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Let’s talk about data race
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Introduction Data race concept

Definition: Two memory accesses from different threads such that 

1. They access the same memory location 
2. At least one of them is a write operation 
3. They may interleave without restrictions (i.e., locks, orderings, etc)
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Introduction A classic data race example

The classic race condition example

for(i=0; i<50000; i++) { 

counter++; 

}

counter = 0 

Thread 1 Thread 2

for(i=0; i<50000; i++) { 

counter++; 

}

What is the value of counter when both threads terminate?

Any value between 50,000 to 100,000
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Introduction A classic data race example

The classic race condition example

counter = 0 

Thread 1 Thread 2

What is the value of counter when both threads terminate?

for(i=0; i<50000; i++) { 
lock(mutex); 
counter++; 
unlock(mutex); 

}

for(i=0; i<50000; i++) { 
lock(mutex); 
counter++; 
unlock(mutex); 

}

100,000
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Introduction Kernel concurrency

High level of concurrency in the Linux kernel

22 threads run 
in the background!
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Introduction A data race in the kernel

A data race in the kernel

Information lost!
if (!p) 
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p) 
p = kmalloc(...);
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Introduction A data race in the kernel

A data race in the kernel

Information lost!
if (!p) 
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p) 
p = kmalloc(...);

This data race can be easily detected… 

if we drive the execution into these code paths at runtime
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Background Fuzzing in general

Fuzzing as a way to explore the program
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Code coverage as an approximation
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Code coverage as an approximation
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open(“some-file”, O_WRITE, ...)

Background Edge coverage
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Code coverage as an approximation
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open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

Background Edge coverage



Meng Xu (Georgia Tech) Krace: Data Race Fuzzing for Kernel File Systems May 1, 2020

Code coverage as an approximation
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Start

End

open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

......

open(“some-file”, O_RDWR, ...)

20 trials

Coverage growth stalled!

Background Edge coverage
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Code coverage as an approximation
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open(“some-file”, O_READ, ...)

open(“some-file”, O_WRITE, ...)

open(“new-file”, O_READ, ...)

......

open(“some-file”, O_RDWR, ...)

20 trials

rename(“new-file”, “old-file”)
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The conventional fuzzing process
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Syscall 
generator

Test case Program 
executor

Feedback

code 
coverage

Memory error
Crashed?

Background Existing kernel fuzzers
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The conventional fuzzing process
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Syscall 
generator

Test case Program 
executor

Feedback

code 
coverage

Memory error
Crashed?

The code coverage metric backs all modern kernel fuzzers

including Syzkaller, kAFL, and their follow-ups, and is one of the key 
reason why over 200 memory errors were found and reported during 
the past few years!

Background Existing kernel fuzzers
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Back to our data race example

16

if (!p) 
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p) 
p = kmalloc(...);

*Assume sequential consistency.

Background Motivation
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Back to our data race example
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if (!p) 
p = kmalloc(...);

p is a global pointer initialized to null

Thread 1 Thread 2

if (!p) 
p = kmalloc(...);

*Assume sequential consistency.

No CRASH when the data race is triggered!

Background Motivation
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Bring out data races explicitly with a checker
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Syscall 
generator

Test case Program 
executor

Feedback

code 
coverage

Memory error
Crashed?

Data race 
checker Data race

Signaled?

Design Data race checker
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Checking data races - locking

19

WorkqueueSyscall

W

lock

Runlock

lock

unlock

Design Data race checker

Fork-style 
- Work queues 
- Kernel threads 
- RCU callbacks 
- Timer functions 
- Software-based interrupts 
- Inter-processor interrupts 

Join-style 
- Wait_* (e.g., wait_event) 
- Semaphores 

Publisher-subscriber 
- RCU pointer operations
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Checking data races - ordering (causality)

20

Timer WorkqueueSyscall

W

delayed_work
<timer start>

<timer end> 
queue_work

R

<work start>

Design Data race checker

Fork-style 
- Work queues 
- Kernel threads 
- RCU callbacks 
- Timer functions 
- Software-based interrupts 
- Inter-processor interrupts 

Join-style 
- Wait_* (e.g., wait_event) 
- Semaphores 

Publisher-subscriber 
- RCU pointer operations
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Bring out data races explicitly with a checker
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A slightly complicated data race
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sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (!G[x]) 
G[x] = kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (!G[y]) 
G[y] = kmalloc(...); 

}

G[…] is all null at initialization

Thread 1 Thread 2

*Assume sequential consistency.

Design Interactions between threads
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A slightly complicated data race
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sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (!G[x]) 
G[x] = kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (!G[y]) 
G[y] = kmalloc(...); 

}

G[…] is all null at initialization

Thread 1 Thread 2

*Assume sequential consistency.

Design Interactions between threads
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Case simplified

24

A = 1; 
x = A + 1;

Thread 1

A = 0; 
y = A * 2;

Thread 2

Can we reach x == y?

Design Interactions between threads
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Case simplified
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A = 1; 
x = A + 1;

Thread 1

A = 0; 
y = A * 2;

Thread 2

Can we reach x == y?

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

Design Interactions between threads
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All interleavings yield to the same code coverage!
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A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

global A = 1; 
local x; 
if (IS_DIR(path))

x = A + 1; 
if (!G[x])

G[x] = kmalloc(...);
...

global A = 0; 
local y;  
if (size > 4096)

y = A * 2; 
if (!G[y])

G[y] = kmalloc(...);
...

Design Interactions between threads
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Incompleteness of CFG edge coverage
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Design Missing information in edge coverage
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A multi-dimensional view of coverage in fuzzing

28

Design Alias coverage

Edge-coverage only Krace
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Visualizing the concurrency dimension

29

Design Alias coverage
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Visualizing the concurrency dimension
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Design Alias coverage

Edge-coverage only Krace
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Bring fuzzing to the concurrency dimension
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Bring fuzzing to the concurrency dimension
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Bring fuzzing to the concurrency dimension
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Concurrency coverage tracking

34
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A straw-man solution
sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (G[x]) 
kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (G[y]) 
kmalloc(...); 

}

Thread 1 Thread 2

35
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Design Alias coverage
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A straw-man solution
sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (G[x]) 
kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (G[y]) 
kmalloc(...); 

}

Thread 1 Thread 2

global A = 1; 
        global A = 0; 
        local y;  
local x; 
if (IS_DIR(path)) { 
        if (size > 4096) { 
x = A + 1; 
        y = A * 2; 
if(G[x]) 
        if (G[y]) 
        kmalloc(...); 

        }  
kmalloc(...); 

}

A possible interleaving

36
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A straw-man solution
sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (G[x]) 
kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (G[y]) 
kmalloc(...); 

}

Thread 1 Thread 2

global A = 1; 
        global A = 0; 
        local y;  
local x; 
if (IS_DIR(path)) { 
        if (size > 4096) { 
x = A + 1; 
        y = A * 2; 
if(G[x]) 
        if (G[y]) 
        kmalloc(...); 

        }  
kmalloc(...); 

}
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if (IS_DIR(path)) {
if (size > 4096) {

Hash(i1, i7, i8, i2, i3, i9, i4, i10, i5, i11, i12, i6) = 7825
Hash(i1, i7, i8, i2, i9, i3, i4, i10, i5, i11, i12, i6) = 1356

Design Alias coverage
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A straw-man solution
sys_readlink(path, ...): 

global A = 1; 
local x; 

if (IS_DIR(path)) { 
x = A + 1; 
if (G[x]) 
kmalloc(...); 

}

sys_truncate(size, ...): 

global A = 0; 
local y;  

if (size > 4096) { 
y = A * 2; 
if (G[y]) 
kmalloc(...); 

}

Thread 1 Thread 2

global A = 1; 
        global A = 0; 
        local y;  
local x; 
if (IS_DIR(path)) { 
        if (size > 4096) { 
x = A + 1; 
        y = A * 2; 
if(G[x]) 
        if (G[y]) 
        kmalloc(...); 

        }  
kmalloc(...); 

}

A possible interleaving
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Number of possible interleavings of two threads

If two threads have  and  instructions respectively, 
then the number interleavings between them is given by: 

m n

(m + n)!
m! × n!

m = n = 2
6

m = n = 4
70

m = n = 8
13K

m = n = 16
601M

Design Alias coverage
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Observations on practical interleaving tracking

39

Thread 1 Thread 2

Design Alias coverage
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Observations on practical interleaving tracking
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Thread 1 Thread 2
Only interleaved accesses to shared 
memory matters 
- In an extreme case where two threads do not shared 

memory, they interleaving does not matter at all. 

Only interleaved read-write accesses to 
shared memory locations matters 
- In an extreme case where two threads only read from 

shared memory, they interleaving does not matter at all. 

Thread interleaving alters the def-use 
relation of memory locations!

Design Alias coverage
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Observations on practical interleaving tracking
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Thread 1 Thread 2

R

R

x = A + 1

y = A * 2

Only interleaved accesses to shared 
memory matters 
- In an extreme case where two threads do not shared 

memory, they interleaving does not matter at all. 

Only interleaved read-write accesses to 
shared memory locations matters 
- In an extreme case where two threads only read from 

shared memory, they interleaving does not matter at all. 

Thread interleaving alters the def-use 
relation of memory locations!

Design Alias coverage
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Observations on practical interleaving tracking
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Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

Only interleaved accesses to shared 
memory matters 
- In an extreme case where two threads do not shared 

memory, they interleaving does not matter at all. 

Only interleaved read-write accesses to 
shared memory locations matters 
- In an extreme case where two threads only read from 

shared memory, they interleaving does not matter at all. 

Thread interleaving alters the def-use 
relation of memory locations!

Design Alias coverage
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Observations on practical interleaving tracking
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Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

Only interleaved accesses to shared 
memory matters 
- In an extreme case where two threads do not shared 

memory, they interleaving does not matter at all. 

Only interleaved read-write accesses to 
shared memory matters 
- In an extreme case where two threads only read from 

shared memory, they interleaving does not matter at all. 

Thread interleaving alters the def-use 
relation of memory locations!

Interleaving approximation

Track cross-thread write-to-read (def-to-use) edges!

Design Alias coverage
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Observations on practical interleaving tracking
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Only interleaved accesses to shared 
memory matters 
- In an extreme case where two threads do not shared 

memory, they interleaving does not matter at all. 

Only interleaved read-write accesses to 
shared memory matters 
- In an extreme case where two threads only read from 

shared memory, they interleaving does not matter at all. 

Thread interleaving alters the def-use 
relation of memory locations!

Interleaving approximation

Track cross-thread write-to-read (def-to-use) edges!

Design Alias coverage
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Aliased-instruction coverage
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Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

i1

i2

i3

i2 i3 →

Design Alias coverage
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Aliased-instruction coverage

46

Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

WB = 2

R y = B * 4

i1

i2

i3

i4

i5

i2 i5, i4 i3 → →

Design Alias coverage
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Aliased-instruction coverage
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Thread 1 Thread 2

Rx = A + 1

WA = 1

W A = 0

WB = 2

R y = B * 4

i1

i2

i3

i4

i5

i2 i5, i4 i3 → →

Concurrency coverage bitmap size

During our experiment, we observed 63,590 unique cross-thread, write-to-read edges. 
  

 a bitmap size of 128KB will be sufficient.→

Design Alias coverage
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Concurrency coverage tracking
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Data race
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Design Alias coverage
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Interleaving exploration

49

Syscall 
generator

Test case Program 
executor

Feedback

code 
coverage

Data race 
checkerInterleaving 

generator

concurrency 
coverage

Memory error
Crashed?

Data race
Signaled?

Design Interleaving generation
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Active interleaving exploration - ideal case

50

A = 1; 
x = A + 1;

Thread 1

A = 0; 
y = A * 2;

Thread 2

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

i3

i4

i1

i2 <nil> i3 i2 → i3 i2 →

<nil> i1 i4 → i1 i4 →

Design Interleaving generation
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Active interleaving exploration - ideal case

51

A = 1; 
x = A + 1;

Thread 1

A = 0; 
y = A * 2;

Thread 2

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 1, y = 0 x = 1, y = 0

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

A = 0;

A = 1;

x = A + 1;

y = A * 2;

x = 2, y = 0 x = 2, y = 2 x = 2, y = 2

i3

i4

i1

i2 <nil> i3 i2 → i3 i2 →

<nil> i1 i4 → i1 i4 →

Enumerating all interleaving among all kernel threads is impossible

During our experiment, we observed at maximum 60 threads running concurrently. 

Assume each thread have only 10 shared memory accesses   possibilities.⟶ 1060

Design Interleaving generation
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Active interleaving exploration through delay injection

52
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Concurrency coverage

Design Interleaving generation
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Active interleaving exploration through delay injection

53
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R
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W
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R

W

W

R

Concurrency coverage

Design Interleaving generation
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Active interleaving exploration through delay injection
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Active interleaving exploration through delay injection
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Interleaving exploration
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Bring them all together
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QEMU-based implementation
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Implementation Summary
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Alias coverage growth will be saturating
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Evaluation Coverage

Btrfs Ext4

But file systems that are higher in concurrency level saturates much slower!
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Edge and alias coverage goes generally in synchronization

60

Evaluation Coverage

Btrfs Ext4

But there will be time when the edge coverage saturates 
but alias coverage keeps finding new thread interleaving
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Slightly more branch coverage than Syzkaller
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Evaluation Coverage

Btrfs Ext4

This maybe due to the fact that we give each seed more 
chances (if they make progresses in alias coverage)
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Bugs found by Krace
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Evaluation Bugs

File system # data races # harmful confirmed

Btrfs 11 8

Ext4 4 1

VFS 8 2

Total 23 11
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Conclusion and contribution
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Structured input

Seed selection

Application

Coverage metric

[SP’19] Janus [ICSE’19] DifFuzz

[VLDB’20] Apollo

[CCS’17] SlowFuzz

……

[ICSE’19] SLF

……

[Google] Syzkaller

[FSE’19] Fudge

……

[ASE’18] FairFuzz

[CCS’16] AFLFast [SP’18] Angora

[SP’20] Krace
[RAID’19] Benchmark
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