sequence of 12 snapshots contains
more than 5 million nodes in total.

Models: We use five different DGNN models: GCRN-GRU [43],
GCRN-LSTM [43], DCRNN [28], TGCN [59], GC-LSTM [3]. These
models represent the state-of-the-art dynamic GNNs that have been
applied to various tasks. Unless otherwise stated, when compared
to DGL, we use a 2-layer seq2seq, encoder-decoder structure to
predict multiple timesteps (a sequence of snapshots). Here, we

set sequence length, also known as sliding-window size, to be 12,
following official examples from DGL. Similarly, when comparing
against PyG Temporal, we use a single-layer dynamic GNN followed
by a fully connected feedforward layer to predict a single snapshot
at next timestep, as used in official PyG Temporal examples. Our
main metric for comparison is the epoch time, the time taken by
the framework to complete one pass on the entire dynamic graph
dataset (all the snapshots). We use a hidden size of 64 for DGL and
32 for PyG Temporal experiments. Minibatch size is set to 64 for
single-machine DGL experiments. For PyG Temporal experiments,
we follow the cumulative training in official examples. All reported
timing results are measured after warm-up and averaged over 10
repetitions.

5.1 Single Machine Performance

We first present the performance of DynaGraph on a single ma-
chine. table 3 shows the comparison between DynaGraph and
DGL, and table 4 shows the comparison between DynaGraph and
PyG Temporal for this experiment.

We observe that DynaGraph is able to outperform comparison
systems for all datasets and models. Compared to DGL, Dyna-
Graph’s speedups range from 1.42× to 2.31×. Compared to PyG
Temporal, DynaGraph is able to attain speedups between 1.62×
and 2.7×. We notice that the LSTM-based models benefit more from
DynaGraph’s techniques compared to GRU-based models. This is
because of the increased number of gates in the LSTM-basedmodels,
where cached message passing is able to obtain more opportunities
for message reuse. The reason for DynaGraph’s increased per-
formance against PyG Temporal can be attributed to the different

6

Dataset Model DGL-P DynaGraph Speedup

METR-LA-LARGE
DCRNN 2,223 1,576 1.41x
GCRN-GRU 1,993 1,261 1.58x
GCRN-LSTM 2,825 1,332 2.12x

PEMS-BAY-LARGE
DCRNN 3,466 2,249 1.54x
GCRN-GRU 3,570 2,122 1.68x
GCRN-LSTM 5,151 2,308 2.23x

Table 5: DynaGraph is able to gain up to 2.23× improvement in epoch time (sec) over DGL-P in a distributed setting.

datasets and architectural differences in how GNN operations are
implemented compared to DGL. We also notice that the speedups
of the same model for different datasets are variant. Specifically, a
minor degradation of speedup presents for large datasets like Wind-
mill Output. This is due to heavier data movement between CPUs
and GPUs for larger datasets, which cancels out some performance
benefits with DynaGraph’s techniques.

5.2 Distributed Training Performance

Next, we present the performance of DynaGraph in a distributed
setting with data parallelism. As mentioned before, this comparison
experiment uses only DGL, since PyG Temporal does not support
distributed execution for dynamic GNN implementations yet. Since
DGL does not support distributed training of dynamic GNNs but
only static graphs (it only allows creation of a single DistGraph
object), we apply the same distributed data-parallel model as Dy-
naGraph on DGL, denoted as DGL-P, but without the overhead
reduction techniques it incorporates (timestep fusion and cached
message passing). The results of this experiment are shown in ta-
ble 5. Here, DynaGraph’s speedups range up to 2.23× compared
to DGL-P. The results indicate that DynaGraph is able to carry
over its single-machine performance to a distributed setting. The
speedups present a minor degradation compared with the single-
machine setting, which can be attributed to overhead of gradient
synchronization across machines.

5.3 Scaling Characteristics

This experiment evaluates the strong scaling properties of Dy-
naGraph with its optimization. We choose the METR-LA-Large
dataset and train GCRN-GRU and GCRN-LSTM model on it. To un-
derstand the scaling properties, we vary the number of machines,
thereby varying the number of GPUs used by DynaGraph and
DGL-P. We report the average throughput (the number of samples
processed per second) in Figure 3.

DynaGraph exhibits near-linear scaling characteristics andmain-
tains its benefits (up to 2.54x) with the increase of the number of
machines, compared with DGL-P. This is because DynaGraph’s
techniques are independent of the number of machines and there
is no extra network communication to enable them. We see a mi-
nor degradation of speedup, for example, speedup of GCRN-LSTM
model is 2.54x for two nodes and 2.23x for eight nodes, due to
overhead of gradient synchronization across more machines.

5.4 Accuracy

This experiment shows correctness of our approach. We train var-
ious models on DGL and PyG Temporal and evaluate them on 5
datasets. For DGL, DCRNN are evaluated based on Mean Absolute

0
10
20
30
40
50
60
70
80

GCRN-GRU

DGL-P
DynaGraph

2(4) 4(8) 8(16)0
10
20
30
40
50
60
70
80

GCRN-LSTM

DGL-P
DynaGraph

Machines (# GPUs)

Th
ro

ug
hp

ut
 (s

na
ps

ho
ts

/s
ec

)
Figure 3:DynaGraph is able to scalemore gracefully as the number
of GPUs in the cluster increase.

Error (MAE); for PyG Temporal, GC-LSTM, GCRN-GRU and GCRN-
LSTM are evaluated based on Mean Squared Error (MSE). Models
were trained for 100 epochs to calculate the average MAE or MSE
from 10 experimental runs. The choices are made by following the
official examples in DGL and PyG Temporal.

As shown in table 6, DynaGraph can achieve the same accuracy
as DGL and PyG Temporal. This is because DynaGraph accelerates
DGNN training by eliminating redundant computation, which does
not affect computational correctness. We observe evident differ-
ence between Reported MAE/MSE and Test MAE/MSE for some
models. For DCRNN, we attribute this to the difference in detailed
implementation of [28] and DGL. For PyG models, this may be be-
cause of the differences in the number of node features used, which
is not mentioned explicitly in [40]. In our experimental runs, we
follow the default setting in the official examples of PyG Temporal
as shown in table 2. Nevertheless, DynaGraph can achieve same
test accuracy as baselines with its optimizations.

6 Shortcomings
Finally, we discuss cases where DynaGraph fails to provide bene-
fits. A fundamental assumption made by DynaGraph is that the
intermediate message passing results can be shared by all GNNs in
a GraphRNN cell. However, this is not applicable when an attention
mechanism is involved like GAT [47], since there are learnable
weights involved when computing the attention score between
two neighbors, which makes intermediate message passing results
different for GNNs in a GraphRNN cell.

7 Related Work
(Dynamic) Graph Processing Systems: Enabling graph algo-
rithms on large-scale, real-world graphs has long been an active area

7

Framework Model Dataset Reported MAE/MSE Test MAE/MSE DynaGraph MAE/MSE

DGL DCRNN METR-LA 3.60 2.712 ± 0.024 2.721 ± 0.021
PEMS-BAY 2.07 1.618 ± 0.021 1.609 ± 0.018

PyG Temporal TGCN
Chickenpox Hungary 1.111 ± 0.022 1.149 ± 0.023 1.153 ± 0.018
Wikipedia Math 0.846 ± 0.020 0.616 ± 0.015 0.617 ± 0.014
Windmill Output -† -‡ -‡

GC-LSTM
Chickenpox Hungary 1.116 ± 0.023 1.096 ± 0.004 1.101 ± 0.007
Wikipedia Math 0.852 ± 0.016 0.686 ± 0.011 0.691 ± 0.016
Windmill Output -† 1.036 ± 0.012 1.034 ± 0.009

GCRN-GRU
Chickenpox Hungary 1.132 ± 0.023 1.119 ± 0.010 1.104 ± 0.012
Wikipedia Math 0.837 ± 0.021 0.706 ± 0.005 0.713 ± 0.008
Windmill Output -† 1.021 ± 0.013 1.019 ± 0.015

GCRN-LSTM
Chickenpox Hungary 1.119 ± 0.022 1.044 ± 0.011 1.038 ± 0.013
Wikipedia Math 0.868 ± 0.018 0.823 ± 0.021 0.831 ± 0.017
Windmill Output -† 1.043 ± 0.021 1.042 ± 0.018

† : Not present in official documents.
‡ : Not available since baseline runs out of memory.

Table 6:DynaGraph achieves the same accuracy as DGL and PyG Temporal.We collect ReportedMAE/MSE from [28] for DCRNN and [40] for
PyG Temporal models. Test MAE/MSE shows actual average test loss from our experimental runs.DynaGraphMAE/MSE shows the accuracy
that DynaGraph can achieve with proposed optimizations.

of research, and several systems have the capability to process mas-
sive graphs, some even in the range of trillions of edges [4, 5, 19, 53].
In graph processing literature, there has been an increasing interest
in processing dynamic, or time-evolving graphs, for the purpose
of temporal, historic, or real-time analysis [11, 12, 18, 23]. These
systems focus on enabling graph algorithms and graph mining, and
do not support embedding generation as required in GNNs.
Graph Neural Network Systems: GNNs have become an active
area of research in the recent past, both in the machine learning
and the systems community. The machine learning community
has proposed a number of GNN architectures, each with its own
advantages for particular tasks [7, 16, 25, 47]. Recently, many efforts
have been made to scale GNNs to large-scale graphs by leverag-
ing accelerators such as GPUs [24]. Some of these proposals are
single-machine systems, while others support distributed settings.
PyTorch Geometric [8] and DGL [50] are two of the most popular
frameworks support GNN training. ROC [21] and 𝑃3 [9] proposed
techniques to scale GNN training to real-world graphs.
Dynamic GNNs: Since real-world graphs are dynamic, there has
been an increasing interest in supporting dynamic graphs in GNNs.
Most of these works take a discrete view of a dynamic graph that
is represented by a series of snapshots, and can be classified into
three [44]. Stacked dynamicGNNs propose using a separate GNN
for each snapshot of the graph and then feeding the output to a
time-series component such as an RNN. Works in this space differ
on the type of RNN used. GCRN-M1 [43] stacks GCN and LSTM,
WD-GCN [33] uses a separate LSTM per node. DySAT [42] stacks
a GAT and a Transformer. HDGNN [60] focuses on heterogeneous
dynamic networks using spectral GCNs and a variety of RNNs.
StrGNN [2] uses a stacked dynamic GNN for anomaly detection.
Integrated dynamic GNNs, the focus of this paper, propose com-
bining GNNs and RNNs in one layer, thus capturing the spatial
and temporal modeling in the same layer. GCRN-M2 [43] inte-
grates GCN in an LSTM (i.e., GCRN-LSTM model in this paper).

GC-LSTM [3] is similar to GCRN-M2 but only performs a spectral
graph convolution on hiddens. T-GCN [59] integrates GCN into
GRU but only performs a graph convolution on inputs. Finally,
Dynamic graph autoencoders and generative models, such
as DynGEM [14], use a deep autoencoder to encode snapshots of
discrete node-dynamic graphs.
Dynamic GNN Systems: While we are not aware of any systems
that are specifically built for dynamic GNNs, existing GNN process-
ing frameworks, such as PyTorch Geometric (PyG) and DGL have
some support for dynamic GNNs. Pytorch Geometric Temporal [40]
is a library built on PyG [8] for temporal graph neural networks. It
provides data loaders and iterators for spatiotemporal datasets. DGL
supports implementing dynamic GNNs as a combination of GNN
and RNN operations explicitly by the developer. Unfortunately,
considering GNN and RNN operations independently results in
inefficiencies by ignoring opportunities for optimizations.

8 Conclusion
In this paper, we presented DynaGraph, a system that supports
efficient dynamic GNN processing. DynaGraph is based on the ob-
servation that existing dynamic GNN architectures combine struc-
tural embedding techniques and temporal embedding techniques
independently, and that cross-optimizations can lead to a reduction
in overhead. Based on this, DynaGraph proposes cached message
passing, a technique to reduce the amount of redundant compu-
tation and communication, and timestep fusion, a technique to
combine time-independent components of the operation. To pro-
cess large-scale dynamic graphs, it further uses a simple distributed
data-parallel processing technique with a sequence-level partition
scheme for the snapshots in dynamic GNNs. These techniques
enable DynaGraph to achieve significant speedups compared to
the state-of-the-art. In our evaluation, DynaGraph is able to out-
perform DGL and PyG Temporal, two popular GNN processing
frameworks, by up to 2.7×.

8

References
[1] Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay Pande.

2017. Low Data Drug Discovery with One-Shot Learning. ACS Cen-
tral Science 3, 4 (2017), 283–293. https://doi.org/10.1021/acscentsci.6b00367
arXiv:https://doi.org/10.1021/acscentsci.6b00367 PMID: 28470045.

[2] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li, and
Haifeng Chen. 2020. Structural Temporal Graph Neural Networks for Anomaly
Detection in Dynamic Graphs. arXiv:2005.07427 [cs.LG]

[3] Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2021. GC-LSTM: Graph Convolu-
tion Embedded LSTM for Dynamic Link Prediction. arXiv:1812.04206 [cs.SI]

[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differ-
entiated Graph Computation and Partitioning on Skewed Graphs. In Proceedings
of the Tenth European Conference on Computer Systems (Bordeaux, France) (Eu-
roSys ’15). Association for Computing Machinery, New York, NY, USA, Article 1,
15 pages. https://doi.org/10.1145/2741948.2741970

[5] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-scale.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804–1815. https://doi.org/10.14778/2824032.
2824077

[6] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).
arXiv:1406.1078 http://arxiv.org/abs/1406.1078

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Con-
volutional Neural Networks on Graphs with Fast Localized Spectral Fil-
tering. In Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran
Associates, Inc., 3844–3852. https://proceedings.neurips.cc/paper/2016/file/
04df4d434d481c5bb723be1b6df1ee65-Paper.pdf

[8] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[9] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, 551–568. https://www.usenix.
org/conference/osdi21/presentation/gandhi

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry. CoRR
abs/1704.01212 (2017). arXiv:1704.01212 http://arxiv.org/abs/1704.01212

[11] Joseph Gonzalez, Reynold Xin, Ankur Dave, Daniel Crankshaw, and Ion Franklin,
Stoica. 2014. GraphX: Graph Processing in a Distributed Dataflow Framework. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI
14). USENIX Association, Broomfield, CO. https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/gonzalez

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA,
17–30.

[13] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2018. dyngraph2vec:
Capturing Network Dynamics using Dynamic Graph Representation Learning.
CoRR abs/1809.02657 (2018). arXiv:1809.02657 http://arxiv.org/abs/1809.02657

[14] Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Ar-
quimedes Canedo. 2018. DynamicGEM: A Library for Dynamic Graph Embedding
Methods. ArXiv abs/1811.10734 (2018).

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., 1024–1034. https://proceedings.
neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. IEEE Data Engineering Bulletin, Article
arXiv:1709.05584 (Sept. 2017), arXiv:1709.05584 pages. arXiv:1709.05584 [cs.SI]

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Computation 9, 8 (11 1997), 1735–1780. https:
//doi.org/10.1162/neco.1997.9.8.1735 arXiv:https://direct.mit.edu/neco/article-
pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf

[18] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, and Ion Stoica. 2018. ASAP: Fast, Approximate Graph Pattern
Mining at Scale. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 745–761.
https://www.usenix.org/conference/osdi18/presentation/iyer

[19] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 337–355. https://www.usenix.org/conference/nsdi21/
presentation/iyer

[20] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstanti-
nou, Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. 2014. Big
Data and Its Technical Challenges. Commun. ACM 57, 7 (jul 2014), 86–94.
https://doi.org/10.1145/2611567

[21] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos,
and V. Sze (Eds.), Vol. 2. 187–198. https://proceedings.mlsys.org/paper/2020/file/
fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf

[22] Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais,
and Shawn O’Banion. 2020. Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks. CoRR abs/2007.03113 (2020). arXiv:2007.03113
https://arxiv.org/abs/2007.03113

[23] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:
Vertex-Centric Graph Processing on GPUs. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing (Vancouver,
BC, Canada) (HPDC ’14). Association for Computing Machinery, New York, NY,
USA, 239–252. https://doi.org/10.1145/2600212.2600227

[24] Kevin Kiningham, Christopher Re, and Philip Levis. 2020. GRIP: A Graph Neural
Network Accelerator Architecture. arXiv e-prints, Article arXiv:2007.13828 (July
2020), arXiv:2007.13828 pages. arXiv:2007.13828 [cs.AR]

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (Palais des Congrès Neptune, Toulon, France) (ICLR
’17). https://openreview.net/forum?id=SJU4ayYgl

[26] Pradeep Kumar and H. Howie Huang. 2019. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). USENIX Association, Boston, MA, 249–263. https://www.
usenix.org/conference/fast19/presentation/kumar

[27] Junying Li, Deng Cai, and Xiaofei He. 2017. Learning Graph-Level Representation
for Drug Discovery. CoRR abs/1709.03741 (2017). arXiv:1709.03741 http://arxiv.
org/abs/1709.03741

[28] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In International
Conference on Learning Representations (ICLR ’18).

[29] Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, and
Woo Youn Kim. 2019. Predicting Drug–Target Interaction Using a Novel Graph
Neural Network with 3D Structure-Embedded Graph Representation. Journal
of Chemical Information and Modeling 59, 9 (2019), 3981–3988. https://doi.org/
10.1021/acs.jcim.9b00387 arXiv:https://doi.org/10.1021/acs.jcim.9b00387 PMID:
31443612.

[30] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN Training on Large Graphs via Computation-Aware Caching. In
Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery, New York, NY, USA, 401–415.
https://doi.org/10.1145/3419111.3421281

[31] Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, and Vincent
C. S. Lee. 2021. Anomaly Detection in Dynamic Graphs via Transformer. CoRR
abs/2106.09876 (2021). arXiv:2106.09876 https://arxiv.org/abs/2106.09876

[32] Yu-Chen Lo, Stefano E. Rensi, Wen Torng, and Russ B. Altman. 2018. Machine
learning in chemoinformatics and drug discovery. Drug Discovery Today 23, 8
(2018), 1538 – 1546. https://doi.org/10.1016/j.drudis.2018.05.010

[33] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognition 97 (Jan 2020), 107000. https://doi.
org/10.1016/j.patcog.2019.107000

[34] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven Syn-
chronous Processing of Streaming Graphs. In Proceedings of the Fourteenth Eu-
roSys Conference 2019 (Dresden, Germany) (EuroSys ’19). ACM, New York, NY,
USA, Article 25, 16 pages. https://doi.org/10.1145/3302424.3303974

[35] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single
Machine. In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, 533–549. https://www.usenix.org/
conference/osdi21/presentation/mohoney

[36] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event,
CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA,
2311–2320. https://doi.org/10.1145/3394486.3403280

[37] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. 2020.
United We Stand: Transfer Graph Neural Networks for Pandemic Forecasting.
CoRR abs/2009.08388 (2020). arXiv:2009.08388 https://arxiv.org/abs/2009.08388

[38] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2019.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs.
arXiv:1902.10191 [cs.LG]

9

https://doi.org/10.1021/acscentsci.6b00367
https://arxiv.org/abs/https://doi.org/10.1021/acscentsci.6b00367
https://arxiv.org/abs/2005.07427
https://arxiv.org/abs/1812.04206
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://www.usenix.org/conference/osdi21/presentation/gandhi
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://arxiv.org/abs/1809.02657
http://arxiv.org/abs/1809.02657
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://arxiv.org/abs/1709.05584
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://www.usenix.org/conference/osdi18/presentation/iyer
https://www.usenix.org/conference/nsdi21/presentation/iyer
https://www.usenix.org/conference/nsdi21/presentation/iyer
https://doi.org/10.1145/2611567
https://proceedings.mlsys.org/paper/2020/file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/fe9fc289c3ff0af142b6d3bead98a923-Paper.pdf
https://arxiv.org/abs/2007.03113
https://arxiv.org/abs/2007.03113
https://doi.org/10.1145/2600212.2600227
https://arxiv.org/abs/2007.13828
https://openreview.net/forum?id=SJU4ayYgl
https://www.usenix.org/conference/fast19/presentation/kumar
https://www.usenix.org/conference/fast19/presentation/kumar
https://arxiv.org/abs/1709.03741
http://arxiv.org/abs/1709.03741
http://arxiv.org/abs/1709.03741
https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1021/acs.jcim.9b00387
https://arxiv.org/abs/https://doi.org/10.1021/acs.jcim.9b00387
https://doi.org/10.1145/3419111.3421281
https://arxiv.org/abs/2106.09876
https://arxiv.org/abs/2106.09876
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/10.1016/j.patcog.2019.107000
https://doi.org/10.1145/3302424.3303974
https://www.usenix.org/conference/osdi21/presentation/mohoney
https://www.usenix.org/conference/osdi21/presentation/mohoney
https://doi.org/10.1145/3394486.3403280
https://arxiv.org/abs/2009.08388
https://arxiv.org/abs/2009.08388
https://arxiv.org/abs/1902.10191

[39] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos.
2019. Estimating Node Importance in Knowledge Graphs Using Graph Neural
Networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery &DataMining (Anchorage, AK, USA) (KDD ’19). Association
for Computing Machinery, New York, NY, USA, 596–606. https://doi.org/10.
1145/3292500.3330855

[40] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, , Guzman Lopez, Nicolas
Collignon, and Rik Sarkar. 2021. PyTorch Geometric Temporal: Spatiotemporal
Signal Processing with Neural Machine Learning Models. In Proceedings of the
30th ACM International Conference on Information and Knowledge Management.
4564–4573.

[41] Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci.
2021. Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal
Signal Processing with Graph Neural Networks. CoRR abs/2102.08100 (2021).
arXiv:2102.08100 https://arxiv.org/abs/2102.08100

[42] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
2019. Dynamic Graph Representation Learning via Self-Attention Networks.
arXiv:1812.09430 [cs.LG]

[43] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2016. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. arXiv:1612.07659 [stat.ML]

[44] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2020. Foundations
and modelling of dynamic networks using Dynamic Graph Neural Networks: A
survey. CoRR abs/2005.07496 (2020). arXiv:2005.07496 https://arxiv.org/abs/2005.
07496

[45] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae,
Zohar Bloom-Ackermann, Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H.
Badran, Ian W. Andrews, Emma J. Chory, George M. Church, Eric D. Brown,
Tommi S. Jaakkola, Regina Barzilay, and James J. Collins. 2020. A Deep Learning
Approach to Antibiotic Discovery. Cell 180, 4 (2020), 688 – 702.e13. https:
//doi.org/10.1016/j.cell.2020.01.021

[46] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, JinliangWei, Keval Vora, Ravi Netravali, Miryung Kim, and GuoqingHarry Xu.
2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed
CPU Servers and Serverless Threads. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 495–514.
https://www.usenix.org/conference/osdi21/presentation/thorpe

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=rJXMpikCZ

[48] Andrew Z. Wang, Rex Ying, Pan Li, Nikhil Rao, Karthik Subbian, and Jure
Leskovec. 2021. Bipartite Dynamic Representations for Abuse Detection. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (Virtual Event, Singapore) (KDD ’21). Association for Computing Machin-
ery, New York, NY, USA, 3638–3648. https://doi.org/10.1145/3447548.3467141

[49] LeiWang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,Wenyuan Yu, Zihang
Yao, and Jingren Zhou. 2021. FlexGraph: A Flexible and Efficient Distributed
Framework for GNN Training. In Proceedings of the Sixteenth European Conference
on Computer Systems (Online Event, United Kingdom) (EuroSys ’21). Association
for Computing Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/
3447786.3456229

[50] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks. arXiv e-prints, Article
arXiv:1909.01315 (Sept. 2019), arXiv:1909.01315 pages. arXiv:1909.01315 [cs.LG]

[51] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). USENIX Association, 515–531. https:
//www.usenix.org/conference/osdi21/presentation/wang-yuke

[52] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio
Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-Money Laundering
in Bitcoin: Experimenting with Graph Convolutional Networks for Financial
Forensics. CoRR abs/1908.02591 (2019). arXiv:1908.02591 http://arxiv.org/abs/
1908.02591

[53] Jingqi Wu, Rong Chen, and Yubin Xia. 2021. Fast and Accurate Optimizer for
Query Processing over Knowledge Graphs. Association for Computing Machinery,
New York, NY, USA, 503–517. https://doi.org/10.1145/3472883.3486991

[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks? CoRR abs/1810.00826 (2018). arXiv:1810.00826
http://arxiv.org/abs/1810.00826

[55] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. CoRR abs/1801.07455
(2018). arXiv:1801.07455 http://arxiv.org/abs/1801.07455

[56] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal Graph Convo-
lutional Neural Network: A Deep Learning Framework for Traffic Forecasting.
CoRR abs/1709.04875 (2017). arXiv:1709.04875 http://arxiv.org/abs/1709.04875

[57] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294 (2018).

[58] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. 2018.
DeepCPU: Serving RNN-based Deep Learning Models 10x Faster. In USENIX
Annual Technical Conference.

[59] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (Sep
2020), 3848–3858. https://doi.org/10.1109/tits.2019.2935152

[60] Fan Zhou, Xovee Xu, Ce Li, Goce Trajcevski, Ting Zhong, and Kunpeng Zhang.
2020. AHeterogeneous Dynamical Graph Neural Networks Approach to Quantify
Scientific Impact. arXiv:2003.12042 [cs.SI]

10

https://doi.org/10.1145/3292500.3330855
https://doi.org/10.1145/3292500.3330855
https://arxiv.org/abs/2102.08100
https://arxiv.org/abs/2102.08100
https://arxiv.org/abs/1812.09430
https://arxiv.org/abs/1612.07659
https://arxiv.org/abs/2005.07496
https://arxiv.org/abs/2005.07496
https://arxiv.org/abs/2005.07496
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://www.usenix.org/conference/osdi21/presentation/thorpe
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3447548.3467141
https://doi.org/10.1145/3447786.3456229
https://doi.org/10.1145/3447786.3456229
https://arxiv.org/abs/1909.01315
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://arxiv.org/abs/1908.02591
http://arxiv.org/abs/1908.02591
http://arxiv.org/abs/1908.02591
https://doi.org/10.1145/3472883.3486991
https://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1801.07455
http://arxiv.org/abs/1801.07455
https://arxiv.org/abs/1709.04875
http://arxiv.org/abs/1709.04875
https://doi.org/10.1109/tits.2019.2935152
https://arxiv.org/abs/2003.12042

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Graph Neural Networks
	2.2 Challenges in Dynamic GNN Training

	3 Dynamic GNN Training with DynaGraph
	3.1 Cached Message Passing
	3.2 Input Timestep Fusion
	3.3 Distributed Training
	3.4 DynaGraph API

	4 Implementation
	5 Evaluation
	5.1 Single Machine Performance
	5.2 Distributed Training Performance
	5.3 Scaling Characteristics
	5.4 Accuracy

	6 Shortcomings
	7 Related Work
	8 Conclusion
	References

