
Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

May 1, 2020

Krace: Data Race Fuzzing
for Kernel File Systems

1

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, Taesoo Kim

Introduction Title

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Let’s talk about data race

2

Introduction Data race concept

Definition: Two memory accesses from different threads such that

1. They access the same memory location
2. At least one of them is a write operation
3. They may interleave without restrictions (i.e., locks, orderings, etc)

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 3

Introduction A classic data race example

The classic race condition example

for(i=0; i<50000; i++) {

counter++;

}

counter = 0

Thread 1 Thread 2

for(i=0; i<50000; i++) {

counter++;

}

What is the value of counter when both threads terminate?

Any value between 50,000 to 100,000

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 4

Introduction A classic data race example

The classic race condition example

counter = 0

Thread 1 Thread 2

What is the value of counter when both threads terminate?

for(i=0; i<50000; i++) {
lock(mutex);
counter++;
unlock(mutex);

}

for(i=0; i<50000; i++) {
lock(mutex);
counter++;
unlock(mutex);

}

100,000

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 5

Introduction Kernel concurrency

High level of concurrency in the Linux kernel

22 threads run
in the background!

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 6

Introduction A data race in the kernel

A data race in the kernel

Information lost!
if (!p)
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p)
p = kmalloc(...);

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 7

Introduction A data race in the kernel

A data race in the kernel

Information lost!
if (!p)
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p)
p = kmalloc(...);

This data race can be easily detected…

if we drive the execution into these code paths at runtime

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020 8

Background Fuzzing in general

Fuzzing as a way to explore the program

1

2 3
4

5

6

7 8

9

Start

End

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation

9

1

2 3
4

5

6

7 8

9

Start

End

open(“some-file”, O_READ, ...)

Background Edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation

10

1

2 3
4

5

6

7 8

9

Start

End

open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

Background Edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation

11

1

2 3
4

5

6

7 8

9

Start

End

open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

Background Edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation

12

1

2 3
4

5

6

7 8

9

Start

End

open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

......

open(“some-file”, O_RDWR, ...)

20 trials

Coverage growth stalled!

Background Edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation

13

1

2 3
4

5

6

7 8

9

Start

End

open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

......

open(“some-file”, O_RDWR, ...)

20 trials

rename(“new-file”, “old-file”)

10

11 12

13

14

Background Edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

The conventional fuzzing process

14

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Memory error
Crashed?

Background Existing kernel fuzzers

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

The conventional fuzzing process

15

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Memory error
Crashed?

The code coverage metric backs all modern kernel fuzzers

including Syzkaller, kAFL, and their follow-ups, and is one of the key
reason why over 200 memory errors were found and reported during
the past few years!

Background Existing kernel fuzzers

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Back to our data race example

16

if (!p)
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p)
p = kmalloc(...);

*Assume sequential consistency.

Background Motivation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Back to our data race example

17

if (!p)
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p)
p = kmalloc(...);

*Assume sequential consistency.

No CRASH when the data race is triggered!

Background Motivation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring out data races explicitly with a checker

18

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Memory error
Crashed?

Data race
checker Data race

Signaled?

Design Data race checker

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Checking data races - locking

19

WorkqueueSyscall

W

lock

Runlock

lock

unlock

Design Data race checker

Fork-style
- Work queues
- Kernel threads
- RCU callbacks
- Timer functions
- Software-based interrupts
- Inter-processor interrupts

Join-style
- Wait_* (e.g., wait_event)
- Semaphores

Publisher-subscriber
- RCU pointer operations

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Checking data races - ordering (causality)

20

Timer WorkqueueSyscall

W

delayed_work
<timer start>

<timer end>
queue_work

R

<work start>

Design Data race checker

Fork-style
- Work queues
- Kernel threads
- RCU callbacks
- Timer functions
- Software-based interrupts
- Inter-processor interrupts

Join-style
- Wait_* (e.g., wait_event)
- Semaphores

Publisher-subscriber
- RCU pointer operations

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring out data races explicitly with a checker

21

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Memory error
Crashed?

Data race
checker Data race

Signaled?

Design Data race checker

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A slightly complicated data race

22

sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (!G[x])
G[x] = kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (!G[y])
G[y] = kmalloc(...);

}

G[…] is all null at initialization

Thread 1 Thread 2

*Assume sequential consistency.

Design Interactions between threads

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A slightly complicated data race

23

sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (!G[x])
G[x] = kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (!G[y])
G[y] = kmalloc(...);

}

G[…] is all null at initialization

Thread 1 Thread 2

*Assume sequential consistency.

Design Interactions between threads

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Case simplified

24

A = 1;
x = A + 1;

Thread 1

A = 0;
y = A * 2;

Thread 2

Can we reach x == y?

Design Interactions between threads

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Case simplified

25

A = 1;
x = A + 1;

Thread 1

A = 0;
y = A * 2;

Thread 2

Can we reach x == y?

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

Design Interactions between threads

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

All interleavings yield to the same code coverage!

26

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

global A = 1;
local x;
if (IS_DIR(path))

x = A + 1;
if (!G[x])

G[x] = kmalloc(...);
...

global A = 0;
local y;
if (size > 4096)

y = A * 2;
if (!G[y])

G[y] = kmalloc(...);
...

Design Interactions between threads

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Incompleteness of CFG edge coverage

27

Design Missing information in edge coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A multi-dimensional view of coverage in fuzzing

28

Design Alias coverage

Edge-coverage only Krace

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Visualizing the concurrency dimension

29

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Visualizing the concurrency dimension

30

Design Alias coverage

Edge-coverage only Krace

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring fuzzing to the concurrency dimension

31

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checker

Memory error
Crashed?

Data race
Signaled?

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring fuzzing to the concurrency dimension

32

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checker

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring fuzzing to the concurrency dimension

33

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Concurrency coverage tracking

34

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A straw-man solution
sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (G[x])
kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (G[y])
kmalloc(...);

}

Thread 1 Thread 2

35

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A straw-man solution
sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (G[x])
kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (G[y])
kmalloc(...);

}

Thread 1 Thread 2

global A = 1;
 global A = 0;
 local y;
local x;
if (IS_DIR(path)) {
 if (size > 4096) {
x = A + 1;
 y = A * 2;
if(G[x])
 if (G[y])
 kmalloc(...);

 }
kmalloc(...);

}

A possible interleaving

36

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i1

i7

i8

i9

i2

i3

i4

i10

i5

i6

i11

i12

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A straw-man solution
sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (G[x])
kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (G[y])
kmalloc(...);

}

Thread 1 Thread 2

global A = 1;
 global A = 0;
 local y;
local x;
if (IS_DIR(path)) {
 if (size > 4096) {
x = A + 1;
 y = A * 2;
if(G[x])
 if (G[y])
 kmalloc(...);

 }
kmalloc(...);

}

37

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i1

i7

i8

i9

i2

i3

i4

i10

i5

i6

i11

i12

if (IS_DIR(path)) {
if (size > 4096) {

Hash(i1, i7, i8, i2, i3, i9, i4, i10, i5, i11, i12, i6) = 7825
Hash(i1, i7, i8, i2, i9, i3, i4, i10, i5, i11, i12, i6) = 1356

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

A straw-man solution
sys_readlink(path, ...):

global A = 1;
local x;

if (IS_DIR(path)) {
x = A + 1;
if (G[x])
kmalloc(...);

}

sys_truncate(size, ...):

global A = 0;
local y;

if (size > 4096) {
y = A * 2;
if (G[y])
kmalloc(...);

}

Thread 1 Thread 2

global A = 1;
 global A = 0;
 local y;
local x;
if (IS_DIR(path)) {
 if (size > 4096) {
x = A + 1;
 y = A * 2;
if(G[x])
 if (G[y])
 kmalloc(...);

 }
kmalloc(...);

}

A possible interleaving

38

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i1

i7

i8

i9

i2

i3

i4

i10

i5

i6

i11

i12

Number of possible interleavings of two threads

If two threads have and instructions respectively,
then the number interleavings between them is given by:

m n

(m + n)!
m! × n!

m = n = 2
6

m = n = 4
70

m = n = 8
13K

m = n = 16
601M

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

39

Thread 1 Thread 2

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

40

Thread 1 Thread 2
Only interleaved accesses to shared
memory matters
- In an extreme case where two threads do not shared

memory, they interleaving does not matter at all.

Only interleaved read-write accesses to
shared memory locations matters
- In an extreme case where two threads only read from

shared memory, they interleaving does not matter at all.

Thread interleaving alters the def-use
relation of memory locations!

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

41

Thread 1 Thread 2

R

R

x = A + 1

y = A * 2

Only interleaved accesses to shared
memory matters
- In an extreme case where two threads do not shared

memory, they interleaving does not matter at all.

Only interleaved read-write accesses to
shared memory locations matters
- In an extreme case where two threads only read from

shared memory, they interleaving does not matter at all.

Thread interleaving alters the def-use
relation of memory locations!

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

42

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

Only interleaved accesses to shared
memory matters
- In an extreme case where two threads do not shared

memory, they interleaving does not matter at all.

Only interleaved read-write accesses to
shared memory locations matters
- In an extreme case where two threads only read from

shared memory, they interleaving does not matter at all.

Thread interleaving alters the def-use
relation of memory locations!

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

43

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

Only interleaved accesses to shared
memory matters
- In an extreme case where two threads do not shared

memory, they interleaving does not matter at all.

Only interleaved read-write accesses to
shared memory matters
- In an extreme case where two threads only read from

shared memory, they interleaving does not matter at all.

Thread interleaving alters the def-use
relation of memory locations!

Interleaving approximation

Track cross-thread write-to-read (def-to-use) edges!

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Observations on practical interleaving tracking

44

Only interleaved accesses to shared
memory matters
- In an extreme case where two threads do not shared

memory, they interleaving does not matter at all.

Only interleaved read-write accesses to
shared memory matters
- In an extreme case where two threads only read from

shared memory, they interleaving does not matter at all.

Thread interleaving alters the def-use
relation of memory locations!

Interleaving approximation

Track cross-thread write-to-read (def-to-use) edges!

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Aliased-instruction coverage

45

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

i1

i2

i3

i2 i3 →

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Aliased-instruction coverage

46

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

WB = 2

R y = B * 4

i1

i2

i3

i4

i5

i2 i5, i4 i3 → →

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Aliased-instruction coverage

47

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

WB = 2

R y = B * 4

i1

i2

i3

i4

i5

i2 i5, i4 i3 → →

Concurrency coverage bitmap size

During our experiment, we observed 63,590 unique cross-thread, write-to-read edges.

 a bitmap size of 128KB will be sufficient.→

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Concurrency coverage tracking

48

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Alias coverage

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Interleaving exploration

49

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration - ideal case

50

A = 1;
x = A + 1;

Thread 1

A = 0;
y = A * 2;

Thread 2

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

i3

i4

i1

i2 <nil> i3 i2 → i3 i2 →

<nil> i1 i4 → i1 i4 →

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration - ideal case

51

A = 1;
x = A + 1;

Thread 1

A = 0;
y = A * 2;

Thread 2

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

i3

i4

i1

i2 <nil> i3 i2 → i3 i2 →

<nil> i1 i4 → i1 i4 →

Enumerating all interleaving among all kernel threads is impossible

During our experiment, we observed at maximum 60 threads running concurrently.

Assume each thread have only 10 shared memory accesses possibilities.⟶ 1060

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration through delay injection

52

T1

T2

T3

T4

R

W

W

R

i1

i2

i3

i4

Concurrency coverage

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration through delay injection

53

T1

T2

T3

T4

R

R

W

W

i1

i2

i3

i4

d(669)

d(300)

d(273)

d(20)

R

W

W

R

Concurrency coverage

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration through delay injection

54

T1

T2

T3

T4

R

R

W

W

i1

i2

i3

i4

d(669)

d(300)

d(273)

d(20)

Concurrency coverage

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Active interleaving exploration through delay injection

55

T1

T2

T3

T4

R

R

W

W

i1

i2

i3

i4

d(669)

d(300)

d(273)

d(20)

Concurrency coverage

Inject delays only at instructions that have shared memory accesses

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Interleaving exploration

56

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Interleaving generation

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bring them all together

57

Syscall
generator

Test case Program
executor

Feedback

code
coverage

Data race
checkerInterleaving

generator

concurrency
coverage

Memory error
Crashed?

Data race
Signaled?

Design Summary

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

QEMU-based implementation

58

Implementation Summary

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Alias coverage growth will be saturating

59

Evaluation Coverage

Btrfs Ext4

But file systems that are higher in concurrency level saturates much slower!

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Edge and alias coverage goes generally in synchronization

60

Evaluation Coverage

Btrfs Ext4

But there will be time when the edge coverage saturates
but alias coverage keeps finding new thread interleaving

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Slightly more branch coverage than Syzkaller

61

Evaluation Coverage

Btrfs Ext4

This maybe due to the fact that we give each seed more
chances (if they make progresses in alias coverage)

Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Bugs found by Krace

62

Evaluation Bugs

File system # data races # harmful confirmed

Btrfs 11 8

Ext4 4 1

VFS 8 2

Total 23 11

Meng Xu (Georgia Tech) Finding Semantic Bugs in Kernels March 18, 2020

Conclusion and contribution

63

Structured input

Seed selection

Application

Coverage metric

[SP’19] Janus [ICSE’19] DifFuzz

[VLDB’20] Apollo

[CCS’17] SlowFuzz

……

[ICSE’19] SLF

……

[Google] Syzkaller

[FSE’19] Fudge

……

[ASE’18] FairFuzz

[CCS’16] AFLFast [SP’18] Angora

[SP’20] Krace
[RAID’19] Benchmark

Meng Xu (Georgia Tech) Finding Semantic Bugs in Kernels March 18, 2020

Conclusion and contribution

64

Structured input

Seed selection

Application

Coverage metric

[SP’19] Janus [ICSE’19] DifFuzz

[VLDB’20] Apollo

[CCS’17] SlowFuzz

……

[ICSE’19] SLF

……

[Google] Syzkaller

[FSE’19] Fudge

……

[ASE’18] FairFuzz

[CCS’16] AFLFast [SP’18] Angora

[SP’20] Krace
[RAID’19] Benchmark

