
RUDRA: Finding Memory Safety Bugs in Rust
at the Ecosystem Scale

Yechan Bae Youngsuk Kim Ammar Askar Jungwon Lim Taesoo Kim
Georgia Institute of Technology

Abstract
Rust is a promising system programming language that guar-
antees memory safety at compile time. To support diverse
requirements for system software such as accessing low-level
hardware, Rust allows programmers to perform operations
that are not protected by the Rust compiler with the unsafe
keyword. However, Rust’s safety guarantee relies on the
soundness of all unsafe code in the program as well as the
standard and external libraries, making it hard to reason about
their correctness. In other words, a single bug in any unsafe
code breaks the whole program’s safety guarantee.

In this paper, we introduce RUDRA, a program that ana-
lyzes and reports potential memory safety bugs in unsafe
Rust. Since a bug in unsafe code threatens the foundation
of Rust’s safety guarantee, our primary focus is to scale our
analysis to all the packages hosted in the Rust package reg-
istry. RUDRA can scan the entire registry (43k packages) in
6.5 hours and identified 264 previously unknown memory
safety bugs—leading to 76 CVEs and 112 RustSec advisories
being filed, which represent 51.6% of memory safety bugs
reported to RustSec since 2016. The new bugs RUDRA found
are non-trivial, subtle, and often made by Rust experts: two in
the Rust standard library, one in the official futures library,
and one in the Rust compiler. RUDRA is open-source, and
part of its algorithm is integrated into the official Rust linter.

CCS Concepts: • Theory of computation → Program
analysis; • Security and privacy → Software and appli-
cation security.

Keywords: Rust, Memory-safety, Program analysis

1 Introduction
Rust is an emerging programming language for system soft-
ware. As a system language like C or C++, its primary concern
is to enable native performance and to allow programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483570

Figure 1. RUDRA found 264 new memory safety bugs in
the Rust ecosystem. They received 112 RustSec advisories,
which represent 51.6% of the memory safety bugs reported
to the official Rust security advisory database, RustSec [39].

complete control of resource management. Unlike traditional
system languages, however, Rust enables these features in a
memory-safe way by default. This unique paradigm which
provides both safety and performance, makes Rust appealing
for developing system software. Rust has started to receive
major adoption in conventional system software such as oper-
ating systems [22, 33, 36, 47], embedded systems [26], web
frameworks, [21] and web browsers [59], where both security
and performance are indispensable.

The key idea of Rust’s memory safety is to validate the
ownership of memory at compile time, where the compiler
validates the access and the lifetime of memory-allocated ob-
jects (or values). Simply put, each value in Rust has an owner
variable, and the memory used for the value is immediately
reclaimed when the owner variable goes out of scope. Rust’s
ownership system is often viewed as similar in concept to sub-
structural type systems [61, 62] but supports a novel concept
of borrowing that allows the creation of shared or mutable
references to values. The compiler’s borrow checker provides
two guarantees: 1) references cannot outlive their owner vari-
ables, preventing use-after-free (UAF) vulnerabilities and 2)
both shared and mutable references are never present at the
same time, eliminating the possibility of concurrent read and
update to the value (Figure 3).

Unfortunately, such safety rules are often too restrictive
in certain system software that requires low-level hardware
access (e.g., accessing raw pointers) or hamper performance
and temporarily need to be bypassed (e.g., creating uninitial-
ized objects). Since these requirements cannot be addressed
by safe Rust but are essential to system software, Rust in-
troduces the concept of unsafe, in which the duty of the

84

https://doi.org/10.1145/3477132.3483570
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 2. Although the number of packages grows exponen-
tially, the percentage of packages using unsafe code remains
consistently around 25-30%, similar to other reports [16, 31].

compiler’s safety check is temporarily delegated to the pro-
grammer. Although unsafe is an opt-in feature in Rust, most
system software like OSes or standard libraries cannot be im-
plemented without it, and 25-30% of Rust packages directly
use unsafe in their code for various reasons [16, 31].

The soundness of unsafe Rust code is critical to the mem-
ory safety of the whole program and, alas, is difficult to rea-
son about. Some people naively believe that using unsafe
code sparsely or exercising extreme caution in reviewing the
source code can avoid such problems. However, reasoning
about soundness is subtle and error-prone for the following
three reasons: 1) a soundness bug transitively breaks Rust’s
safety boundaries, meaning that all external code including
standard libraries need to first be sound; 2) safe and unsafe
code located distantly are often interdependent [4, 11]; and
3) all non-visible code paths inserted by the compiler need
to be reasoned about correctly by the programmer (e.g., re-
claiming objects). Since a single soundness bug breaks the
safety guarantee of the entire Rust program, the Rust commu-
nity considers such a bug security-critical and essential to the
foundation of Rust’s safety guarantee [45].

Many existing research works have contributed to building
a foundation of soundness in the Rust ecosystem. There has
been a large body of research projects in formalizing Rust’s
type system and operational semantics [27, 43, 44, 51, 63, 64],
in verifying its correctness [17, 46], and in model check-
ing [20, 25, 60]. These are all important steps toward mak-
ing a sound, theoretical foundation but are not yet practical
enough to scale to the entire ecosystem. Similarly, dynamic
approaches exist, such as Miri, that detect certain classes
of undefined behavior by interpreting the compiler IR [53]
and fuzzing that performs random testing [18]. Unfortunately,
these dynamic approaches cannot be easily adopted at a large
scale because they require extensive computational resources
or non-trivial amounts of development effort—2.7% of pack-
ages in the registry support fuzzing. As a new language, Rust
is rapidly gaining popularity, but the number of packages
using unsafe is also keeping pace (Figure 2). It is thus impor-
tant to devise practical algorithms that can proactively assure
the memory safety of all packages in the registry.

1 fn ownership_and_borrowing() -> &u32 {
2 // creates a `Vec`, a heap allocated buffer
3 let vec = vec![1, 2, 3];
4
5 // creates a reference to the first value with borrowing
6 let first_val = &vec[0];
7
8 // Ownership: `Vec` is automatically reclaimed
9 // when its owner `vec` goes out of the scope.

10 //
11 // Borrowing: compile error; Rust prevents `first_val`
12 // to outlive `vec` by tracking variable lifetimes.
13 return first_val;
14 }
15
16 fn aliasing_xor_mutability() {
17 let mut vec = vec![1, 2, 3];
18
19 // exclusive mutable borrowing
20 let mut_ref = &mut vec;
21
22 // shared read-only borrowing
23 let shared_ref1 = &vec;
24 let shared_ref2 = &vec;
25 println!("{}", shared_ref1[0]);
26 println!("{}", shared_ref2[0]);
27
28 // Aliasing xor Mutability: compile error;
29 // Rust invalidates `mut_ref` when `shared_ref1` is
30 // used since they cannot coexist at the same time.
31 mut_ref.push(4);
32 }

Figure 3. Example code that shows Rust’s core concepts:
(1) ownership, (2) borrowing, and (3) aliasing xor mutability

In this paper, we present three important bug patterns in
unsafe Rust code and introduce a tool called RUDRA that
can quickly recognize error-prone parts of unsafe code. It
can scan the entire 43k packages in the Rust package reg-
istry (crates.io) in 6.5 hours and has found 264 previously
unknown memory safety bugs—leading to 76 CVE records
being filed to the CVE database, as well as 112 advisories
to the official Rust security advisory database, RustSec [39].
This is an unprecedented number of memory safety bugs in
the Rust ecosystem. As of September 2021, these bugs rep-
resent 39.0% of all bugs and 51.6% of memory safety bugs
reported to RustSec since 2016 (Figure 1). These bugs are sub-
tle and non-trivial, found even in code written and extensively
reviewed by Rust experts: two in the standard library, one in
the official futures library, and one in the Rust compiler.

We make three key contributions:

• Scalable algorithms. We identified three bug patterns in
unsafe Rust and devised two new algorithms that can dis-
cover them. We implemented the algorithms as RUDRA, a
static analyzer that can scale to all the programs in the Rust
package registry.

• New bugs. RUDRA found 264 new memory safety bugs in
the Rust ecosystem. They represent more than half (51.6%)
of the memory safety bugs known to RustSec since 2016.

• Open source. RUDRA is open-sourced at https://github.
com/sslab-gatech/Rudra, and part of its core algorithm
is integrated into the official Rust linter, Clippy [52].

85

https://github.com/sslab-gatech/Rudra
https://github.com/sslab-gatech/Rudra

2 Background
2.1 The Foundation: Safe Rust
Rust is a memory-safe programming language [54]. It pro-
vides strong guarantees at compile time with three core ideas:
ownership, borrowing, and aliasing xor mutability (Figure 3).

Ownership. Each value in Rust has an owner variable that de-
termines the lifespan of the value. A value is initialized when
the owner variable is created, and the memory associated with
the value is automatically reclaimed when its owner goes out
of scope. The Rust compiler tracks the lifetime of each value
via the ownership system and inserts the required reclama-
tion routines (drop()), similar to the Resource-Acquisition-
Is-Initialization (RAII) pattern in other languages.

Borrowing. Rust allows a value to be borrowed (i.e., creating
a reference to it) during the lifetime of the owner variable.
With borrowing, a value can be read or updated without chang-
ing the ownership of the value. Rust’s type system ensures
that traditional memory safety issues like use-after-free or
dangling pointers cannot happen by disallowing references
that outlive the owner variable.

Aliasing xor mutability. There are two types of borrowing:
1) shared borrowing for read access and 2) exclusive mutable
borrowing for write access. The Rust compiler ensures that
both shared and mutable references are never present at the
same time. This means that concurrent reads and writes are
fundamentally impossible in Rust, eliminating the possibility
of conventional race conditions and memory safety bugs like
accessing invalid references (e.g., iterator invalidation in C++).
This property also guides programmers to confine mutability,
which can help prevent other logic bugs.

2.2 The Necessity: Unsafe Rust
Unfortunately, Rust’s safety rules are often too restrictive
to model low-level hardware behaviors that are required for
system software. Rust can neither perform memory-mapped
I/O in an OS kernel (i.e., accessing memory through raw
pointers) nor invoke a system call, as the Rust language does
not understand their semantics to conclude their safety. Rust
relies on the axiomatic foundation provided by the authors
of unsafe code to incorporate these operations under Rust’s
safety model.

In Rust, developers can declare their own axioms that are
beyond Rust’s type system with the unsafe keyword. It is
called unsafe because the Rust compiler cannot check the
safety of the provided code and assumes the provided unsafe
code is sound and bug-free. As a result, a single bug in unsafe
code, regardless of whether it is from the developer’s own
code or from a library, can subvert the safety guarantee of the
entire Rust program. In this regard, unsafe should be used
sparsely and with extreme caution across any Rust code.

Interestingly, the use of unsafe is much more common-
place than ideal—it has been reported that 25-30% of Rust

1 // The caller needs an `unsafe` keyword to call this function.
2 // The caller is responsible for providing a correct index.
3 unsafe fn get_unchecked(index: usize) -> Output { ... }
4
5 // The API author guarantees that this function is safe to call
6 // with any `index` value (e.g., by checking the array bound).
7 fn get(index: usize) -> Option<Output> { unsafe { ... } }

Figure 4. Unsafe Rust code can be directly exposed or encap-
sulated, which determines the responsibility of safety bugs.

packages utilize unsafe in their code [16, 31]. In principle,
unsafe usage should be limited internally to packages that
provide high-level abstractions and data structures. For in-
stance, the Rust standard library, std, uses unsafe to imple-
ment containers that support dynamic buffer allocations (e.g.,
Vec), smart pointers that extend Rust’s default ownership
model (e.g., Rc), synchronization primitives (e.g., Mutex), and
OS abstractions (e.g., File). However, despite the addition
of new features to the standard library and mature packages
offering safe APIs around unsafe primitives, the ratio of pack-
ages utilizing unsafe is declining very slowly (Figure 2).

Encapsulated unsafety. The unsafe keyword introduces an
interesting design domain: a way to communicate the safety of
APIs. Rust developers have two choices when building a high-
level abstraction with unsafe. The internal unsafe code can
be directly exposed to the API users or can be encapsulated
with a safe API (Figure 4). It is considered more idiomatic
to hide such unsafety in user-facing APIs. When an API is
defined safe, it is assuring that it conforms to Rust’s safety
rule that no input can trigger a memory safety bug and its
internal unsafety is properly guarded.

Responsibility for safety bugs. The separation of safe and
unsafe definitions makes it possible to distinguish who is
responsible for a safety bug: “No matter what, safe Rust can’t
cause undefined behavior” [58]. In other words, it is always a
safe API’s responsibility to ensure that any valid input does
not lead to a memory safety violation in encapsulated unsafe
code. This is in stark contrast to C or C++ where it is the user’s
responsibility to correctly obey the intended usage of the API.
For example, no one would fault printf() in libc if the API
call causes a segmentation fault when provided an incorrect
pointer, yet this exact problem has led to a popular class of
memory safety issues: the format-string vulnerability. In Rust,
println!() never causes a segmentation fault no matter how
it is used. Moreover, if a valid input does cause a segmentation
fault in safe API, it is considered the API developer’s fault.

2.3 Defining Memory Safety Bugs in Rust
There are two types of unsafe definitions in Rust: unsafe
functions and unsafe traits. An unsafe function requires the
caller to uphold certain properties when calling the function.
For instance, slice::get_unchecked() requires the caller to
provide a correct index because it does not perform bounds
checking. There are unsafe intrinsic functions that are part
of the language, and violating their safety invariant leads to

86

1 fn double_drop<T>(mut val: T) {
2 unsafe { ptr::drop_in_place(&mut val); }
3 drop(val);
4 }
5
6 double_drop(123); // no memory-safety violation when `T=u32`
7 double_drop(vec![1, 2, 3]); // double-free when `T=Vec<u32>`

Figure 5. Generic function is considered to have a memory
safety bug if any of its instantiation has a memory safety bug.

a memory safety violation. Traits are similar to interfaces
in other languages. They declare a list of expected methods
on a type, and a type implements a trait by providing the re-
quired methods. An unsafe trait requires additional semantic
guarantees from the implementer because other unsafe code
may rely on its correctness. For instance, an iterator that im-
plements the unsafe TrustedLen trait must provide a correct
value for size_hint().

With unsafe definitions and Rust’s core safety statement,
we clarify the definition of memory safety bugs in Rust along
with the necessary terminology. Our goal is to provide concise
definitions, not the full operational semantics of Rust [44, 51,
63, 64], so that we have common ground to describe certain
behaviors of Rust programs.

Definition 2.1. A type and a value are defined in a conven-
tional manner [56]. A type is considered as a set of values.

Definition 2.2. For a type 𝑇 , safe-value(𝑇) is defined as val-
ues that can be safely created. For instance, Rust’s string is
internally represented as a byte array, but it can only contain
UTF-8 encoded values when created via safe APIs.

Definition 2.3. A function 𝐹 takes a value of type 𝑎𝑟𝑔(𝐹)
and returns a value of type 𝑟𝑒𝑡 (𝐹). We consider a function
that takes multiple arguments as if it takes a tuple of values.

Definition 2.4. A function 𝐹 has a memory safety bug if
∃𝑣 ∈ safe-value(𝑎𝑟𝑔(𝐹)) such that calling 𝐹 (𝑣) triggers a
memory safety violation or generates a return value 𝑣𝑟𝑒𝑡 ∉

safe-value(𝑟𝑒𝑡 (𝐹)).
Example 2.5. Consider a function that overwrites the length
field of a Vec with usize::MAX. This does not cause an imme-
diate memory safety violation, since it is just an integer field
write. However, it will break other safe code and should be
considered a bug. Hence, a function that generates a non-safe-
value is also considered to have a memory safety bug. In this
example, a vector with an incorrect length (i.e., usize::MAX)
is a value but not a safe-value of Vec.

Definition 2.6. For a generic function Λ, pred(Λ) is defined
as a set of types that satisfies the type predicate [55] of
Λ. Given a type 𝑇 ∈ pred(Λ), resolve(Λ,𝑇) instantiates a
generic function Λ to a concrete function 𝐹 .

Definition 2.7. A generic function Λ has a memory safety
bug if it can be instantiated to a function that has a memory
safety bug, i.e., ∃𝑇 ∈ pred(Λ) such that 𝐹 = resolve(Λ,𝑇)
has a memory safety bug.

Example 2.8. Consider a function that accepts a single argu-
ment of generic type T and drops it (i.e., calls its destructor)
twice (Figure 5). This function does not cause a memory
safety bug with integer types because dropping an integer is
no-op. However, calling this function with allocating types
(e.g., Vec) leads to a security-critical double-free bug. Thus,
this generic function is considered to have a memory safety
bug because it has an instantiation that causes a memory
safety bug. The correctness of a generic function depends on
its type predicate. The function would not have a memory
safety bug if it specified a type predicate T: Copy, since Copy
types cannot have a destructor (all integer types are Copy).

Rust uses two unsafe traits, Send and Sync, to encode mem-
ory safety with multiple threads, i.e., thread safety. The Rust
compiler automatically implements them for simple user-
defined types. However, types that interact with unsafe code
often require manual implementations of Send and Sync.

Definition 2.9. An ownership of a type that implements the
Send trait can be sent to another thread. A Send implementa-
tion has a memory safety bug if it is implemented on a type
whose ownership cannot be transferred to another thread.

Definition 2.10. A type that implements the Sync trait can be
accessed concurrently from different threads through shared
references. A Sync implementation has a memory safety bug
if it is implemented on a type that defines a non-thread-safe
method that takes a shared self reference, &self.

Example 2.11. The basic reference-counted smart pointer
Rc<T> is neither Send nor Sync because it can be cloned
through a shared reference, which modifies its counter in
a non-thread-safe way. On the other hand, the atomic version
Arc<T> is Send and Sync if the inner type T is Send and Sync.

3 Pitfalls of Unsafe Rust
It is commonly thought that memory safety bugs in Rust
are infrequent for the following three reasons. First, unsafe
Rust is explicit so it stands out in the code. Unsafe Rust can
only be used in a block or a function marked with the unsafe
keyword, which signals the developer and the reviewer to thor-
oughly check the required safety invariants [31]. Second, it is
a common practice to keep unsafe blocks simple, short, and
self-contained to alleviate the burden of manually reasoning
about their soundness [16]. Third, the vast majority of Rust
applications can be implemented without using unsafe at all.
More than 70% of Rust packages are implemented without
using unsafe [16, 31].

Despite these hopeful beliefs, implementing safe abstrac-
tion using unsafe in Rust is error-prone and subtly difficult,
requiring different coding practices than writing safe Rust
code. We conducted a qualitative analysis of known Rust vul-
nerabilities, as well as an audit of popular Rust packages, and
identified three non-trivial root causes of such bugs in unsafe
code, explained as follows.

87

1 // CVE-2020-36317: a panic safety bug in String::retain()
2 pub fn retain<F>(&mut self, mut f: F)
3 where F: FnMut(char) -> bool
4 {
5 let len = self.len();
6 let mut del_bytes = 0;
7 let mut idx = 0;
8
9 + unsafe { self.vec.set_len(0); }

10 while idx < len {
11 let ch = unsafe {
12 self.get_unchecked(idx..len).chars().next().unwrap()
13 };
14 let ch_len = ch.len_utf8();
15
16 // self is left in an inconsistent state if f() panics
17 * if !f(ch) {
18 del_bytes += ch_len;
19 } else if del_bytes > 0 {
20 unsafe {
21 ptr::copy(self.vec.as_ptr().add(idx),
22 self.vec.as_mut_ptr().add(idx - del_bytes),
23 ch_len);
24 }
25 }
26 idx += ch_len; // point idx to the next char
27 }
28 + unsafe { self.vec.set_len(len - del_bytes); }
29 }
30
31 // PoC: creates a non-utf-8 string in the unwinding path
32 "0è0".to_string().retain(|_| {
33 match the_number_of_invocation() {
34 1 => false,
35 2 => true,
36 _ => panic!(),
37 }
38 });

Figure 6. An example of a panic safety bug, fix, and PoC
in the Rust standard library that RUDRA found (CVE-2020-
36317 [9]). It was independently fixed, but the latest stable
version was still vulnerable when RUDRA discovered it.

3.1 Panic Safety
Rust provides a feature called panic which is used to signal
that the current program has reached an unrecoverable state.
When a panic happens, Rust unwinds the active call stack,
releases resources held by the current thread by invoking the
destructors of the variables, and transfers the control flow
to the panic handler. This reclamation logic ensures that no
program resources are leaked when panic happens, which is
important for long-living multi-threaded programs.

Although such reclamation logic is helpful for writing safe
Rust code, its interaction with unsafe code is error-prone and
often causes non-trivial memory safety bugs. It is common
for encapsulated unsafe code to temporarily create a lifetime-
bypassed object that bypasses Rust’s ownership system (e.g.,
extending object lifetime, creating uninitialized variables) and
fix up the introduced inconsistency later. If a panic happens
in between the bypass and its fix-up, the destructors of the
variable will run without realizing that the variable is in an
inconsistent state, resulting in memory safety issues similar
to uninitialized uses or double frees in C/C++. Such a bug is
called a panic safety bug.

A panic safety bug is difficult to reason about because un-
winding paths are automatically inserted by the compiler and

invisible to programmers. The developer needs to manually
reason about the consistency of stack variables for every invis-
ible unwinding path to prevent a panic safety bug, which is an
unusual task for Rust programmers. Ironically, a feature de-
signed for easier resource management in safe Rust requires
intensive manual reasoning when used in unsafe context.
Panic safety bugs are similar in concept to exception safety
bugs in other programming languages like C++. It is notori-
ously difficult to write generic exception-safe code [15, 24],
and exception-based error handling is not allowed in com-
plex system software like web browsers for this particular
reason [37]. Due to their subtlety, panic safety violations have
caused several memory safety bugs in popular Rust pack-
ages [5–7] and the Rust standard library [1, 9, 12, 14].

Definition 3.1. A function 𝐹 has a panic safety bug if it
drops a value 𝑣 of type 𝑇 such that 𝑣 ∉ safe-value(𝑇) during
unwinding and causes a memory safety violation.

Bug example. Figure 6 shows a panic safety bug in
String::retain() from the Rust standard library that
RUDRA found (CVE-2020-36317 [9]). It filters characters
in a string with a caller-provided closure but can leave the
string as non-UTF-8 encoded when f() panics (line 17). The
standard library assumes that all strings are UTF-8 encoded,
and using the nonconforming string can lead to memory safety
violations. This was fixed by overwriting the length of the
string to zero before running the loop (line 9) and restoring it
later (line 28), so that the string is left empty if f() panics.

3.2 Higher-order Safety Invariant
A Rust function should execute safely for all safe inputs; from
the data types of its arguments, generic type parameters as
well as user-provided closures. In other words, a safe func-
tion is not allowed to assume anything more than the safety
invariants provided by the Rust compiler. For example, the
sort function in Rust must not trigger any undefined behavior
even when a user-provided comparator does not respect total
ordering, unlike the sort function in C++ that can cause a
segmentation fault with an incompatible comparator.

Often, the only safety invariant that the Rust type system
provides for higher-order types is the correctness of their type
signature [42]. However, common mistakes are made with
incorrect assumptions of 1 logical consistency (e.g., respects
total ordering), 2 purity (e.g., always returns the same value
for the same input), 3 and semantic restrictions (e.g., only
writes to the argument because it may contain uninitialized
bytes) on a caller-provided function. unsafe code must check
these properties by itself or specify the correct bound (e.g.,
with an unsafe trait) so that the obligations of these checks
can be at the caller’s side.

It is worth emphasizing that it is fairly difficult and error-
prone to enforce a higher-order invariant under Rust’s type
system. One notable example is passing an uninitialized buffer
to a caller-provided Read implementation. Read is commonly

88

1 // CVE-2020-36323: a higher-order invariant bug in join()
2 fn join_generic_copy<B, T, S>(slice: &[S], sep: &[T]) -> Vec<T>
3 where T: Copy, B: AsRef<[T]> + ?Sized, S: Borrow
4 {
5 let mut iter = slice.iter();
6
7 // `slice` is converted for the first time
8 // during the buffer size calculation.
9 * let len = ...;

10 let mut result = Vec::with_capacity(len);
11 ...
12 unsafe {
13 let pos = result.len();
14 let target = result.get_unchecked_mut(pos..len);
15
16 // `slice` is converted for the second time in macro
17 // while copying the rest of the components.
18 * spezialize_for_lengths!(sep, target, iter;
19 * 0, 1, 2, 3, 4);
20
21 // Indicate that the vector is initialized
22 result.set_len(len);
23 }
24 result
25 }
26
27 // PoC: a benign join() can trigger a memory safety issue
28 impl Borrow<str> for InconsistentBorrow {
29 fn borrow(&self) -> &str {
30 if self.is_first_time() {
31 "123456"
32 } else {
33 "0"
34 }
35 }
36 }
37
38 let arr: [InconsistentBorrow; 3] = Default::default();
39 arr.join("-");

Figure 7. A missing check of the higher-order invariant intro-
duces a time-of-check to time-of-use bug in the Rust standard
library (join() for [Borrow<str>]). RUDRA found this pre-
viously unknown bug (CVE-2020-36323 [10]).

expected to read data from one source (e.g., a file) and write
into the provided buffer. However, it is perfectly valid to read
the buffer under Rust’s type system. This leads to undefined
behavior if the buffer contains uninitialized memory. Unfor-
tunately, many Rust programmers provide an uninitialized
buffer to a caller-provided function as performance optimiza-
tion without realizing the inherent unsoundness. Due to its
prevalence and subtlety, the Rust standard library now explic-
itly calls out that invoking read() with an uninitialized buffer
is unsound behavior [57].

Definition 3.2. A higher-order invariant bug is a memory
safety bug in a generic function that is caused by incorrectly
assuming a higher-order invariant that is not guaranteed by the
type system. A generic function Λ with a higher-order invari-
ant bug incorrectly assumes certain properties (e.g., purity)
on its higher-order type parameter (e.g., closure) although
pred(Λ) does not guarantee it.

Bug example. Figure 7 shows a time-of-check to time-of-use
bug caused by a missing check of the higher-order invariant.
This bug in the join() function for [Borrow<str>] [9] was
discovered by RUDRA in the Rust standard library. This func-
tion creates a joined vector by alternating a slice component

Type Description +Send only if +Sync only if

Vec<T> Owning container T: Send T: Sync
&mut T Exclusive reference T: Send T: Sync
&T Aliased reference T: Sync T: Sync
RefCell<T> Internal mutability T: Send -
Mutex<T> RAII mutex T: Send T: Send
MutexGuard<T> Mutex guard - T: Sync
RwLock<T> RAII rwlock T: Send T: Send+Sync
Rc<T> Reference counter - -
Arc<T> Atomic reference counter T: Send+Sync T: Send+Sync

Table 1. The propagation rule of various types from the Rust
standard library for Send/Sync traits. The rule becomes com-
plicated when non-trivial sharing is involved.

and a separator. &S (the type contained in the slice) is con-
verted to &[T] (the separator’s type) twice in this function. The
first conversion occurs during the length calculation (line 9)
and the second conversion happens during the buffer copy
inside a macro (line 18-19). A string with uninitialized bytes
is returned if the slice code returns different results for the two
conversions. This example shows the benefit of a tool-assisted
approach. A trait method call that is inside the macro is not
immediately visible, so the bug was missed during the code
review process. The bug was fixed by setting result’s length
to the number of written bytes instead of speculative len.

3.3 Propagating Send/Sync in Generic Types
Rust’s thread safety is governed by two unsafe traits, Send
and Sync. Send is used to indicate a type that can be sent to
other threads and Sync is used to indicate a type that can be
referenced concurrently by multiple threads. Send and Sync
are derived traits, which means that the compiler will automat-
ically implement Send and Sync on a type if all of its fields
are Send and Sync, respectively. However, developers need to
manually implement Send and Sync on synchronization prim-
itives like locks and types that contain fields with unknown
thread safety (e.g., a raw pointer).

The Send and Sync rules become complex as the imple-
mentation bound becomes conditional when generic types
are involved (see Table 1). One simple example is a container
type, Vec<T>, that is Send only if the inner type T is Send and
is Sync only if the inner type T is Sync. The logic quickly
becomes non-intuitive and error-prone for types that provide
non-trivial sharing like Mutex and RwLock (see Table 1). In-
spired by type variance in subtyping relations, we call this
subtle relation between the Send/Sync of a generic type and
the Send/Sync of the inner types the Send/Sync variance.

Manual Send/Sync implementations are not only difficult to
correctly implement, but also make code maintenance fragile.
Send and Sync are type level properties that guarantee the
thread safety of all possible APIs on that type. A developer
who is not aware of the manual Send/Sync implementation
may add a new API that is not thread-safe and silently intro-
duce a soundness bug without any unsafe code. The complex-
ity around this rule leads to safety violations even in the Rust
standard library [3].

89

1 // CVE-2020-35905: incorrect uses of Send/Sync on Rust's futures
2 pub struct MappedMutexGuard<'a, T: ?Sized, U: ?Sized> {
3 mutex: &'a Mutex<T>,
4 value: *mut U,
5 + _marker: PhantomData<&'a mut U>,
6 }
7
8 impl<'a, T: ?Sized> MutexGuard<'a, T> {
9 pub fn map<U: ?Sized, F>(this: Self, f: F)

10 -> MappedMutexGuard<'a, T, U>
11 where F: FnOnce(&mut T) -> &mut U {
12 let mutex = this.mutex;
13 let value = f(unsafe { &mut *this.mutex.value.get() });
14 mem::forget(this);
15 - MappedMutexGuard { mutex, value }
16 + MappedMutexGuard { mutex, value, _marker: PhantomData }
17 }
18 }
19
20 - unsafe impl<T: ?Sized + Send, U: ?Sized> Send
21 + unsafe impl<T: ?Sized + Send, U: ?Sized + Send> Send
22 for MappedMutexGuard<'_, T, U> {}
23 - unsafe impl<T: ?Sized + Sync, U: ?Sized> Sync
24 + unsafe impl<T: ?Sized + Sync, U: ?Sized + Sync> Sync
25 for MappedMutexGuard<'_, T, U> {}
26
27 // PoC: this safe Rust code allows race on reference counter
28 * MutexGuard::map(guard, |_| Box::leak(Box::new(Rc::new(true))));

Figure 8. An incorrect Sync/Send trait bound for a generic
type parameter in Rust’s official futures library, which
breaks the thread safety guarantee. RUDRA found this previ-
ously unknown bug [8].

Definition 3.3. A generic type that takes a type parameter T
has a Send/Sync variance (SV) bug if it specifies an incorrect
bound on the inner type T when implementing Send/Sync.

Bug example. Figure 8 shows an incorrect use of Send/Sync
marker traits in the official futures library that RUDRA found
(CVE-2020-35905 [8]). This bug results in a data race in safe
Rust code. A MappedMutexGuard that dereferences to type U
is created from a MutexGuard that dereferences to type T by
applying a closure that converts &mut T to &mut U (line 13).
MappedMutexGuard’s Send and Sync have a trait bound only to
the type parameter T but not for the type parameter U (line 20
and 23). This definition turns out to be unsafe because it
allows sharing a reference of a MappedMutexGuard even when
the closure’s return type U is not thread-safe. The bug was
fixed by adding a proper bound to the type parameter U (line 21
and 24). Note that the map() and Send/Sync implementations
are not adjacent to each other in the source code, making it
difficult to notice this bug in code reviews.

4 Design
RUDRA implements two static analysis algorithms that can
detect three bug patterns in unsafe code (§3), as described
in Figure 9. It has three important design goals:
• Generic type awareness. RUDRA should be able to reason

about generic types without knowing the concrete forms of
their type parameters. This means that low-level analysis
(e.g., using LLVM IR) is not an option. Low-level represen-
tations only contain a specific instantiation of generic code,

Parsing AnalysisType
Checking CodegenPackage

- Trait definition
- Function signature
- Unsafe blocks

- Dataflow
- Control-flow graph
- Call dependency

HIR - Code Structure MIR - Code Semantics

lib/bin

Rudra
Rust

Compiler

Send/Sync Variance
Checker

Higher-order
Invariant Bug

Panic Safety
Bug

Unsafe Dataflow
Checker

Send/Sync Variance
Bug

Precision Filter (p = high/med/low) Reports

Reports

⋮

≥ p

Figure 9. Overview of RUDRA’s design.

and Rust’s high-level abstractions such as trait variance do
not exist at these levels. Instead, RUDRA implements algo-
rithms by combining two internal IRs of the Rust compiler,
namely, HIR and MIR.
• Scalability. As our primary goal is to check all the pack-

ages in the Rust package registry, it is critical to strike
a balance between the precision of analysis and the exe-
cution time—expensive whole-program analyses and dy-
namic analyses like fuzzing are not feasible options for
RUDRA. In addition, RUDRA aims to be a push-button so-
lution that requires no manual annotation and effort from
the original package developers.
• Adjustable precision. With the limited computation avail-

able to each package, it is impossible to formulate analyses
with no false positives. RUDRA provides an option to adjust
the false positive rates based on the goal and the available
time budget; RUDRA can be used for both scanning the
package registry (fewer false positives) or as part of the
development process (tolerant to more false positives).

Overview. RUDRA accepts a Rust package as input and pro-
duces a comprehensive report of two analysis algorithms,
namely, the unsafe dataflow checker and the Send/Sync vari-
ance checker, that can identify three unsafe bug patterns (§3).
We implemented RUDRA as a custom Rust compiler driver.
RUDRA hijacks the Rust compiler after type checking and
runs our analysis using the compiler’s internal data. We also
have an adapter to Rust’s package manager and an executor
to download and run RUDRA on published Rust packages.

4.1 Hybrid Analysis with HIR and MIR
RUDRA uses two Rust compiler IRs when implementing anal-
ysis algorithms: the HIR and the MIR. The first IR is the High-
Level IR (HIR) generated from the AST. HIR contains the IDs
of each definition inside the target program (e.g., functions,
trait implementations) as well as their associated expressions.
HIR keeps the original code structure in its expressions. The
second IR is the Mid-Level IR (MIR) generated by lowering

90

Algorithm 1: Checking unsafe dataflow
// contains impl. items, trait items, free functions from HIR
body_set := Set<BodyId>;
foreach body_id in body_set do

body := compiler.getHIR(body_id);
if not is_unsafe(body) then

continue
body← compiler.getMIR(body_id);
graph := Graph(body.basic_blocks);
foreach block in body.basic_blocks do

if block.terminator.isStaticCall() then
call := block.terminator.asStaticCall();
if is_life_bypassing_func(call) then

graph.mark_bypass_type(block.id, call);

else if compiler.resolve(call, ∅) fails1 then
graph.add_sink(block.id);

graph.propagate_taint();
taint := {};
foreach sink in graph.sinks() do

taint← taint ∪ graph.get_taint(sink);

if taint ≠ ∅ then
report_potential_violation(body_id);

the HIR. MIR focuses on the semantic information. It has a
much simpler and more analyzer-friendly structure than HIR,
but it also lacks some important non-semantic information
that RUDRA needs, such as the locations of unsafe blocks,
which are removed after type checking. The HIR and the MIR
provide a generic representation, meaning that a generic func-
tion or a generic type remains as a single definition. RUDRA
cannot use the IRs from later stages (e.g., LLVM IR) because
they only provide a single instantiation of a generic function.
Using them will make RUDRA miss bugs in generic functions
such as the bug in Figure 4.

RUDRA implements a hybrid analysis that uses both HIR
and MIR. It uses HIR to quickly collect interesting code
regions using structural information available in HIR. Specif-
ically, it collects function declarations and trait implemen-
tations inside the package with their declared safety. It also
records if a function contains any unsafe blocks if the func-
tion is defined as a safe function. Then, RUDRA uses MIR to
reason about code semantics. RUDRA implements a coarse-
grained dataflow analysis on the control-flow graph provided
as MIR expressions. It is worth emphasizing that mixed usage
of multiple IR levels is unconventional but is required for
RUDRA’s goal of scaling the analysis to the entire ecosystem.
Since HIR and MIR are Rust-specific IRs, traditional analysis
algorithms and tools such as dataflow analysis, declaration
collectors, or even an error-reporting system, which are read-
ily available in the lower-level LLVM infrastructure, were
reimplemented for RUDRA.

1RUDRA uses the Rust compiler’s instance resolution API with an empty
type context to determine if a generic function is resolvable or not.

4.2 Algorithm: Unsafe Dataflow Checker (UD)
The unsafe dataflow checker (Algorithm 1) examines the
dataflows in functions that handle lifetime-bypassed values.
It uses coarse-grained taint tracking to identify panic safety
bugs (§3.1) and higher-order invariant bugs (§3.2). Simply
put, the analysis algorithm checks if there exists a dataflow
that starts from a lifetime bypass to a suspicious function call—
a function that might panic() or a function that is provided
as a higher-order parameter by the caller.

The algorithm models six classes of lifetime bypasses:
• uninitialized: creating uninitialized values
• duplicate: duplicating the lifetime of objects (e.g., with
mem::read())
• write: overwriting the memory of a value
• copy: memcpy()-like buffer copy
• transmute: reinterpreting a type and its lifetime
• ptr-to-ref : converting a pointer to a reference

The key challenge of the unsafe dataflow algorithm is to
find program locations that might panic() or where higher-
order safety invariants are implicitly assumed. At first glance,
it may seem that detecting panic safety bugs needs precise
analysis to determine if a panic() can happen at a given
program point, and detecting the higher-order invariant bugs
requires accurate reasoning of the semantic correctness of
a given trait implementation. However, soundly determin-
ing them without pre/post conditions is undecidable, and
RUDRA makes a deliberate approximation with a concept of
an unresolvable generic function to meet its performance and
scalability goal.

RUDRA, at the MIR layer, uses an unresolvable generic
function call as an approximation of a potential panic site or a
location where higher-order invariants are implicitly assumed.
An unresolvable function is a function whose definitions can-
not be found without precise type parameters. For example,
<reader as Read>::read() is one such function and, unlike
Vec<T>::push() where one push() implementation exists for
all possible inner types T, there can be no implementation
found without knowing the exact type of reader. As unresolv-
able generic functions are implemented and provided by the
caller, it is invalid for the callee to assume that the functions
do not panic() or always satisfy the implicitly assumed se-
mantic requirements. We observed that dataflows that contain
unresolvable generic functions are not only analyzer-friendly
but also where Rust programmers tend to make mistakes,
perhaps because speculating about the unknown function’s
behavior is more difficult than reasoning about a concrete
implementation.

Adjustable precision. RUDRA’s approximation of each life-
time bypass has different precision. RUDRA only detects
uninitialized values (e.g., Vec::set_len() to extend a Vec) in
the high precision setting because a single function call leads
to a lifetime bypass in such cases. In the medium precision
setting, RUDRA additionally detects the lifetime bypass of

91

Algorithm 2: Checking Send/Sync variance

foreach trait_impl in local_trait_impls() do
if impl_trait = Send then

foreach param in trait_impl.generic_params do
if param ∉ self.phantom_params
and ¬(𝑝𝑎𝑟𝑎𝑚 :> 𝑆𝑒𝑛𝑑) then

report_potential_violation(trait_impl);

else if impl_trait = Sync then
self := trait_impl.self_ty();
reqs := hashmap() // a set of necessary bounds
foreach param in trait_impl.generic_params do

if param ∈ self.phantom_params then
continue;

foreach api in self.safe_self_ref_apis() do
if api.moves(param) then

reqs[param].add(‘Send);

if api.exposes_ref(param) then
reqs[param].add(‘Sync);

foreach param in trait_impl.generic_params do
if param :> Send then

reqs[param].remove(‘Send)

if param :> Sync then
reqs[param].remove(‘Sync)

if {‘Send, ‘Sync} ∩(∪𝑟𝑒𝑞𝑠 [..]) ≠ ∅ then
report_potential_violation(trait_impl);

values using read(), write(), and copy(). These bypasses
are more difficult to reason about because they are often
used with pointer arithmetic. Finally, RUDRA detects lifetime
forging with transmute() or raw pointer casting in the low
precision setting.

4.3 Algorithm: Send/Sync Variance Checker (SV)
The Send/Sync variance checker (Algorithm 2) estimates the
necessary minimum set of Send/Sync bounds for each Al-
gebraic Data Type (ADT) based on the associated API sig-
natures. If the ADT does not contain the necessary bounds,
it reports that Send/Sync might be incorrectly implemented.
One might be able to accurately model such usages by per-
forming inter-procedural and flow-sensitive analysis to verify
the thread safety at an arbitrary program point. RUDRA in-
tentionally avoids these complex and performance-intensive
approaches to meet its scalability goal.

The key idea of the Send/Sync variance checker is to de-
termine if an ADT requires Send, Sync, or both, based on a
set of effective heuristics using the type definition and the
associated API signatures:

Given an ADT with a generic parameter T,
• +Send. If there exists an API that moves T (i.e., either taking

as input the owned T or returning the owned T) but none
of its APIs exposes &T (i.e., returning &T), then T:Send
is the minimum necessary condition. For ADT:Sync, it is
important to check the exposure of &T because it allows
threads to concurrently access T. For ADT:Send, T:Send is

the minimum necessary condition regardless of its API.
Moving an ADT (holding ownership of T) to another thread
moves T to another thread.
• +Sync. If there exists an API that exposes &T but none of

its APIs move the owned T, then T:Sync is the minimum
necessary condition for ADT:Sync.
• +Send/+Sync. If there exists an API that exposes &T and

that moves the owned T, then T:Send+Sync is the minimum
necessary condition for ADT:Sync.
• None. If there is no API that exposes &T or moves the

owned T, it is not possible to verify the thread safety of the
Send/Sync markers from the API signatures and it places
no minimum necessary condition for ADT:Sync.
Note that these rules are not applied to generic parameters

T placed within PhantomData<T>—this is a zero-sized marker
type that allows the binding of T to an ADT but does not actu-
ally own T. This helps us avoid several false positives where
a generic parameter is used only as a type-level identifier.

Adjustable precision. On top of the baseline algorithm (de-
scribed above) for inferring Send/Sync bound requirements,
RUDRA uses additional heuristics to find more Send/Sync
variance violations. In the high precision setting, RUDRA fo-
cuses on Send bounds which are less affected by custom syn-
chronization than Sync bounds. It implements +Send analysis
from the baseline algorithm to identify missing ADT: Sync,
T: Send bound and analyzes the type structure to identify
missing ADT: Send, T: Send bound. In the medium preci-
sion setting, RUDRA fully instruments the baseline algorithm
while also reporting Sync impls with no Sync bounds on all of
its generic parameters. In the low precision setting, RUDRA
removes the PhantomData-filtering policy and reports Sync
impls with no Sync bounds on any of its generic parameters.

5 Implementation
RUDRA is built on rustc nightly-2020-08-26 in 4.3k lines
of Rust code. The main analyzer, rudra, is implemented as a
custom Rust compiler driver. It works as an unmodified Rust
compiler when compiling dependencies and injects the anal-
ysis algorithms when compiling the target package. RUDRA
adjusts the precision filter based on an environment variable.
It provides tight integration with the official Rust package
manager, cargo, so that an entire package can be checked with
one command, cargo rudra. It also provides rudra-runner,
which downloads and analyzes all packages from the official
package registry, crates.io.

6 Evaluation
Our evaluation attempts to answer the following questions:
• How effectively can our approach detect new memory

safety bugs at the ecosystem scale? (§6.1)
• How does it compare to other approaches? (§6.2)
• What lessons can be learned from running RUDRA on Rust-

based OSes? (§6.3)

92

Package Location Tests1 LoC #unsafe Alg Description L2 Bug ID3

std str.rs
mod.rs

U / - 61k 2k UD The joinmethod can return uninitialized memory when string length
changes. read_to_string and read_to_end methods overflow the
heap and read past the provided buffer.

3y
2y

C20-36323
C21-28875

rustc worker_local.rs U / - 348k 2k SV WorkerLocal used in parallel compilation can cause data races. 3y rust#81425
smallvec lib.rs U / F 2k 55 UD Buffer overflow in insert_many allows writing elements past a vec-

tor’s size.
3y R21-0003

C21-25900
futures mutex.rs U / - 5k 84 SV MappedMutexGuard can cause data races, violating Rust memory

safety guarantees in multi-threaded applications.
1y R20-0059

C20-35905
lock_api rwlock.rs U / - 2k 146 SV Multiple RAII objects used to represent acquired locks allow for data

races. Types that should be accessible by only one thread at a time
are allowed to be used concurrently, leading to violations of Rust’s
memory safety guarantees.

3y R20-0070
C20-35910
C20-35911
C20-35912

im focus.rs U / F 13k 23 SV TreeFocus, an iterator over tree structure, can cause data races when
sent across threads.

2y R20-0096
C20-36204

rocket_http formatter.rs U / - 4k 16 UD A use-after-free is possible for the string buffer in the Formatter
struct on panic.

3y R21-0044
C21-29935

slice-deque lib.rs U / F 6k 89 UD drain_filter can double-free elements with certain predicate func-
tions.

3y R21-0047
C21-29938

generator gen_impl.rs U / - 2k 72 SV Generators can be sent across threads leading to data races. 4y R20-0151
glium mod.rs U / - 39k 4k UD Content passes uninitialized memory to safe functions. 6y glium#1907
ash util.rs U / - 89k 2k UD read_spv returns uninitialized bytes when reading incompletely. 2y R21-0090
atom lib.rs U / - 600 25 SV Atom<T> can be instantiated with any T, allowing data races for non-

thread safe types when used concurrently.
2y R20-0044

C20-35897
metrics-util bucket.rs U / - 3k 13 SV AtomicBucket<T> can cause data races. 2y R21-0113
libp2p-deflate lib.rs U / - 200 1 UD DeflateOutput passes uninitialized memory to safe Rust. 2y R20-0123
model lib.rs U / - 200 3 SV Shared bypasses concurrency safety without being marked unsafe. 2y R20-0140
claxon metadata.rs U / F 3k 5 UD metadata::read methods return uninitialized memory. 6y claxon#26
stackvector lib.rs U / - 1k 32 UD StackVector trusts an iterator’s length bounds which can lead to

writing out of bounds.
2y R21-0048

C21-29939
gfx-auxil mod.rs U / - 100 1 UD read_spirv passes uninitialized memory to safe Rust. 2y R21-0091
futures-intrusive mutex.rs U / - 9k 120 SV GenericMutexGuard, an RAII object representing an acquired Mutex

lock, allows data races.
2y R20-0072

C20-35915
calamine cfb.rs U / - 6k 3 UD Sectors::get trusts the size in a file header, exposing uninitialized

when a malicious file is used.
4y R21-0015

C21-26951
atomic-option lib.rs - / - 91 5 SV AtomicOption<T> can be used with any type, leading to data races

with non-thread safe types.
6y R20-0113

C20-36219
glsl-layout array.rs - / - 600 1 UD map_array can double-drop elements in the list if the mapping func-

tion panics.
3y R21-0005

C21-25902
internment lib.rs U / - 900 13 SV Objects wrapped in Intern<T> could always be sent across threads,

potentially causing data races.
3y R21-0036

C21-28037
beef generic.rs U / - 900 23 SV Cow allows usage of non-thread safe types concurrently. 1y R20-0122
truetype tape.rs U / - 2k 2 UD take_bytes passes an uninitialized memory buffer to a safe Rust

function.
5y R21-0029

C21-28030
rusb device.rs U / - 5k 78 SV The Device trait lacks Send and Sync bounds; USB devices could

cause races across threads.
5y R20-0098

C20-36206
fil-ocl event.rs U / - 12k 174 UD EventList can double-drop elements if the Into implementation of

the element panics.
3y R21-0011

C21-25908
toolshed cell.rs U / - 2k 23 SV CopyCell allows data races with non-Send but Copyable types. 3y R20-0136
lever atomics.rs U / - 3k 67 SV AtomicBox allows data races with non-thread safe types. 1y R20-0137
bite read.rs - / - 1k 44 UD read_framed_max passes uninitialized memory to safe Rust. 4y bite#1

1Contains unit tests with over 50% coverage (U) or fuzzing (F) suites. 2Latent period in years. 3C21/R21 stands for CVE-2021/RUSTSEC-2021.

Table 2. Details of the new bugs found in the 30 most popular packages based on crates.io download numbers. RUDRA found
memory-safety bugs from heavily tested packages—containing unit tests with extensive code coverage and fuzzers. The found
bugs are non-trivial—they had existed for over three years on average.

93

Analyzer Time† Packages Bugs #RustSec #CVE

UD 16.510 ms 83 122 54 46
SV 0.224 ms 63 142 58 30

Auditing 1 hour 19 46 17 25
† Average time taken to analyze one package.

UD/SV requires additional 33.7 sec for compilation.

Table 3. Summary of new memory-safety bugs found by
RUDRA. The last row represents additional bugs found by
code auditing during the pilot study and the bug reporting.

Precision #Reports #Bugs found

Visible Internal Total

High 137 65 (47.4%) 8 (5.8%) 73 (53.3%)
UD Med 434 119 (27.4%) 17 (3.9%) 136 (31.3%)

Low 1,214 163 (13.4%) 31 (2.6%) 194 (16.0%)

High 367 118 (32.2%) 60 (16.3%) 178 (48.5%)
SV Med 793 181 (22.8%) 98 (12.4%) 279 (35.2%)

Low 1,176 197 (16.8%) 111 (9.4%) 308 (26.2%)

Table 4. The total number of reports with varying precision
and true bugs after scanning 43k packages (see §6.1).

Experimental setup. We ran all the following experiments
on a machine with a 32-core AMD EPYC 7452 and 252 GB
memory. The analysis session for each package was limited to
one core for a fairer comparison and only the rudra-runner
layer took advantage of the concurrency.

6.1 New Bugs Found by RUDRA

Applying to all packages. We downloaded and analyzed
all 43k packages uploaded to crates.io (as of 2020-07-04).
RUDRA took about 6.5 hours to scan all the packages on our
machine: 15.7% (7k) did not compile with the rustc version
RUDRA was based on, 4.6% (2k) did not produce any Rust
code (e.g., macro-only packages), and 1.8% (0.7k) did not
have proper metadata (e.g., depending on yanked packages),
leaving us with 77.9% (33k) packages as analysis targets. It
took 33.7 sec on average to analyze each package end-to-end.
Among the total amount of time, RUDRA used 18.2 ms; the
remaining time was spent in the Rust compiler. As a result,
we generated 2,390 reports and inspected them all at a rough
rate of 150 reports per man-hour. Most false positives were
filtered out at a glance (in a few seconds) due to the precision
level attached to them.

New bugs. We reported 264 previously unknown memory-
safety bugs in 145 packages, resulting in 112 RustSec ad-
visories and 76 CVEs (see Table 3 and Table 2). This is an
unprecedented number of memory-safety bugs, constituting
51.6% of all memory-safety bugs in the Rust ecosystem since
2016 (see Figure 1). Also, the bugs RUDRA discovered are
non-trivial: two higher-order invariant bugs in the Rust stan-
dard library, std, one SV bug in the Rust compiler, rustc,
one SV bug in the official futures library, and several SV

bugs in lock_api, a very popular lock abstraction library.
These are bugs in code written and extensively reviewed by
Rust experts. It is worth noting that the average latent time
of the discovered bugs is over three years despite community
efforts to manually audit unsafe code in Rust [38]. RUDRA
was also able to re-discover two bugs in the Rust standard
library that had been fixed, but their vulnerable versions were
retained in some libraries. During the pilot study to identify
common bug patterns and while auditing code from RUDRA
reports, we manually found 46 additional bugs, resulting in
17 RustSec advisories and 25 CVEs, three of which are in the
Rust standard library [12–14]. The list of all bugs are publicly
available at https://github.com/sslab-gatech/Rudra-PoC.

Precision. In the high precision setting, the UD algorithm
generated 137 reports (1 report per 309 packages) and found
73 bugs (53.3% precision). The SV algorithm generated 367
reports (1 report per 116 packages) and found 178 bugs
(48.5% precision). When all bug patterns are turned on in
the low precision setting, the UD algorithm generated 1,214
reports (1 report per 35 packages) and found 194 bugs (16.0%
precision), and the SV algorithm generated 1,176 reports
(1 report per 36 packages) and found 308 bugs (26.2% pre-
cision). RUDRA provides great improvement over a simple
search for the unsafe keyword. A total of 330k functions
encapsulate unsafe code in the Rust ecosystem, and the UD
algorithm reduces this number to 137 in the high precision
setting and 1,214 in the low precision setting. Table 4 shows
the number of the bugs and the precision of each analysis
in different precision settings. We separated the bugs further
into two categories: visible bugs that affect users of the pack-
age and internal bugs that can only be triggered inside the
same package. We provide the examples of false positives
and negatives in the discussion section (§7.1).

Reporting. In addition to reporting bugs to the original main-
tainers of the package, we also reported bugs to the RustSec
advisory database [39] and the CVE database. In total, 112
RustSec advisories and 76 CVE IDs have been assigned to the
bugs found by RUDRA. As of September 2021, these bugs rep-
resent 39.0% of all bugs and 51.6% of memory safety bugs re-
ported to RustSec since RustSec started tracking security bugs
in 2016. When counting the total number of RustSec bugs, we
excluded notices and unmaintained advisories as well as tran-
sitive advisories for C dependencies (e.g., OpenSSL) because
they do not represent a bug in the target Rust package. Fig-
ure 1 shows the number of bugs reported to RustSec advisory
database each year, with RUDRA’s contribution highlighted
with hatches. In addition, 16 bugs reported in 2020 and 38
bugs reported in 2021 are currently pending to receive Rust-
Sec advisories because no fix is available for them. These
bugs are either blocked by the maintainer’s fix or ReadBuf
RFC implementation [32] in the standard library.

New lints. From the bugs found by RUDRA, we were able to
identify the most frequently misused Rust APIs. We ported

94

https://github.com/sslab-gatech/Rudra-PoC

Package Test Coverage # Tests Timeout UB-A1 UB-SB2 Leak Avg Memory3 Time Taken Bug ID (Type) Result

atom 76.2% (193 LoC) 16 0 0 (0) 3 (1) 5 (1) 372 MB 7 m R20-0044 (SV) 0/2
beef 85.9% (440 LoC) 30 0 0 (0) 2 (1) 0 (0) 380 MB 5 m R20-0122 (SV) 0/1
claxon 50.5% (1,941 Loc) 33 0 0 (0) 0 (0) 0 (0) 388 MB 7 m GitHub #26 (UD) 0/2
futures N/A 177 1 0 (0) 35 (4) 0 (0) 455 MB 28 h R20-0059 (SV) 0/1
im 67.5% (7,135 LoC) 104 15 0 (0) 39 (7) 0 (0) 1345 MB 20 h R20-0096 (SV) 0/2
toolshed 88.2% (1,186 LoC) 39 0 24 (1) 7 (2) 0 (0) 392 MB 14 m R20-0136 (SV) 0/1

1Reference alignment issue. 2Alias violation under Stacked Borrow model. 3Average of the peak memory measured by cgmemtime.

Table 5. Summary of running unit tests with Miri. Test code LoC and test coverage were measured with grcov. Tests were run
with a one-hour time limit for a single test case. The numbers in parenthesis are the deduplicated bug numbers.

Package #H Bug ID Fuzzer #execs Result (FP)

claxon 4 GitHub #26 cargo-fuzz 12B 0/2 (0)
dnssector 5 GitHub #14 cargo-fuzz 29B 0/1 (4.4M)
im 3 R20-0096 cargo-fuzz 16B 0/2 (0)
smallvec 1 R21-0003 honggfuzz 0.9B 0/1 (0.6M)
slice-deque 1 R21-0047 afl 100k 0/1 (0)
tectonic 1 GitHub #752 cargo-fuzz 363k 0/1 (22k)

Table 6. Results of running provided fuzzing harnesses
(marked #H) in each package with three sanitizers
(A/M/TSAN) for 24 hours. None of the eight bugs found
by RUDRA were discovered by the fuzzers, but a large num-
ber of false positives (marked FP) are reported by the fuzzers.

RUDRA’s algorithms as lints to detect such misuses and inte-
grated them into the official Rust linter, Clippy [52]. At the
time of writing, two lints have been implemented: uninit_-
vec and non_send_field_in_send_ty. The uninit_vec lint
detects a creation of an uninitialized Vec, which is commonly
used with the Read trait and causes a higher-order invari-
ant bug (§3.2). The non_send_field_in_send_ty lint imple-
ments a subset of +Send analysis of the SV algorithm that
focuses on type definitions.

6.2 Comparison with Other Approaches
We compare RUDRA to two popular dynamic analysis ap-
proaches, fuzzing and Miri, as well as static analyzers that
aim to detect the same classes of bugs in Rust.

Comparison with fuzzing. Fuzzing [18, 35], a dynamic
approach that randomly mutates inputs for testing, is not
an effective approach to find the classes of bugs RUDRA
found. We selected six packages (see Table 6) that provide
fuzzing harnesses and checked whether they could find the
bugs RUDRA found. The fuzzing harnesses for dnssector,
im, slice-deque, and tectonic did not test the buggy APIs.
claxon and smallvec’s fuzzers stress the buggy APIs, but
they failed to formulate a bug triggering input.

None of the fuzzers discovered bugs found by RUDRA.
They suffer from the fundamental problem of dynamic test-
ing; they can only test a single instantiation of generic code.
claxon has a bug that provides uninitialized bytes to the caller
provided Read implementation, but its fuzzer only tests the

API with a Read implementation that does not read the unini-
tialized bytes. smallvec has a bug that requires an iterator
with an unknown size, but its fuzzer only tests the API with a
fixed-size iterator. Interestingly, fuzzers for three of the pack-
ages reported false positives. These were caused by compati-
bility issues with the sanitizers or due to incorrect handling
of panics on malformed input. This indicates that some of
these fuzzers are not actively used or maintained to find bugs
continuously.

Comparison with Miri. Miri [43, 53] is an interpreter for
Rust MIR that can detect certain classes of undefined be-
haviors during interpretation, such as alignment issues, alias
violation, or memory leaks. Miri is similar to using sanitizers
in fuzzing. It runs the executable with user input or unit tests
to identify bugs. We ran Miri on six packages where RUDRA
found memory safety bugs with all available tests in each
package (see Table 5). Miri used 3.24× more memory on
average compared to RUDRA and spent about 5 minutes to 20
hours of CPU time running all the tests in a single package. In
comparison, RUDRA only spent 18.2 ms on average to scan
a package. Miri did not find any of the nine bugs found by
RUDRA because all unit tests explore the monomorphized
forms of generic functions, similar to fuzzing. However, Miri
found a few potential alignment issues and alias violations in
some packages. This result indicates that Miri is complemen-
tary to RUDRA in terms of bug classes, but is not applicable
to the ecosystem scale.

Comparison with other static analysis. Qin et al. [49] pro-
posed two static analysis algorithms, namely, UAFDetector
and DoubleLockDetector, to detect certain classes of mem-
ory/thread safety bugs in Rust programs. UAFDetector identi-
fied none of the 27 UAF bugs that the UD algorithm found
in 16 different packages: 1) its flow-sensitive analysis visits
the same basic block only once, missing panic safety bugs in
partially iterated loops, and 2) it models almost all function
calls as no-op or identity functions and fails to recover the
alias information required to run the analysis. DoubleLock-
Detector is not a generic analyzer. It only targets the misuse
of a specific third-party lock implementation, parking_lot’s
RwLock. In addition, since it works at the LLVM IR layer, it
fundamentally cannot find all the SV bugs RUDRA found.

95

OS LoC #unsafe #Reports in each component #Bugs
Mutex Syscall Allocator Total

Redox 30k 709 0 4 0 4 0
rv6 7k 678 4 0 0 4 0
Theseus 40k 243 1 0 6 7 2
TockOS 10k 145 0 0 1 1 0

Table 7. The number of reports RUDRA emits for each Rust-
based operating system kernel.

6.3 Analyzing Rust-based OSes
To understand the impact of unsafe Rust in Rust-based oper-
ating systems, we applied RUDRA to four Rust-based OSes:
Redox [29], rv6 [30], Theseus [22], and TockOS [48]. Ta-
ble 7 summarizes the analysis result. Although each ker-
nel uses unsafe hundreds of times, the number of reports
generated by RUDRA was small—one report per 5.4 kLoC—
showing that it requires minimal effort to review the analysis
results. This is because RUDRA focuses on bugs caused by
misuse of generic types, but generic types are not very com-
mon in self-contained kernel code. In total, RUDRA found
two internal soundness issues in Theseus OS: two safe pub-
lic deallocate() APIs that unconditionally transmute the
passed address to an allocation chunk. We discussed the is-
sue with the developers and submitted a patch, which has
been accepted upstream. Besides the issues that are directly
found in Rust-based OSes, we observed an interesting im-
plication of an isolation scheme built on Rust’s soundness,
which is gaining popularity in the system programming com-
munity [47, 48]. We believe Rust’s safety rule does not pro-
vide enough guarantees for such designs yet; the detail of our
observation is shared in the discussion section (§7.2).

7 Discussion
7.1 Understanding False Positives and Negatives
In this section, we discuss representative false positives and
negatives of RUDRA to illustrate the scope of the bugs found
by RUDRA. The most common cause of false positives in the
UD algorithm is due to the imprecise modelling (i.e., overap-
proximation) of lifetime bypasses. See Figure 10, a RUDRA
report for the few package. The value val is bit-copied in
line 6 and passed to a user-provided function replace() in
line 7. If replace() panics, it would drop the duplicated value
old and then the original value val while unwinding, leading
to a double-free bug. However, a custom struct ExitGuard
prevents this from happening. ExitGuard is dropped before
val is dropped, and it stops the unwinding by aborting the
program, preventing the second drop of the value. Such false
positives can be eliminated with an interprocedural analysis
that can look into ExitGuard’s implementation.

Similarly, the false positives of the SV algorithm is caused
by the limitation of the type definition and the API signatures-
based reasoning. The SV algorithm does not model complex

1 fn replace_with<T, F>(val: &mut T, replace: F)
2 where F: FnOnce(T) -> T {
3 let guard = ExitGuard;
4
5 unsafe {
6 let old = std::ptr::read(val);
7 let new = replace(old);
8 std::ptr::write(val, new);
9 }

10
11 std::mem::forget(guard);
12 }

Figure 10. A false positive example for the few package. The
fixup routine in line 8 is not called if replace() in line 7
panics. However, ExitGuard prevents the panic safety issue.

1 unsafe impl<T> Send for Fragile<T> {}
2 unsafe impl<T> Sync for Fragile<T> {}
3 unsafe impl<T> Send for Sticky<T> {}
4 unsafe impl<T> Sync for Sticky<T> {}
5
6 // Sticky<T> has a similar guard
7 impl<T> Fragile<T> {
8 ...
9

10 pub fn get(&self) -> &T {
11 assert!(get_thread_id() == self.thread_id);
12 unsafe { &*self.value.as_ptr() }
13 }
14 }

Figure 11. A false positive example for the fragile package.
The Fragile and Sticky structs do not specify any bound on
type parameter T, but accesses to T are guarded with custom
thread-aware execution.

program semantics such as thread-aware execution or man-
ual synchronization. See Figure 11, a RUDRA report for the
fragile package. The Fragile and Sticky struct implement
Send and Sync without any bound on the type parameter T,
which would have been definitive examples of a Send/Sync
variance bug if they provide direct access to the inner value T.
However, they have custom assertions that check the current
thread ID before allowing the access. RUDRA’s API signature-
based logic generates false positive reports for them.

The false negatives originate from the similar limitations.
We manually created the models for known unsafe functions
in the standard library for the UD algorithm, but this set is
not complete. The SV algorithm will miss Send/Sync bugs if
the type’s definition does not explicitly show the ownership,
e.g., when an owned value is stored as a universal pointer
*const (), a type similar to C++’s void *. In addition, both
algorithms cannot detect any bugs caused by an interprocedu-
ral interaction. As these examples show, RUDRA’s precision
could be improved with a deeper semantic model and more
comprehensive analyses. We believe there is a lot of room
to improve in RUDRA’s analysis framework. Developing a
better analysis framework for Rust and integrating RUDRA’s
bug patterns with it is a promising future research direction.

7.2 Understanding Rust’s Safety
Rust skeptics might claim that Rust does not provide bet-
ter safety than C/C++ due to the existence of unsafe Rust.

96

However, our experience suggests that Rust’s objective safety
standard is a supreme improvement. It makes the communi-
cation cost of reporting and fixing safety bugs remarkably
small, allowing programmers to spend more time on finding
and fixing bugs. In C/C++, getting a confirmation from the
maintainers whether certain behavior is a bug or an intended
behavior is necessary in bug reporting, because there are no
clear distinctions between an API misuse and a bug in the
API itself. In contrast, Rust’s safety rule provides an objec-
tive standard to determine whose fault a bug is. We have not
received any replies from developers saying “this is intended
behavior” while reporting hundreds of bugs found by RUDRA.
Such distinction is not only beneficial to programmers but
also to program analyzers. A program analyzer for C/C++
libraries needs to infer the intended usage of APIs [19, 40]
when looking for bugs. In Rust, program analyzers can per-
form more aggressive optimizations because all safe usage of
libraries are considered valid in the memory safety context.
In fact, RUDRA’s approximation of an unresolvable generic
function panicking is based precisely on this guarantee.

On the other hand, our experience also suggests a limita-
tion of Rust’s safety: it is not (yet) practical to build a security
mechanism solely based on Rust’s safety guarantee. Exam-
ples of such design include running hostile arbitrary programs
or device drivers while limiting their interaction to the pre-
defined safe interfaces [47, 48]. Any memory safety bugs
in the trust chain can transitively break the safety boundary
of such systems. To demonstrate how a memory safety bug
breaks trust boundaries built on Rust’s soundness guarantee,
we formulate a PoC against the Tock embedded operating
system [48]. We exploited a bug we manually found in the
Rust standard library’s Zip iterator [13]. It took one man hour
to create a capsule (an untrusted driver in TockOS) that allows
arbitrary memory read/write of the private memory of other
capsules1. Other long-lived type system bugs such as Rust
issue #25860 [2] can be used for a similar exploitation.

8 Related work
Formal methods and verification. Rust, being a new pro-
gramming language, has seen a lot of community effort into
building formal foundations (i.e., type system and operational
semantics) with various design goals [27, 43, 44, 51, 63, 64],
e.g., proving the correctness of encapsulated unsafe code with
an extensible semantic typing [44] and an aliasing model to
validate raw pointers [43]. Being an early-stage language,
much of the existing verification work for Rust focuses on
transpiling Rust code or IR to existing verification frame-
works: C [25, 60], Viper IR [17, 46], and LLVM IR [20].
These are promising directions in verifying memory safety or
correctness at various layers, but, unlike RUDRA, it is funda-
mentally difficult to apply them to the entire ecosystem. Their

1Proof-of-concept driver code can be found at: https://git.io/JzK0w

scalability is limited by design: lack of generic type aware-
ness, limited performance, or reliance on manual annotations.

Understanding unsafe Rust. As the soundness of unsafe
is essential to Rust’s safety guarantee, several attempts have
been made to understand its uses (similar to Figure 2) and bug
patterns from existing Rust projects and their CVEs [16, 31,
49, 65]. In RUDRA, we take this one step further to proactively
discover unsafe bug patterns and automate their detection
at a large scale. The unprecedented number of new memory
safety bugs RUDRA found changes the perspective of these
empirical studies; it is much more subtle and error-prone to
write completely sound unsafe code, and it is even difficult
for Rust experts and language designers.

Large-scale bug mining tools. There has been a growing
trend of static analysis or bug mining tools that focus pri-
marily on scaling their algorithms to a large scale [23, 28,
34, 41, 50], perhaps in response to the growing number of
public code repositories like GitHub. Their main goal, simi-
lar to ours, is to enable a language agnostic, semantic-aware
analysis, that can quickly scan and pattern match a large code
base. Unfortunately, none of them officially support Rust yet,
and it is unclear if the language agnostic IRs they provide can
handle the specifics of the Rust language (e.g., generic traits
or macros) to find the unsafe bugs that RUDRA found.

9 Conclusion
It is commonly thought that memory safety bugs are infre-
quent in Rust. In this paper, we challenge this idea, presenting
the hidden difficulties of writing unsafe Rust, and suggest
three memory safety bug patterns in Rust. We implemented a
static analyzer, RUDRA, to automatically find these bugs at
the ecosystem scale. We found an unprecedented number of
previously unknown memory safety bugs by using RUDRA.
More importantly, these new bugs are non-trivial (i.e., even
made by the language designers) and unique (i.e., not discov-
erable with existing approaches), providing a fresh view on
the Rust language’s safety landscape.

10 Acknowledgment
We thank Deokhwan Kim, Jiguo Song, the anonymous re-
viewers, and our shepherd Chris Hawblitzel, for their help-
ful feedback about the paper. This research was supported,
in part, by Ford, the NSF award CNS-1563848 and CNS-
1749711 ONR under grant N00014-18-1-2662, N00014-15-1-
2162, N00014-17-1-2895, DARPA AIMEE HR00112090034
and SocialCyber HR00112190087, ETRI IITP/KEIT[2014-
3-00035], and gifts from Facebook, Mozilla, Intel, VMware
and Google. The first author was partially supported by the
Kwanjeong Educational Foundation scholarship.

97

https://git.io/JzK0w

References
[1] 2015. CVE-2015-20001: BinaryHeap is not exception safe. Retrieved

2021-05-06 from https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-20001

[2] 2015. Rust Issue #25860: Implied bounds on nested references +
variance = soundness hole. Retrieved 2021-09-26 from https://github.
com/rust-lang/rust/issues/25860

[3] 2017. CVE-2017-20004: MutexGuard<Cell<i32>> must not be Sync.
Retrieved 2021-05-06 from https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2017-20004

[4] 2018. CVE-2018-1000657: seg fault pushing on either side of a
VecDeque. Retrieved 2021-05-06 from https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-1000657

[5] 2019. RUSTSEC-2019-0010: libflate: MultiDecoder::read() drops
uninitialized memory of arbitrary type on panic in client code. Re-
trieved 2021-05-06 from https://rustsec.org/advisories/RUSTSEC-
2019-0010.html

[6] 2019. RUSTSEC-2019-0011: memoffset: Flaw in offset_of and span_-
of causes SIGILL, drops uninitialized memory of arbitrary type on
panic in client code. Retrieved 2021-05-06 from https://rustsec.org/
advisories/RUSTSEC-2019-0011.html

[7] 2019. RUSTSEC-2019-0022: portaudio-rs: Stream callback function
is not unwind safe. Retrieved 2021-05-06 from https://rustsec.org/
advisories/RUSTSEC-2019-0022.html

[8] 2020. CVE-2020-35905: MappedMutexGuard Send/Sync bound is
unsound. Retrieved 2021-05-06 from https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2020-35905

[9] 2020. CVE-2020-36317: String::retain allows safely creating in-
valid (non-utf8) strings when abusing panic. Retrieved 2021-05-
06 from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-36317

[10] 2020. CVE-2020-36323: API soundness issue in join() implementation
of [Borrow<str>]. Retrieved 2021-05-06 from https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-36323

[11] 2020. RUSTSEC-2020-0028: rocket: Clone implementation for Local-
Request is unsound. Retrieved 2021-05-06 from https://rustsec.org/
advisories/RUSTSEC-2020-0028.html

[12] 2021. CVE-2021-28876: Panic safety issue in Zip specialization. Re-
trieved 2021-05-06 from https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-28876

[13] 2021. CVE-2021-28879: Side effect handling in specialized zip imple-
mentation causes buffer overflow. Retrieved 2021-05-06 from https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28879

[14] 2021. CVE-2021-31162: Double free in Vec::from_iter specialization
when drop panics. Retrieved 2021-05-06 from https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-28879

[15] David Abrahams. 1998. Exception-safety in generic components. In
Generic Programming. Vol. 1766. Springer, Dagstuhl Castle, Germany,
69–79.

[16] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,
and Alexander J. Summers. 2020. How Do Programmers Use Un-
safe Rust?. In Proceedings of the 31st Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). Everywhere, 136:1–136:27.

[17] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.
Summers. 2019. Leveraging Rust Types for Modular Specification and
Verification. In Proceedings of the 30th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). Athens, Greece, 147:1–147:30.

[18] Rust Fuzzing Authority. 2017. cargo-fuzz. Retrieved 2021-05-06 from
https://github.com/rust-fuzz/cargo-fuzz

[19] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King,
Markus Kusano, Caroline Lemieux, László Szekeres, and Wei Wang.
2019. FUDGE: fuzz driver generation at scale. In Proceedings of the

18th European Software Engineering Conference (ESEC) / 27th ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE). Tallinn, Estonia.

[20] Marek Baranowski, Shaobo He, and Zvonimir Rakamarić. 2018. Ver-
ifying Rust Programs with SMACK. In Proceedings of the 16th In-
ternational Symposium on Automated Technology for Verification and
Analysis. Los Angeles, CA, 528–535.

[21] Sergio Benitez. 2016. Rocket: A web framework for Rust (nightly) with
a focus on ease-of-use, expressibility, and speed. Retrieved 2021-05-06
from https://rocket.rs/

[22] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State Man-
agement. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Virtual Event, 1–19.

[23] Fraser Brown, Deian Stefan, and Dawson Engler. 2020. Sys: A
Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code.
In Proceedings of the 29th USENIX Security Symposium (Security).
Boston, MA, 199–216.

[24] Tom Cargill. 1996. Exception handling: A false sense of security. In
C++ gems. SIGS Publications, Inc., New York, NY, 423–431.

[25] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for
Checking ANSI-C Programs. In Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Vol. 2988. Barcelona, Spain, 168–176.

[26] Tokio Contributors. 2016. Tokio: A runtime for writing reliable, asyn-
chronous, and slim applications with the Rust programming language.
Retrieved 2021-05-06 from https://tokio.rs/

[27] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. 2019. RustBelt meets relaxed memory. In Proceedings of
the 46th ACM Symposium on Principles of Programming Languages
(POPL). Cascais, Portugal, 34:1–34:29.

[28] DeepCode AG. 2020. DeepCode. Retrieved 2021-05-06 from https:
//www.deepcode.ai/

[29] Redox Developers. 2015. Redox Operating System. Retrieved 2021-
05-06 from https://www.redox-os.org/

[30] Jeehoon Kang et al. 2018. rv6. Retrieved 2021-05-06 from https:
//www.redox-os.org/

[31] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is
Rust Used Safely by Software Developers?. In Proceedings of the
42nd International Conference on Software Engineering (ICSE). Seoul,
South Korea, 246–257.

[32] Steven Fackler. 2020. RFC: Reading into uninitialized buffers.
Retrieved 2021-05-06 from https://github.com/rust-lang/rfcs/blob/
master/text/2930-read-buf.md

[33] Rust for Linux Team. 2021. Rust for Linux. Retrieved 2021-05-06
from https://github.com/Rust-for-Linux/linux

[34] GitHub, Inc. 2006. CodeQL. Retrieved 2021-05-06 from https:
//github.com/github/codeql

[35] Google. 2010. Honggfuzz. Retrieved 2021-05-06 from https://github.
com/rust-fuzz/cargo-fuzz

[36] Google. 2021. Android Gabeldorsche Bluetooth Stack. Retrieved 2021-
05-06 from https://android.googlesource.com/platform/system/bt/
+/master/gd/rust/

[37] Google. 2021. Google C++ Style Guide. Retrieved 2021-05-06 from
https://google.github.io/styleguide/cppguide.html

[38] Rust Secure Code Working Group. 2016. Rust Safety Dance.
Retrieved 2021-05-06 from https://github.com/rust-secure-code/
safety-dance

[39] Rust Secure Code Working Group. 2016. RustSec: The Rust Security
Advisory Database. Retrieved 2021-05-06 from https://rustsec.org/

[40] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer.
2020. FuzzGen: Automatic Fuzzer Generation. In Proceedings of the
29th USENIX Security Symposium (Security). Boston, MA.

98

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-20001
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-20001
https://github.com/rust-lang/rust/issues/25860
https://github.com/rust-lang/rust/issues/25860
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-20004
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-20004
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000657
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000657
https://rustsec.org/advisories/RUSTSEC-2019-0010.html
https://rustsec.org/advisories/RUSTSEC-2019-0010.html
https://rustsec.org/advisories/RUSTSEC-2019-0011.html
https://rustsec.org/advisories/RUSTSEC-2019-0011.html
https://rustsec.org/advisories/RUSTSEC-2019-0022.html
https://rustsec.org/advisories/RUSTSEC-2019-0022.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35905
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35905
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36317
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36317
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36323
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36323
https://rustsec.org/advisories/RUSTSEC-2020-0028.html
https://rustsec.org/advisories/RUSTSEC-2020-0028.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28876
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28876
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28879
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28879
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28879
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28879
https://github.com/rust-fuzz/cargo-fuzz
https://rocket.rs/
https://tokio.rs/
https://www.deepcode.ai/
https://www.deepcode.ai/
https://www.redox-os.org/
https://www.redox-os.org/
https://www.redox-os.org/
https://github.com/rust-lang/rfcs/blob/master/text/2930-read-buf.md
https://github.com/rust-lang/rfcs/blob/master/text/2930-read-buf.md
https://github.com/Rust-for-Linux/linux
https://github.com/github/codeql
https://github.com/github/codeql
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://android.googlesource.com/platform/system/bt/+/master/gd/rust/
https://android.googlesource.com/platform/system/bt/+/master/gd/rust/
https://google.github.io/styleguide/cppguide.html
https://github.com/rust-secure-code/safety-dance
https://github.com/rust-secure-code/safety-dance
https://rustsec.org/

[41] Joern Contributors. 2019. Joern: The Bug Hunter’s Workbench. Re-
trieved 2021-05-06 from https://joern.io/

[42] Ralf Jung. 2018. Two Kinds of Invariants: Safety and Validity. Re-
trieved 2021-05-06 from https://www.ralfj.de/blog/2018/08/22/two-
kinds-of-invariants.html

[43] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2020.
Stacked Borrows: An Aliasing Model for Rust. In Proceedings of
the 47th ACM Symposium on Principles of Programming Languages
(POPL). New Orleans, LA, 41:1–41:32.

[44] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. In Proceedings of the 44th ACM Symposium on Principles
of Programming Languages (POPL). Paris, France, 66:1–66:34.

[45] Niko Matsakis. 2015. RFC: Semantic versioning for the language.
Retrieved 2021-05-06 from https://github.com/rust-lang/rfcs/blob/
master/text/1122-language-semver.md

[46] Peter Müller, Malte Schwerhoff, and Alexander J Summers. 2016.
Viper: A Verification Infrastructure for Permission-Based Reasoning.
In Proceedings of the 17th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI). St. Petersburg,
FL, 41–62.

[47] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf:
Isolation and Communication in a Safe Operating System. In Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Virtual Event, 21–39.

[48] Filip Nilsson and Sebastian Lund. 2018. Abstraction Layers and Energy
Efficiency in TockOS, a Rust-based Runtime for the Internet of Things.
Master’s thesis. Chalmers University of Technology, Gothenburg, Swe-
den.

[49] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
2020. Understanding memory and thread safety practices and issues in
real-world Rust programs. In Proceedings of the 2020 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). London, UK, 763–779.

[50] r2c. 2020. Semgrep. Retrieved 2021-05-06 from https://semgrep.dev/
[51] Eric Reed. 2015. Patina: A formalization of the Rust programming

language. Master’s thesis. University of Washington, Seattle, WA.
[52] The Rust Team. 2014. Clippy: A bunch of lints to catch common

mistakes and improve your Rust code. Retrieved 2021-05-06 from
https://github.com/rust-lang/rust-clippy

[53] The Rust Team. 2015. Miri: An interpreter for Rust’s mid-level
intermediate representation. Retrieved 2021-05-06 from https:
//github.com/rust-lang/miri

[54] The Rust Team. 2015. Rust: A language empowering everyone to
build reliable and efficient software. Retrieved 2021-05-06 from
https://www.rust-lang.org/

[55] The Rust Team. 2015. The Rust Reference - Trait and lifetime bounds.
Retrieved 2021-05-06 from https://doc.rust-lang.org/reference/trait-
bounds.html

[56] The Rust Team. 2015. The Rust Reference - Types. Retrieved 2021-
05-06 from https://doc.rust-lang.org/reference/types.html

[57] The Rust Team. 2015. The Rust Standard Library Documentation -
std::io::Read. Retrieved 2021-05-06 from https://doc.rust-lang.org/
std/io/trait.Read.html

[58] The Rust Team. 2015. The Rustonomicon: The Dark Arts of Advanced
and Unsafe Rust Programming. Retrieved 2021-05-06 from https:
//doc.rust-lang.org/nomicon/

[59] The Servo Team. 2012. Servo: The Servo Browser Engine. Retrieved
2021-05-06 from https://servo.org/

[60] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. Crust: A
Bounded Verifier for Rust (N). In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
Lincoln, NE, 75–80.

[61] Philip Wadler. 1990. Linear Types can Change the World!. In Program-
ming concepts and methods, Manfred Broy and Cliff B. Jones (Eds.).
North-Holland, Sea of Galilee, Israel, 561.

[62] David Walker. 2004. Substructural type systems. In Advanced topics
in types and programming languages, Benjamin C Pierce (Ed.). MIT
press, Cambridge, PA, Chapter 1, 3–44.

[63] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. 2018.
KRust: A formal executable semantics of rust. In Proceedings of the
2018 International Symposium on Theoretical Aspects of Software
Engineering (TASE). Guanzhou, China, 44–51.

[64] Aaron Weiss, Daniel Patterson, Nicholas D Matsakis, and Amal Ahmed.
2019. Oxide: The essence of Rust. CoRR (2019). arXiv:1903.00982

[65] Hui Xu, Zhuangbin Chen, Mingshen Sun, and Yangfan Zhou. 2020.
Memory-Safety Challenge Considered Solved? An Empirical Study
with All Rust CVEs. CoRR abs/2003.03296 (2020). arXiv:2003.03296
https://arxiv.org/abs/2003.03296

99

https://joern.io/
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://github.com/rust-lang/rfcs/blob/master/text/1122-language-semver.md
https://semgrep.dev/
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://www.rust-lang.org/
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/types.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://servo.org/
https://arxiv.org/abs/1903.00982
https://arxiv.org/abs/2003.03296
https://arxiv.org/abs/2003.03296

	Abstract
	1 Introduction
	2 Background
	2.1 The Foundation: Safe Rust
	2.2 The Necessity: Unsafe Rust
	2.3 Defining Memory Safety Bugs in Rust

	3 Pitfalls of Unsafe Rust
	3.1 Panic Safety
	3.2 Higher-order Safety Invariant
	3.3 Propagating Send/Sync in Generic Types

	4 Design
	4.1 Hybrid Analysis with HIR and MIR
	4.2 Algorithm: Unsafe Dataflow Checker (UD)
	4.3 Algorithm: Send/Sync Variance Checker (SV)

	5 Implementation
	6 Evaluation
	6.1 New Bugs Found by Rudra
	6.2 Comparison with Other Approaches
	6.3 Analyzing Rust-based OSes

	7 Discussion
	7.1 Understanding False Positives and Negatives
	7.2 Understanding Rust's Safety

	8 Related work
	9 Conclusion
	10 Acknowledgment
	References

