
Slimium: Debloating the Chromium Browser with Feature
Subsetting

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee

Georgia Institute of Technology

ABSTRACT

Today, a web browser plays a crucial role in offering a broad spec-
trum ofweb experiences. Themost popular browser, Chromium, has
become an extremely complex application to meet ever-increasing
user demands, exposing unavoidably large attack vectors due to its
large code base. Code debloating attracts attention as a means of
reducing such a potential attack surface by eliminating unused code.
However, it is very challenging to perform sophisticated code re-
moval without breaking needed functionalities because Chromium
operates on a large number of closely connected and complex com-
ponents, such as a renderer and JavaScript engine. In this paper,
we present Slimium, a debloating framework for a browser (i.e.,
Chromium) that harnesses a hybrid approach for a fast and reli-
able binary instrumentation. The main idea behind Slimium is to
determine a set of features as a debloating unit on top of a hybrid
(i.e., static, dynamic, heuristic) analysis, and then leverage feature
subsetting to code debloating. It aids in i) focusing on security-
oriented features, ii) discarding unneeded code simply without
complications, and iii) reasonably addressing a non-deterministic
path problem raised from code complexity. To this end, we generate
a feature-code map with a relation vector technique and prompt
webpage profiling results. Our experimental results demonstrate the
practicality and feasibility of Slimium for 40 popular websites, as on
average it removes 94 CVEs (61.4%) by cutting down 23.85 MB code
(53.1%) from defined features (21.7% of the whole) in Chromium.

CCS CONCEPTS

• Security and privacy → System security; Browser security.

KEYWORDS

Debloating; Browser; Program Analysis; Binary Rewriting

ACM Reference Format:

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke
Lee. 2020. Slimium: Debloating the Chromium Browser with Feature Sub-
setting. In 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3372297.3417866

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417866

1 INTRODUCTION

Today, a web browser plays arguably the most important role to
interface with a wide range of the Internet experiences from in-
formation searching, email checking and on-demand streaming to
e-commerce activities. Moreover, the number of smart mobile users
has been skyrocketing over the past decades, reaching up to 5.1
billion [48] in the world; that is, billions of people are considered po-
tentially active users of web browsers to use various services. Of all,
the Chrome browser [25] has dominated the market (around 65%)
in both desktop and mobile environments since its release 1. Unlike
the initial design of Chromium, which aims to be a lightweight
browser [36], its volume has been continuously inflated to meet
numerous users’ demands. Chromium includes a large number of
third-party software (around 40% of source code), as a feature-rich
application predominately relies on well-designed external libraries
and components. As a result, Chromium has become an extremely
complex application to support a broad spectrum of features (e.g.,
PDF viewer, real time communication or virtual reality), which
keeps expanding with new requirements.

While an abundance of features in Chromium offers unprece-
dented web experiences, a large code base often brings about an un-
welcome outcome from a security perspective because it inevitably
exposes extensive attack vectors that an adversary attempts to com-
promise. Besides, it would be exacerbated when code dependencies
are common; external code may often introduce a known vulner-
ability unless a patch is applied in a timely manner. Indeed, the
security community has reported various attacks [1, 33] as well
as countless bugs [9, 18]. Recently, Permissions Policy [46] (aka.,
Feature Policy) was introduced to handle myriad features; however,
it is yet rudimentary rather than comprehensive or standardized.
Snyder et al. [42] propose a browser extension that selectively
blocks low-benefit and high-risk features with cost-benefit evalu-
ation, applying each website to feature restriction. Although this
approach successfully blocks 15 (out of the 74) Web API standards
and avoids 52% of all CVEs without affecting the usability of 94.7%
of the tested websites, the binary code for a feature implementation
still resides in memory. The approach can be circumvented [43]
because its hardening mechanism mainly lies in disabling features
by intercepting JavaScript APIs.

To remedy this problem, code debloating is another emerging
means to reduce such an attack surface by eliminating unneeded
code. The main challenge arises from sophisticated removal while
preserving needed code at all times. Prior works [15, 23, 28, 31, 38,
53, 55] largely rely on binary analysis to create a customized ver-
sion. PieceWise [40] utilizes additional information from a compiler
toolchain to generate a specialized library with higher precision.

1Strictly speaking, Chromium forms a basis for Chrome as an open-source project,
which lacks proprietary features. In this paper, we use Chromium.

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

461

https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/3372297.3417866

Meanwhile, recent works [11, 16, 51] leverage machine learning
techniques for debloating.

However, none of the above approaches scales to a massive ap-
plication such as a web browser. The code chunk in an official
Chromium release is around 110MB, even larger than the Linux
kernel. The primary factor in hindering web browser debloating
originates from not only its volume but also a unique property: em-
bedding many large inner-components that are strongly connected
to each other. For example, the renderer (i.e., Blink in Chromium)
goes through a very complex process to complete a requested page
view from a DOM (Document Object Model or Web APIs) tree [20],
making internal use of various components such as Skia and GPU.
Similarly, the V8 JS engine exposes the Web APIs with a number of
binding interfaces to the actual implementation. Indeed, our call
graph from static analysis empirically shows that 86.7% functions
(of all 483K nodes) are connected either directly or indirectly. A
strong connection among these underlying components renders
either static or dynamic analysis (even in a combined manner) im-
practical because it results in either little removable code from a
dependency (i.e., call or control flow) graph or accidental code elim-
ination from failing to trace drastically divergent paths even when
visiting the same page.

In this paper, we present Slimium, a debloating framework for
a browser such as Chromium, harnessing features as a debloating
unit atop hybrid (i.e., static, dynamic, heuristic) techniques and
leveraging them for fast and reliable binary instrumentation with
feature subsetting. We choose open-source Chromium because of its
popularity and diverse applications; further, we believe the impact
would be non-negligible, taking three billion end users into account.
The “unit features for debloating” gain several advantages: i) focus-
ing on features pertaining to security, ii) removing unneeded code
handily, and iii) addressing a non-deterministic path issue from
code complexity. To the best of our knowledge, this is the first work
that achieves successful software debloating on a Chromium scale.

Slimium consists of the following three parts: i) feature-code
mapping generation, ii) website profiling, and iii) binary instrumen-
tation based on those analyses. As a first phase, we determine a set
of 164 Chromium features as attack surface vectors with thorough
analysis on both the Web specification standards and the latest
364 CVEs for the last two years. We discovered 153 CVEs (42%)
associated with 42 features in our set, which could potentially be
removed. Next, we create a feature-code map in a semi-automated
fashion, starting with a manual exploration on source code corre-
sponding to predefined features and then discovering more binary
functions pertaining to the features automatically. To this end, we
devise a new heuristic means, dubbed a relation vector technique,
enabling us to deduce more function candidates for a feature. Once
the feature-code map is complete, we perform prompt website pro-
filing to obtain non-deterministic code paths by visiting popular
websites as a baseline to avoid accidental code elimination. Note
that the above phases that generate supplementary information are
a one-time processing for further debloating. Last, we produce a
slim Chromium version for target websites of our interest based on
the above artifacts. Our experimental results show that Slimium
could successfully i) create an accurate feature-code map, ii) remove
unneeded features while preserving needed code successfully, and

[W
3

C
]

W
eb

 S
p

ec
if

ic
at

io
n

W
e

b
 F

e
at

u
re

s

N
o

n
-w

eb
 F

e
at

u
re

s

Chromium Browser

Quarks

Standards

JS APIsHTML5

HTML CSS

Experiments
Web VR Geolocation

Web Contents

Web APIs

Payment Gyroscope

Old features
(compatibility)

pdf
Native Client
DevTools

Others …

Execution-while-
not-rendered

Feature
Policy

QUIC

Figure 1: Web specification in Chromium.

iii) generate debloated versions that work flawlessly for ordinary
browsing of the target websites.

In summary, we make the following contributions:
• We propose Slimium, a novel debloating framework for
Chromium that allows one to access a pre-defined set of
websites. Notably, we introduce a practical approach, feature
subsetting, based on feature-code mapping with a relation
vector and webpage profiling.

• We define a set of unit features for debloating.We thoroughly
investigate both source code and the underlying components
of Chromium to obtain the final set of removable features.
To this end, we collect and analyze comprehensive CVEs
that were officially fixed for the last two years.

• We evaluate the feasibility of our approach with a prototype
Slimium implementation. The prototype demonstrates its
effectiveness (reducing 61.4% of CVEs and 53.1% of code)
and efficiency (less than a second to generate a debloated
version) with high reliability (all Chromium variants work
flawlessly).

• We provide an open source implementation for Slimium to
foster debloating-relevant research, which can be obtained
through https://github.com/cxreet/chromium-debloating.

2 BACKGROUND

In this section, we discuss a variety of Web standard specifications
with important Web jargon to avoid further confusion, and the
Chromium browser.

2.1 Browser Features and Web APIs

The World Wide Web Consortium (W3C), the international stan-
dard organization for the Web, has specified more than 1,200 stan-
dards [47] thus far. It is crucial to understand underlying compo-
nents of a modern Web browser to determine the scope of unused
code.

Figure 1 illustrates how Web specification has been deployed
within a Chromium browser at a glance 2. In general, a browser
implements a subset of standard Web features. Non-Web features
are browser-specific (The browser may include its own experimen-
tal features that could be standards later on). For instance, Native
2When the Web technology was immature, there was no clear boundary between Web
and non-Web features because Web standards did not rule a Web browser. Here we
assume a modern browser conforming to Web standards.

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

462

https://github.com/cxreet/chromium-debloating

Client (NaCl) allows for secure execution of native code in a sand-
box environment, which is only available in Chromium.

The web features can be categorized into three domains: quarks,
experiments, and standards. A browser supports even depre-
cated features in a quarks set for backward compatibility. An
experiments set defines a series of candidate features that come
with mock implementation, which might be part of the standards
specifications in the future. Chromium offers a list of flags 3 to
activate various experimental features (i.e., QUIC protocol) for ad-
vanced users. A standards set implements all other specifications
such as HTML, CSS, HTML5, and JavaScript APIs.

Web APIs play a pivotal role in interacting with the above feature
sets. For example, a developer can utilize the Geolocation API
when a functionality of geographical location is needed upon a
user’s approval. The Web APIs are typically exposed as JavaScript
interfaces. Hence, in this paper, one of the attack vectors includes
a browser feature defined as a JS object, method, or property. In-
deed, JS APIs are a major entry point that has been weaponized by
attackers [1, 18, 33, 50]. From an implementation view, Chromium
internally specifies Web APIs through Web Interface Definition
Language (IDL). Blink [37] has a dialect of Web IDL for binding
actual implementation with each Web API in Chromium.

2.2 Feature Policy

Although ever-growing web features enrich users’ experiences,
the attack surface of web applications gets larger accordingly. A
concept of Feature Policy [46] has been introduced, which allows
a web server to selectively enable or disable a specific feature of a
user agent. Similar to Content Security Policy (CSP) [29], Feature
Policy defines a set of web-feature-relevant policies that restricts
a behavior of the browser via the “Feature-Policy” HTTP header
field (i.e., the server sends policy directives to the client for policy
enforcement). We found around 30 feature directives in MDN [30]
and Chromium documents [14] for Feature Policy, yet no directive
has been officially standardized. The Chromium version for our
experiment supports 25 feature directives 4.

However, we decide to define a new feature set that assists de-
bloating for the following reasons: i) the standard features sup-
ported by Feature Policy are neither comprehensive nor imple-
mented across browsers yet, ii) some features do not fit well on
debloating because they may span multiple features. As an example,
a camera feature implementation is part of both WebRTC and Media
Stream. In this scenario, eliminating camera affects the other two
features, rendering a debloating process opaque, and iii) it does
not cover complete code that accounts for unneeded features to be
potentially removed (e.g., PDF).

2.3 The Chromium Browser

Since the first release of Google Chromium in 2008, its market
share has reached 68.8% for desktops and 63.6% across all plat-
forms in the world [44] by 2018. Besides, many browsers based on
Chromium have been launched (e.g., Brave, Vivaldi, Opera, Iron,
etc.), incorporating customized features or concepts. Lately, the
3Entering chrome://flags at an address bar in Chromium gives an opportunity to
enable experimental features ahead.
4With document.featurePolicy.allowedFeatures(), it returns features avail-
able in the current version of Chromium.

src

gen

third_partych
ro
m
e

components

con
tent

v8

ne
tui

ex
te
ns
io
ns

m
edia

services
gpu cc

device
ppapi
base

storage
google_apis

m
ojo

b
u
i l d

t o
o
l s

third_party

components

services

chrome

content

extensions

media

v8

d e v i c e

l o g g i n g

blink

sk
ia

w
eb

rt
c

pd
fiu

micu

libvpx
sqlite

boringssl

ffm
peg

angle

harfbuzz-ng

freetype

libw
ebp

libxm
l

dav1d

usrsctp

opus

h
u
n
sp

ell

lib
jp
eg _tu

rb
o

le
v e

ld
a
ta
b
a
se

s fn
t ly

p
e
r fe

t to

l ib
y u

v

u
n
r a

r

r e
2

o
t s

f o
n
t c

o
n
fi
g

br
ow
se
r

renderercommons e r v i c e

autofillsync

vi
z

omnibox
password_managerdownload

history
safe_browsing
policy
signin
gcm_driver

paym ents
services
nacl
in va lid a t io n

d a t a _ r e d u c t io n _ p r o x y
s e a r c h _ e n g in e s
m e t r i c s

u p d a t e _ c l i e n t
u i _ d e v t o o l s
m i r r o r i n g

brow
ser

ren
der

er

com
mo

n

pu
b l
ic

src

th
ird
_p
ar
ty

ht
tp

di
sk
_c
ac
he

dn
s

ce
rt

b
as
e

so
ck

e t
sp

d
y

q
u
ic

u
r
l _

r
e
q
u
e
s
t

vi
ew

s

gl

gf
x

ac
ce
ss
ib
ili
ty

ba
se

ev
en

ts
c
o
m

p
o
s
i t
o
r

m
e
s
s
a
g
e
_
c
e
n
t e

r

br
ow

se
r

re
nd

er
er

co
m
m
on

filters
base
m
ojo
cast
b
lin

k
a
u
d
io

f o
r
m

a
t s

c
a
p

t
u

r
e

netw
ork

device
tracin

g
a
u
d
io

s
e
r
v
i c

e
_
m

a
n
a
g
e
r

com
m
and_buffer ipc

trees
paint
tiles

layers
a
n
i m

a
t i o

n

bluetooth
fido

proxy t h
u
n
k

s
h
a
r
e
d
_
i m

p
l

ta
s k

N
o
n
e

t r
a
c
e
_
e
v
e
n
t

browser
d
r iv e

g
c
m

core
p
u
b
lic

third_party

l ib

N
o
n
e

blink
metrics_proto

perfetto

sync

policy

safe_browsing

services

autofill

a s s is t _ r a n k e r

network
device

vi
z

m e t r i c s

common
browser

browser
common

common
mojo

sr
c v

r

r tc _e ven t_ lo g

renderer

c o
m

m
o
n

srcm
od

ul
espc

p2
p

rt
c_
ba
se

m
ed

ia

vi
de

oca
ll

a
p
i

co
re

th
ird

_p
ar
tyfx
js

fp
df
sd
ksource

source
N
onesrc

libavcodec

libavform
atsrcsrcsrcsrcsrclibdav1d

usrsctplib

srcsrcN
onesrc

srcsrcsourcesrcsrcs rcs r cs r cs r
c

N
o
n
e

uiextensions

media
sync_file_system

devtools
Nonesafe_browsing

notifications

profilespage_load_metrics

download
web_applications

browsing_data

printing
resource_coord inator

searchmetrics
supe rv ised _u se r

p e r f o rm
a n c e _ m

a n a g e r

t a s k _ m
a n a g e r

m
e d ia _ g a l le r ie s

p r e d i c t o r s

n e tp o l i c y

p a s s w
o r d _ m

a n a g e r

a p p s

s
s
l

v
r

N o n e

e x t e n s i o n s
N o n e

c l o u d _ p r i n t

core
contentengine_impldriversyncab lep r o t o c o lm o d e l _ i m p l

servicec o m m o n

browser
core
internal
core

d
b

core
in te rn a l
c o r e

None
co n te n t

r e n d e r e r

impl

core
None
N on e
N o n e

s e r v i c e

b r o w s e r

c o r e

N o n e

N o n e

rendere
r_host

devtoo
ls

servic
e_wor

ker

fram
e_ho

st

None

inde
xed_

db

media

appc
ache

cach
e_st

orag
e

web
_con

tent
s

bac
kgro

und
_fet

ch

load
er

dow
nlo

ad

dom
_sto

rag
e

a c c
e s

s ib
i l i t

y

b lu e t o
o t h

w e b
_ p

a c
k a

g e

s p
e e c h

b a c k
g r o

u n d _ s
y n

c

No
ne

me
dia

pep
per

lo
a d

e r

s e
r v

i c
e _

w
o r k

e r

No
ne

co
mp

ile
r

ob
jec
ts

wa
sm

he
ap

ru
nt
im
e

in
sp
ec
to
r

bu
ilt
in
s

pa
rs
in
g

co
de
ge
n

ap
i

in
te
rp
re
te
r

re
ge
xp

ex
ec
ut
io
n

pr
ofi

le
r

d
e
b
u
g

a s t

i n
i tic

qu
ich

e
N
on
e

s i
m
p
le

b
lo
c k

fi
le

N
on
e

N
o
n
e

i n
t e

r n
a
l

N
on
e

N
on
e

N
on
e

N
on

e
N
o
n
e

N
o
n
e

N
o
n

e

co
nt
ro
ls

w
id
ge
t

N
o
n
e

N
on

e
N
on

e
N
on

e
p
la

t f
o
r m

x

N
o
n
e

v
i e

w
s

N
o
n
e ap
i

N
on

e
g
u
e
s t
_ v

ie
w

N
on

e
b
in

d
in

g
s

N
on

e
m

a
n
i f
e
s
t _

h
a
n
d
l e

r
s

N
one

N
one
services

s
e
n

d
e
r

N
one
N
o
n
e

m
p

4

v
i d

e
o

N
o
n
e

N
one

p
u
b
lic

u
s
b

p
u
b
l i c

N
o
n
e

service client
s
e
r v

i c
e

N
o

n
e

N
one
N
one

N
one

N
one

N
o
n
e

dbus
bluez
N
o
n
e

N
one
N

o
n
e

N
one N

one
N
o
n
e

s
e
q
u
e
n
c
e
_
m

a
n
a
g
e
r

N
o
n
e

N
o
n
e

N
o
n
e

fileapi
blob

q
u
o
t a

None
e n

g in
e

None
cpp

libc++
N

o
n
e

b
r o

w
s e r

N
one

N
o
n
e

re
nd
er
er

public
None

protos

protocol

proto

proto

leve ldb

fi l e s y s t e m

core

c o n te n t

proto

public
public

p r iv i le g e d

p u b l i c

p u b l ic

extensions
None

m e d i a _ r o u t e r

u
i

devtools

None
i n p u t

api

interfaces
N o n e

inspector
p u b lic

None

N o n e

Figure 2: Hierarchical structure (a depth of four) of

Chromium source directory: each portion represents an

area in proportion to the actual size of (compiled) binary

functions defined in an individual Chromium source path.

Sub-directories are sorted in a counterclockwise direction.

Edge browser has been migrated into a Chromium’s V8 engine and
a blink renderer from Chakra and EdgeHTML, respectively [54].
Electron [10] is a runtime framework to build cross-platform
applications on top of Node.js and Chromium.

The proliferation of Chromium and its applications inevitably
becomes a fruitful attack vector to an adversary, taking advantage
of a large attack surface. While it is essential to shrink unneeded
functionalities, to the best of our knowledge, no work has achieved
successful debloating in Chromium.

2.4 Chromium Binary Structure

Chromium consists of a large chunk of code. The latest distributed
version ships with approximately 110MB binary code. The main
binary comprises around 23K compilation units (CUs) (i.e., object
files), and 483K binary functions in total.

Figure 2 illustrates the entire directory structure of Chromium
CUs at build time. Each fan-shaped area conveys the following: a) a
hierarchical location (i.e., parent and child(ren)), b) the rate of the
sum of binary function sizes within, and c) the rank of the rate
in its parent (i.e., inner circle). For example, the webrtc resides in
the src/third_party/webrtc whose function size takes up the
third largest component in its parent directory, third_party. We
leverage the structure information to choose feature candidates
that could be eliminated (See Section 4.1).

The gen directory contains all source files generated at compila-
tion time, which occupies a non-negligible portion (16.7%) of the
Chromium codebase. A large amount of JavaScript V8 engine im-
plementation comes from a script that creates binding code using a
template as specified in a Blink IDL, which emits to the designated

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

463

binding directory 5. This means a single feature implementation
may span multiple locations.

3 DEBLOATING CHROMIUM

In this section, we describe challenges and our approach along with
Chromium debloating, and provide a Slimium overview, followed
by defining an attack surface for Chromium.

3.1 Challenges and Approach

At first glance, a code-slimming process sounds straightforward
because its gist simply lies in identifying and nullifying unneeded
code. However, on a large scale like Chromium, it is challenging to
determine removable code because of not only its volume but also
its inter-dependencies and interactions (e.g., inter-process commu-
nication, cache, asynchronization) between underlying components
that are individually large enough. For example, the Blink renderer
requires very expensive computations to present a web page view
by building a DOM tree and drawing each pixel in a browser [20].
This process involves diverse internal components such as a parser,
layout builder, painter, and compositor. Likewise, the bindings of
Web APIs exposed by the V8 JS engine interface with many inter-
nal implementations (specified as IDL). These strongly connected
components make static or dynamic analysis less useful (even in
a hybrid manner) because i) using a call graph or control graph
ends up with very little code that can be removed; e.g., the whole
call graph constructed from our experiment contains 483K nodes
and 1.5M edges, in which 86.7% of the nodes are connected to
each other, and ii) exercised functions drastically differ from every
visit of the identical webpage due to inherently non-deterministic
behaviors (i.e., network, caching) or dynamic web contents (i.e.,
advertisements), as well as user interactions (i.e., keyboard and
mouse events), resulting in accidentally eliminating needed code.

To address the above issues, we define a feature as a debloating
unit and then subset the features for specific targets of our interest
(See Section 4.1). The light-red box in Figure 3 presents our debloat-
ing approach at the high level. The features space (white squares)
determines an attack surface to be potentially removed, whereas
all other code is undebloatable. In this example, there are two fea-
tures (F1 and F2) that consist of nine and 12 functions, respectively
(a circle in each feature represents a function). With a baseline
profiling result generated by visiting the Top 1000 Alexa websites,
we mark non-deterministically exercised functions, that is, three
functions for F2 in (a). Next, we collect all exercised functions for
a target page (or multiple pages) as (b), in which four functions
have been additionally exercised for F1. In this setting, we sorely
eliminate nine functions in F2 because the target page(s) adopts
F1, not F2 as in (c). The three functions in F2 stay intact, as they
are possibly employed by other code non-deterministically. Note
that the decision on whether a feature has been adopted would
remain as a threshold because it strikes a balance between the size
of possible code reduction and generation of a reliable variant.

3.2 Slimium Overview

Figure 3 shows an overview of Slimium for debloating Chromium.
Slimium consists of three main phases: i) feature-code mapping
5gen/third_party/blink/renderer/bindings/*/v8

generation, ii) prompt website profiling based on page visits, and
iii) binary instrumentation based on i) and ii).

Feature-Code Mapping. To build a set of unit features for debloat-
ing, we investigate source code [35] (Figure 2), previously-assigned
CVEs pertaining to Chromium, and external resources [8, 47] for
the Web specification standards (Step ➊ in Figure 3). Table 1 sum-
marizes 164 features with four different categories. Once the fea-
tures have been prepared, we generate a feature-code map that aids
further debloating from the two sources (➊’ and ➋’). From the light-
green box in Figure 3, consider the binary that contains two CUs to
which three and four consecutive binary functions (i.e., { f0 − f2}
and { f3 − f6}) belong, respectively. The initial mapping between a
feature and source code relies on a manual discovery process that
may miss some binary functions (i.e., from the source generated at
compilation). Then, we apply a new means to explore such missing
functions, followed by creating a call graph on the IR (Intermediate
Representation) (Step ➋, Section 4.2).

Website Profiling. The light-yellow box in Figure 3 enables us
to trace exercised functions when running a Chromium process.
Slimium harnesses a website profiling to collect non-deterministic
code paths, which helps to avoid accidental code elimination. As a
baseline, we perform differential analysis on exercised functions by
visiting a set of websites (Top 1000 from Alexa [3]) multiple times
(Step ➌). For example, we mark any function non-deterministic if
a certain function is not exercised for the first visit but is exercised
for the next visit. Then, we gather exercised functions for target
websites of our interest with a defined set of user activities (Step
➍). During this process, profiling may identify a small number of
exercised functions that belong to an unused feature (i.e., initial-
ization). As a result, we obtain the final profiling results that assist
binary instrumentation (➌’ and ➍’).

Binary Rewriting. The final process creates a debloated version
of a Chromium binary with a feature subset (Step ➎ in Figure 3).
In this scenario, the feature in the green box has not been needed
based on the feature-code mapping and profiling results, erasing
the functions { f0, f1, f3} of the feature. As an end user, it is suf-
ficient to take Step ➍ and ➎ for binary instrumentation where
pre-computed feature-code mapping and profiling results are given
as supplementary information.

3.3 Chromium Attack Surface

A concept of an attack surface, in general, encompasses interfaces,
protocols, address spaces or code itself, as a security measurement.
Of our interest, the attack surface is a set of buggy code to be
potentially misused in memory.

In this paper, we define the Chromium attack surface as the
exposed code possibly leveraged by an adversary; that is, not all
code is the target that could be weaponized. In the same vein, we
exclude static HTML and CSS in our feature set because there is
little margin for the adversary to leverage them to build a functional
payload without the help of any JavaScript or HTML5 functional-
ity. In this regard, our approach aims to neither achieve complete
elimination of all unwanted features nor maximize the size of code
reduction. Instead, our approach attempts to reduce a recognizable
attack surface as the best-effort service.

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

464

(Approach)

Entire code

F1 F2

Profiling

Debloating

a

b

c

Object(compilation unit)

Function

Feature
{f0, f1, f3}

Feature
{f2, f3, f5, f6}1

2

Static AnalysisSource Code

f1f0 f2 f3 f4 f5 f6

IR

Feature
Discovery

Call Graph Generation

Dynamic
Analysis

Feature Code
Mapping

Profiling
Results

3 Top 1000
Website Visits

4 User Activity
Analysis

1’

2’

3’

4’

f1f0 f2 f3 f4 f5 f6

Instrumentation5 Binary Rewriting

Debloated
Version

External
Resources

(Outputs)

(Inputs)

CVEs

Figure 3: High-level overview of Slimium. It leverages a concept of feature subsetting (feature as a unit of debloating) to guide

a binary instrumentation as feedback on top of feature-code mapping and profiling results.

Table 1: Chromium features as a debloating unit (#: count).

Class

Features

(#)

Functions

(#)

Function

Size (KB)

CVEs

(#)

Feature Policy

Directives (#)

Experimental

Flags (#)

HTML5 6 8,103 1,721 15 0 0
JS API 100 71,082 17,204 57 25 15
Non-web 57 62,594 21,303 77 0 0
Wasm 1 1,189 869 4 0 0

Total 164 142,968 41,097 153 25 15

4 SLIMIUM DESIGN

In this section, we describe the design of Slimium in detail.

4.1 Feature Set for Chromium Debloating

We begin with investigating all Web APIs to group them into dif-
ferent features from the approach in Snyder et al. [42], and ex-
ploring the Chromium’s source code structure to include other
features with an absence of Web APIs. Besides, we utilize external
resources [8, 47] that list comprehensive features to define our fi-
nal feature set for debloating. Note that we have excluded i) glue
code that is commonly shared among multiple features and ii) code
pertaining to fundamental security mechanisms such as SOP (Same
Origin Policy) and CSP (Content Security Policy), which means
that these security relevant features will be always retained in a de-
bloated version of Chromium regardless of our profiling phase (4.3).
In Table 1, we define 164 Chromium features that can be harnessed
as a debloating unit, classifying them into four categories: JS API,
HTML5, Non-web, and Wasm. Note that wasm (Web assembly) is
the only feature that does not belong to HTML5, JS API, or the stan-
dard Web specifications. Interested readers can find further details
regarding unit features in the Appendix (Table 4). In summary, a
few notable statistical values are as follows: i) 153 CVEs reside in
42 debloatble features (25% of all the features), ii) 25 Feature Policy
directives are included as part of our feature set, iii) 15 features can
be enabled with an experimental flag, eight of which are defined as
Feature Policy directives 6.

6accelerometer, ambient-light-sensor, fullscreen, magnetometer, gyroscope, vr,
publickey-credentials, and xr-spatial-tracking

JavaScript API. As shown in Section 2.1, Chromium offers Web
APIs that interact with web contents through JavaScript interfaces.
In particular, we utilize caniuse [8] to classify the JavaScript APIs
because it actively keeps track of browser-and-version-specific fea-
tures as collective intelligence. Some of them have been combined
due to a common implementation (i.e., Blob constructing and Blob
URLs as a Blob API), resulting in 100 sub-categories.

HTML5. As the latest HTML version, HTML5 defines a rich
feature set including audio, video, vector graphics (i.e., SVG, canvas),
MathML, and various form controls as part of HTML by default.
We define six major features that cause either a large code base or
previous vulnerabilities (i.e., known CVEs). Recently, MarioNet [33]
has demonstrated a new class of attacks that sorely relies onHTML5
APIs (i.e., a feature of service workers) in modern browsers, leading
successfully unwanted operations.

Non-web Features. Our finding from Figure 2 shows that there
are a few Chromium-browser-specific features such as devTools,
extensions, and PDF that have been exposed to various attacks in the
past years (Table 5). To exemplify, we could find 26 CVEs pertaining
to a PDF feature alone. Additionally, we define each third-party
component as a feature, assuming external code has a minimal
dependency on each other. Indeed, this assumption holds for our
features because their core implementations are often mutually
exclusive. For example, few call invocations have been discovered
among each other under the third_party directory based on our
call graph analysis. Note that we have excluded a few of them when
the feature is heavily employed by other parts such as protobuf.

4.2 Feature-Code Mapping

Generating a feature-code map is a key enabler to make our debloat-
ing approach feasible. In this section, we describe how to create
such mapping in a reliable and efficient manner. To this end, we
introduce a concept of a relation vector to seek more relevant code
for a certain feature.

4.2.1 Manual Feature-Code Discovery. To determine the corre-
sponding code to each feature, we begin with a manual investi-
gation on source files that implement a certain feature, which is

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

465

worthwhile because Chromium often offers well-structured directo-
ries and/or file names and test suites. For example, the test set of the
battery feature resides in external/wpt/battery-status and
battery-status under the directory of blink/web_tests that
contains a collection of various test suites. With additional explo-
ration, we could infer the implementation for that feature is within
battery under the directory of blink/renderer/modules that
contains a collection of various renderer modules.

4.2.2 Feature-Oriented Call Graph Generation.

Function Identifier. Once the above initial mapping is complete,
Slimium constructs a call graph based on IR functions. Recall that
we aim to directly remove binary functions on top of the mapping
information; hence Slimium instruments the final Chromium binary
by assigning a unique identifier for each IR function at its build.
The discrepancy between IR and binary functions happens because
of i) object files irrelevant to the final binary at compilation (i.e.,
assertions that ensure a correct compilation process or platform-
specific code) and ii) de-duplication at link time [19] (i.e., a single
constructor or destructor of a class instance would be selected if
redundant) 7. It is noted that we can safely discriminate all binary
functions because they are a subset of IR functions.

Indirect Call Targets. As Chromium is mainly written in a C++
language, there are inherently a large number of indirect calls,
including both virtual (91.8%) [45] and non-virtual calls. Briefly,
we tackle identifying indirect call targets using the following two
techniques: i) backward data analysis for virtual calls and ii) type
matching for non-virtual calls. In case of failing the target in a
backward data analysis for a virtual call invocation, we attempt to
use type matching. Note that it is infeasible to obtain all indirect
call targets with full accuracy. We describe the whole call graph
construction in Section 5.

4.2.3 Feature-Code Mapping with Relation Vectors. At this point,
we have a large directed call graph (nodes labeled with a function
identifier and edges that represent caller-callee relationships) and
an initial mapping between a feature and corresponding source files.
Even with the mapping information alone, it is possible to learn
partial binary functions that belong to relevant object files; however,
there are quite a few missing links, including binary functions from
sources generated at compilation (Section 2.4).

To seek more relevant object files for each feature, we define
a two-dimensional relation vector, ®R = (rc , rs), which represents
the following two vector components: i) call invocations (rc) and
ii) similarity between two object file names using the hamming
distance [49] (rs). The relation vector serves as a metric on how
intensively any two objects are germane to each other. The intuition
behind this is that i) it is reasonable to include an object as part
of a feature if function calls would be frequently invoked each
other, ii) relevant code is likely to be implemented under a similar
path name, and iii) a non-deterministic code path problem (i.e.,
exceptions) can be minimized by including all functions within an
object.

Figure 4 illustrates three phases that automatically infer relevant
code at the object level. First, as in Step I, we group a set of binary

7In our experiment, almost half of IR functions were disappeared.

functions that belong to the same object (i.e., f7 and f8 with a
dotted-line area). In this example, there are five objects grouped
with nine functions total. Second, we build another directed graph
for object dependencies (Step II) based on the edges from the previ-
ous function call graph. Each edge defines an object-object relation
vector, ®RO = (rc , rs), between two objects (nodes). For ®RO , each
component can be computed as the number of call invocations and
a hamming distance value. For instance, the RO between O1 and
O2 can be represented as (2, 0.5) because of two function invoca-
tions (i.e., (f2) → (f4, f5)) and a hamming distance value of 0.5
from the two object names (i.e., aabb and bbbb). Third, we con-
sider a feature on top of the object dependency graph (Step III).
The initial mapping from manual discovery comes into play, which
identifies relevant objects for a certain feature. Suppose the two
objects, O2 and O3, belong to Feature X (dotted-line in blue). Now,
we compute another relation vector, a feature-object relation vector,
®RF = (rc , rs) for the edges only connected to the feature. For ®RF ,
the rc component represents the rate of call invocations between
the feature and the surrounding objects (that have edges) whereas
the rs component is an amortized hamming distance value between
the object name and the object name(s) that belong to the feature.
In this example, the RF between Feature X and the object O1 would
be (0.75, 0.25) because rc = 2+1

1+2+1 and rs =
0.5+0
2 , respectively.

Hence, the result can be interpreted as follows: the O1 has a high
outgoing call invocation rate to the functions in Feature X ; how-
ever, its object name is not close enough. Algorithm 1 briefly shows
pseudo-code on how to explore any relevant objects for further
debloating using relation vectors.

Note that we open both rc and rs as hyperparameters of our
heuristic algorithm to determine the proximity between a feature
and an object, ranging from 0 to 1. In our experiment, we use the
value of 0.7 for both parameters (See Section 6.3 in detail).

4.3 Prompt Webpage Profiling

We employ a dynamic profiling technique to complement static
analysis (i.e, feature-code mapping) because the granularity of our
debloating approach aims at the function level. Various tools are
available such as Dynamorio [6] and Intel Pin [24] to obtain ex-
ercised functions at runtime through dynamic instrumentation.
However, instrumented code inevitably introduces considerable
performance degradation that leads to a huge lag when running a
giant application such as Chromium. Although a hardware-assisted
means such as Intel PT [27] significantly addresses the performance
issue during a trace, decoding the trace result is non-negligible (i.e.,
a couple of hours when visiting a certain webpage for a few seconds
in Chromium).

Due to the impracticality of prior approaches, we devise a new
means to trace with an in-house instrumentation, recording exer-
cised functions akin to an AFL’s [2] approach of a global coverage
map. First, we allocate a shared memory that can cover the en-
tire IR functions, a superset of binary functions. Second, we build
Chromium so that it could mark every exercised function in the
shared memory. Third, we promptly obtain the list of exercised
functions by parsing the whole bits in the shared region after vis-
iting a target webpage. We have not experienced any slowdown
with the instrumented version of Chromium during our profiling

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

466

f1

f2 f3

f4 f5 f6

f8 f9f7

Object

(2, 0.5) (1, 0)
O1

O2 O3

O4
(3, 0.75) (1, 0.25)

aabb

bbbb cccc

bbbc

O5

bbcc

(1, 0.5)

Feature X
(1, 0.25)

(2,) (1,)
O1

O2 O3

O4

(3,) (1,)

aabb

bbbb cccc

bbbc

O5

bbcc

(1,)

(1,)
(0.75,)

O1

O4

aabb

bbbc

O5

bbcc

Feature X

(0.8,)

(1,)

(0.75, 0.25)

O1

O4

aabb

bbbc

O5

bbcc

Feature X

(0.8, 0.5)
(1, 0.5)

(Step I) Identify objects from a call graph (Step II) Compute rc and rs for an obj-obj relation vector, RO(rc, rs) (Step III) Compute rc and rs for a feature-obj relation vector RF(rc, rs)

Figure 4: Feature-code mapping with relation vectors that enable the inference of relevant object files for a certain feature.

because our instrumentation requires merely a few bit-operations,
a memory read, and a memory write for each function.

As discussed in Section 3.1, it is highly likely to trigger divergent
execution paths due to Chromium’s inherent complexity even when
loading the same page again. We tackle this problem simply by
reloading a webpage multiple times until reaching a point when
no more new exercised functions are observed with a fixed sliding
window (i.e., the length of revisiting that does not introduce a
new exercised function; 10 in our case). With the Top 1000 Alexa
websites [3], we had to visit a main page of each site approximately
172 times on average. Note that we leave this sliding window open
as a hyperparameter.

5 IMPLEMENTATION

Our prototype Slimium has been implemented with 111 lines of
C, 1,140 lines of C++, and 1,985 lines of python code. We use the
Chromium version of “77.0.3864.0” for our experiment. The key
enablers of our debloating are the three LLVM passes [17] as follows.

Call Graph Construction. We develop the first LLVM pass that
performs static analysis on the bitcode to construct an entire call
graph in Chromium. It is straightforward to resolve direct calls
by parsing the CallInst/InvokeInst in LLVM. However, it is
challenging to identify indirect calls such as virtual calls.

Simply put, a virtual call requires obtaining both a virtual table
that stores function pointers for a class and an index (i.e., offset) of
the table. First, we build a class hierarchy graph where a node and
edge represent a class and inheritance relationship between classes,
respectively. Second, we perform intra-procedural backward data
analysis on IR instructions, attempting to acquire a virtual table and
an offset for each virtual call. With the class hierarchy graph, we
explore child classes and have them share virtual tables with their
parents. It is possible to extract a target function for the virtual call
when the offset is available. Otherwise, we leverage type matching
(i.e., parameter and return types) to identify the targets in case the
offset is unknown for other reasons (i.e., the offset determined at
runtime or it does not reside in the current function stack). Like-
wise, we take advantage of the type matching to find targets for
non-virtual calls as well. In the end, our LLVM pass obtains an
approximate call graph for all binary functions.

Chromium Instrumentation for Profiling. We develop the second
LLVM pass that enables us to record exercised functions. We create
a global variable, initialized to point to a shared memory, which
contains a bitmap for marking the exercised functions. In our exper-
iment, we need to pre-allocate around 1MB for 951K IR functions.
Our pass inserts the instructions at the beginning of each function,

which i) fetches the shared memory pointer, ii) moves it forward
to a bit that represents the current function, and iii) sets the bit
to one. To avoid multiple reads and writes for the shared memory
whenever a function is exercised, the pass also allocates another
global variable for each function that indicates whether the function
has been recorded. The inserted instructions are responsible for
setting each bit (initially set to 0) for the function’s global variable
to one when each function has been exercised (a single time check).
Finally, we need to statically instrument Chromium for recording
exercised functions with the above LLVM pass.

Function Boundary Identification. We develop the third LLVM
pass to build Chromium such that it is capable of identifying func-
tion boundaries during binary rewriting. The pass inserts a store
instruction to assign a unique identifier (i.e., an integer) for each IR
function. It is significant that we orchestrate the pass to run after
every optimization has been completed on LLVM IR level because
our pass should not interfere with other optimization techniques.
Note that the final Chromium binary might slightly differ from
the one without our pass because an LLVM optimization scheduler
may choose a different set of optimizations during the compilation.
For example, some empty functions have not been eliminated be-
cause of the inserted instructions. We collect binary functions that
have been compiled into the final Chromium binary from disas-
sembling the binary and extracting the inserted instructions rather
than relying on debugging information.

Binary Instrumentation. As a final step, once the feature-code
mapping and profiling results are ready, Slimium generates a de-
bloated Chromium mutation after removing unnecessary features.
Note that Slimium maintains not only all other code regions except
feature-relevant code but also non-deterministically exercised code
at the function level even when a feature turns out not to be in
use (with our threshold). Code elimination is trivial because we
nullify unused code with illegal instructions based on known binary
function boundaries. Once the instructions triggers a Chromium’s
error handling routine that catches an exception, an error page
shows an “Aw, Snap!” message by default instead of crashing a
whole Chromium process. Slimium can produce a Chromium vari-
ant within less than a second. Currently, we only support an ELF
(Executable and Linkable Format) binary format. We develop our
own binary rewriter in pure Python without any dependency on
the third party library.

6 EVALUATION

In this section, we evaluate Slimium on a 64-bit Ubuntu 16.04 system
equipped with Intel(R) Xeon(R) E5-2658 v3 CPU (with 48 2.20 GHz

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

467

Figure 5: Contour plot of additionally discovered code size

with a set of different relation vectors ®R = (rc , rs).

cores) and 128 GB RAM. In particular, we assess Slimium from the
following three perspectives:

• Correctness of our discovery approaches: How well does a
relation vector technique discover relevant code for feature-
code mapping (Section 6.1) and how well does a prompt web
profiling unveil non-deterministic paths (Section 6.2)?

• Hyperparameter exploration: What would be the best hyper-
parameters (thresholds) to maximize code reduction while
preserving all needed features reliably (Section 6.3)?

• Reliability and practicality: Can a debloated variant work
well for popular websites in practice (Section 6.4)? In partic-
ular, we have quantified the amount of code that can be re-
moved (Section 6.4.1) from feature exploration (Section 6.4.2).
We then highlight security benefits along with the number
of CVEs discarded accordingly (Section 6.4.3).

6.1 Code Discovery with a Relation Vector

Our investigation for the initial mapping between features and
source code requires approximately 40 hours of manual efforts for a
browser expert. We identify 164 features and 6,527 source code files
that account for 41.1 MB (37.4%) of the entire Chromium binary.
Then, we apply a relation vector technique to seek more objects, as
described in 4.2.2. To exemplify, the initial code path for Wasm only
indicates the directory of v8/src/wasm, however, our technique
successfully identifies relevant code in v8/src/compiler. In this
case, although the object names under that directory differ from
the beginning directory (i.e., wasm), the call invocation component
of the vector correctly deduces the relationship.

Figure 5 concisely depicts that varying threshold pairs of name
similarity (rs) and call invocation (rc) are inversely proportional to
additional code discovery at large. The dark blue area on the lower
left corner holds relatively a high value (i.e., 57.0 MB for (0.5, 0.5))
whereas the yellow area on the upper right holds a low one (i.e.,
42.3 MB for (0.9, 0.9)). Similarly, Figure 6 shows a distribution of
additional code discovery rate with a handful of different threshold
sets from (0.5, 0.5) to (0.9, 0.9). The boxplot implies a moderate
variance with outliers, but the medians consistently decrease at
all four groups when raising those parameters because it means
less code would be included for a feature, intolerant of fewer call
invocations and dissimilar path names. For non-web features, the

Figure 6: Breakdown of additional code discovery rates for

each feature group across different relation vectors.

Extensions
W

ebRTC
PDF
DevTools
TP-libvpx
W

eb Bluetooth
TP-sqlite
Service W

orkers
TP-boringssl
TP-ffm

peg
Accessibility
SVG
W

eb Anim
ations

IndexedDB
W

eb Storage
TP-angle
exec-out-of-viewport
TP-harfbuzz-ng
Audio elem

ent
TP-libxm

l
Fetch
W

eb Audio
W

ebGL
TP-libwebp
TP-freetype
File
W

eb Notifications
TP-dav1d
TP-opus
Paym

ent
requestIdleCallback
Canvas 2D
W

eb Sockets
W

eb W
orkers

doc.currentScript
TP-hunspell
exec-not-rendered
TP-libxslt
Page Visibility
TP-libjpeg_turbo

0

1

2

3

4

5

co
de

 si
ze

 (M
B)

deterministic
non-deterministic

Figure 7: Ratio between non-deterministic code (dark bars

on top) and the rest for the selected features. A prefix of TP_
represents a third-party component.

median is close to zero because of many features from third-party
libraries, which implies that those components have a minimal
dependency. In our experiment, we set both hyperparameters (rc
and rs) to 0.7, resulting in a 9.3% code increase (41.1 → 44.9 MB) on
average, each of which breaks down into 4.9%, 8.6%, 5.0%, and 57.7%
for HTML5, JSAPI, Non-Web, and Wasm, respectively. We discuss
how to select the best hyperparameters for Slimium in Section 6.3.

6.2 Non-deterministic Paths Discovery with

Webpage Profiling

To identify non-deterministic code paths, we performed webpage
profiling for the Top 1000 Alexa websites in an automated fash-
ion: opening a main page of each site in Chromium, waiting for
5 seconds to load, exiting, and repeating until no more exercised
functions are found via a differential analysis. Our empirical results
show that it requires continuous visits of 172 times on average.

Figure 7 illustrates non-deterministic portions of whole code
from the top 40 debloatable features in size. The rate varies depend-
ing on each feature. On the one hand, network (Service Workers,
Fetch), local cache (third_party_sqlite, IndexedDB) and ani-
mation features (SVG, Web Animations) trigger a substantial por-
tion of non-deterministic code, mostly because they are designed for

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

468

flexible behaviors (i.e., networking, caching, animation). For exam-
ple, Service Workers acts as proxy servers, which heavily relies
on network status and caching mechanism, and Fetch fetches re-
sources across the network. In a similar vein, third_party_sqlite
and IndexedDB store data on a local machine for future services. In-
terestingly, we observe that non-deterministic code rates of SVG and
Web Animations are also high because, in general, advertisements
employ those features to trace any changes whenever a page is
reloaded. On the other hand, features such as PDF, Web Bluetooth,
and Accessibility maintain a low non-deterministic code rate
(i.e., opening the same PDF document).

6.3 Hyperparameter Tuning

In this section, we explore four tunable hyperparameters (thresh-
olds) for Slimium: i) two relation vector components: call invocation
(rc) and name similarity (rs) (Section 4.2.3), ii) code coverage rate
(T), and iii) sliding window size, that is, the length of revisiting
times that no new function has been exercised. We empirically set
up the sliding window as 10 described in Section 4.3, hence here
focuses on the other three thresholds.

In particular, T is an important factor that determines whether
a feature can be a candidate to be further eliminated based on the
portion of exercised code. This is because i) part of feature code may
contain initialization or configuration for another and ii) a small
fraction of feature code may be exercised for a certain functionality.
Under such cases, we safely maintain the exercised functions of that
feature instead of removing the whole feature code. To summarize,
we keep entire code (at the feature granularity) if code coverage rate
is larger thanT or exercised code alone (at the function granularity)
otherwise.

Figure 8 depicts the size of eliminated code on average by loading
the front page of the Top 1000 Alexa websites to explore the best
hyperparameters, namely ®RF = (rc , rs) and T , empirically. Each
subfigure represents the size of code reduction (y-axis) depending
on a different combination of rc (x-axis) and rs (line) where both
rc and rs range from 0.5 to 0.9, andT is a fixed value (ranging from
10% to 45%). One insight is that a higher T value improves code
reduction because unexercised code for more features has been
removed; e.g., 11.9 MB code removal with (rc , rs , T) = (0.7, 0.7, 0.1)
whereas 27.3 MB with (0.7, 0.7, 0.45). Another insight is that a lower
pair of (rc , rs) often improves code reduction. For example, 30.1
MB code has been removed where T is 30% with (rc , rs) = (0.5, 0.5)
while only 24.9 MB with (rc , rs) = (0.7, 0.7). However, sometimes
a lower pair of (rc , rs) does not improve code reduction because
of the dynamics of our code discovery process; e.g., the first three
subfigures indicate that code reduction with 0.6 of rc is not smaller
than the one with 0.5 or 0.55.

However, higher code reduction may decrease reliability of a
debloated variant because it increases the chance of erasing non-
deterministic code. As it is significant to strike a balance between
code elimination and reliable binary instrumentation, we finally
choose (rc , rs , T) = (0.7, 0.7, 0.3) with the following three observa-
tions. First, there is little impact on code reduction increase when
T reaches up to around 25%. Second, with a rs fixed, code reduction
decreases from rc = 0.7 heavily (i.e., T is 25%, 30% or 35%). Third,

with a rc fixed, code reduction slightly drops from rs = 0.7. Explo-
ration for a different combination of hyperparameters per feature
looks also promising, which is open as part of our future research.

6.4 Chromium Debloating in Practice

In this section, we choose 40 popular websites from 10 categories to
thoroughly assess reliability and security benefits of our debloating
framework in practice instead of just loading the main page of
a website. Table 2 summarizes a series of user activities of each
website and experimental results for both code and CVE reduction.

6.4.1 Code Reduction and Reliability.

Code Reduction. Table 2 shows empirical code reduction with
a debloated Chromium that allows a limited number of websites per
each category. It removes 53.1% (23.85MB) of the whole feature code
on average with a single exception of Remote Working category
(41.4% removal) because it harnesses WebRTC (See Section 6.4.2 in
detail). Likewise, a debloated mutation that supports all 40 websites
removes 38.8% code (around 17.4MB) as the last line of Table 2.

Next, we evaluate code reduction relevant to security features
including four major ones that are fundamentally important to
a modern web environment: same origin policy (SOP), content
security policy (CSP), subresource integrity (SRI) and cross-origin
resource sharing (CORS). Based on our manual profiling results,
all 40 websites employ these four features where code coverage
on average are 8.3%, 39.1%, 34.0% and 79.0% for SOP, CSP, SRI and
CORS, respectively. Since SOP, CSP and SRI are not part of our
feature set, Slimium offers corresponding security features at all
times. Although CORS is part of our feature-code map, we observe
heavy use of this feature for the websites in our experiment (i.e.,
min/max code coverages are 60.5%/85.8%), thus Slimium does not
remove any code. We have other security related features in our
feature-code map, such as Credential Management, FIDO U2F,
and Web Cryptography. The corresponding code may be possibly
removed because of low code coverage; for example, none of the
40 websites uses the feature of FIDO U2F based on our profiling
results. In this case, if a website would trigger any code for a security
feature removed by Slimium, a debloated Chromium variant would
throw an illegal instruction exception and stop loading a page rather
than allow one to visit a website without that security feature.

Reliability. We have repeated the same activities (from initial
webpage profiling) using different mutations, resulting in flawless
browsing for all cases without any crash. As a case study, we investi-
gate three websites in a Remote Working category that offer their
services with native applications on top of a Chromium engine. Both
Slack and Bluejeans are built with an Electron framework [10]
(embedded Chromium and Node.js), containing 109.4 MB and 111.6
MB code, respectively, where Zoom contains 99.6 MB. Compared
to those applications, our debloated version for Remote Working
sorely contains 91.4 MB (up to 18.1% code reduction) that maintains
every needed functionality. Note that Webex has been ruled out
because it runs on Java Virtual Machine.

With the different debloated versions of Chromium, wewere able
to visit all 40 websites flawlessly thanks to non-deterministic code
identification and appropriate hyperparameter selection ((rc , rs , T)
= (0.7, 0.7, 0.3)). However, theoretically it is possible to encounter

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

469

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=10%)

5

10

15

20

25

30

35

C
o
d
e
 R

e
d
u
ct

io
n
 (

M
B

)

boxed italics text in data coords

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=15%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=20%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=25%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=30%)

5

10

15

20

25

30

35

C
o
d
e
 R

e
d
u
ct

io
n
 (

M
B

)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=35%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=40%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=45%)

5

10

15

20

25

30

35

baseline

rs =0:5

rs =0:6

rs =0:7

rs =0:8

rs =0:9

Figure 8: Average code reduction with a combination of different thresholds (rc : call invocation, rs :name similarity, T : code
coverage rate) when loading the front page of the Top 1000 Alexa websites. The baseline represents the size of code reduction
based on the initial feature-code map before applying Algorithm 1 in Appendix.

Table 2: Code and CVE reduction across debloated variants of Chromium per each category (See Figure 9 in detail).

Category Websites User Activities

Code Reduction

Size (MB)

Code Reduction

Rate (%)

Number of

Removed CVEs

Airline aa, delta, spirit, united Login; search a flight; make a payment; cancel the flight, logout. 24.17 53.8 97

Email gmail, icloud, outlook, yahoo Login; read/delete/reply/send emails (with attachments); open attachments; logout. 23.75 52.9 97

Financial americanexpress, chase, discover, paypal Login; check a statement; pay a bill; transfer money; logout. 23.45 52.2 91

News cnn, cnbc, nytimes, washingtonpost Read breaking news; watch videos; search other news. 24.19 53.9 98

Remote Working bluejeans, slack, webex, zoom Schedule a meeting; video/audio chat; share a screen; end the meeting. 18.57 41.4 81

Shopping amazon, costco, ebay, walmart Login; track a previous order; look for a product; add it to the cart; checkout; logout. 24.33 54.2 98

Social Media instagram, facebook, twitter, whatsapp Login; follow/unfollow a person; write a post and comment;
like a post; send a message; logout. 23.30 51.9 93

Sports bleacherreport, espn, nfl, nba Check news, schedules, stats, and players. 24.39 54.3 98

Travel booking, expedia, priceline, tripadvisor Login; search hotels; reserve a room; make a payment; logout. 24.16 53.8 97

Video amazon, disneyplus, netflix, youtube Search a keyword; play a video (forward/pause/resume);
switch screen modes (normal/theatre/full) ; adjust a volume 24.18 53.9 93

All – – 17.43 38.8% 73

a false positive with a hyperparameter set of other choice. For ex-
ample, by increasing T from 0.3 to 0.35, a debloated Chromium
mutation would fail to load Bluejeans and CNN with the acciden-
tal removal of Web Audio API. Similarly, we observe additional
failures of Nytimes, Washingtonpost, and Whatsapp, with the
removal of Web Workers when T=0.4.

6.4.2 Feature Exploration. Figure 9 depicts the heatmap for ac-
tual code coverage rates across different features per each category
in Table 2 at a glance. Note that common features have been elim-
inated to show a distinct feature usage alone. The websites from
the Remote Working group clearly adopt several unique Web fea-
tures designed for Real-Time Communication (RTC) that are hardly
seen from the others, including WebRTC and Media Stream, and
the third party libraries (i.e., webrtc_overrides, usrsctp, opus,
libsrtp). We also confirm a handful of interesting instances based
on our activities as follows. A PDF feature has been rarely used but
Financial because of opening PDF documents (i.e., bank state-
ments). Financial and Travel have harnessed Accelerometer,

Gyroscope, and Orientation Sensor for checking device orien-
tation. Remote Working and Video sorely adopt Full Screen
due to switching to a screen mode. Most websites employ the
libphonenumber feature to maintain personal information with
a login process whereas News and Sports do not. All the above
examples explain that inner components in Chromium have been
well-identified for the debloating purpose.

6.4.3 Security Benefits. To confirm the security benefits of our
approach, we have collected 456 CVEs pertaining to Chromium
from online resources [9, 32] and official (monthly) security updates
from Google. We focus on the rest of the 364 CVEs that have been
patched for the last two years (Some of them might be assigned in
previous years), excluding 92 of them in case of i) no permission to
access CVE information or ii) a vulnerability relevant to other plat-
forms (i.e, iOS, Chrome OS). Although it may be less useful to count
CVEs for a single version of Chromium because different versions
are generally exposed to a different CVE set, we include them to
evaluate the effectiveness of debloated mutations. It is noteworthy

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

470

Airlin
e
Email

Fin
ancia

l
New

s

Rem
ote

_W
ork

ing

Shopping

Soci
al_

Media
Sport

s
Tra

vel
Video

Accelerometer
Execute Command

Full Screen
Gyroscope

Media/Stream
MediaRecorder

Orientation Sensor
PDF

Payment Request
Selection

Synchronous Clipboard
TP_abseil-cpp

TP_libaddressinput
TP_libphonenumber

TP_libsrtp
TP_libvpx
TP_libyuv

TP_lzma_sdk
TP_opus
TP_pffft

TP_usrsctp
TP_webrtc_overrides

TP_zlib
Video Element

Web Audio
Web Authentication
Web Cryptography

Web Workers
WebRTC 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Code Coverage Rate

Figure 9: Code coverage rate of various features across differ-

ent websites. A prefix of TP_ represents a third-party compo-

nent.

that we check out both vulnerable code and corresponding patches
for mapping the CVEs to affected features.

Table 3 in Appendix summarizes Chromium CVEs by 13 differ-
ent vulnerability types and three severity levels that are associated
with features for debloating. We adopt the severity level (i.e., High,
Medium, Low) of each CVE calculated by the National Vulnera-
bility Database (NVD) [32]. The most common vulnerability type
is use-after-free (52), followed by overflow (46), and insufficient
policy enforcement (43). Other vulnerability types include unini-
tialized memory, XSS (cross site scripting), and null dereference.
Interested readers may refer to the full list of Chromium CVEs in
Appendix Table 5. Note that 153 (out of 364) CVEs are associated
with 42 features in our feature-code map. From our experiments
in Table 2, around 94 out of 153 potential CVEs (61.4%) have been
removed on average when visiting the websites of our choice at
each category. The number of CVEs that has been eliminated for
the group of Remote Working is relatively low predominately due
to RTC features. Slimium successfully removes 73 CVEs (47.7%)
across all 40 websites.

7 DISCUSSION

In this section, we discuss the limitations and applications.

7.1 Limitations

We have shown the effectiveness and robustness of Slimium in
removing unnecessary code for Chromiumwith a feature subsetting
technique. However, Slimium relies on a hybrid analysis including
static, dynamic, and various heuristic means. As none of the above
suffices for either completeness or soundness (i.e., incomplete call
graph, a heuristic mean to discover feature code, hyperparameter

setting for profiling), we have limitations from the following aspects:
i) dynamic nature of the web itself and ii) a failure of the above
analysis.

From the first aspect, Slimium might be less useful if the content
on the server side is dramatically altered (e.g., website reconstruc-
tions or updates that may employ completely different features).
Our approach assumes that features at the time of profiling are not
much different from the ones at the time of instrumentation. One
possible solution may be automatic profiling of target websites on a
regular basis to detect such considerable changes. Another concern
is that our technique becomes ineffective if a website already has
been compromised to exploit a certain feature at the first visit. From
the second aspect, Slimium is capable of taking both conservative
and aggressive approaches on purpose by leaving tunable hyperpa-
rameters such as relation vector components, sliding window for
non-deterministic path discovery, and feature code coverage rate.
Although Slimium generates debloated versions of Chromium that
work flawlessly in our experiment (Section 6.4.1), it is possible that
Slimium would mistakenly eliminate needed code. We believe ma-
chine learning techniques could assist probabilistic decision making
such as thresholds or feature code exploration, which is part of our
future research. Besides, supporting features may vary depending
on versions of Chromium and Slimium relies on manual analysis
during feature-code map generation in the beginning. Therefore,
keeping an eye on updates is another key to experience the best
debloating result. Finally, it is desirable to develop an automatic
process for building a feature-code map, applying Slimium to differ-
ent versions of Chromium with a tremendous difference and other
large software with modularized code structures.

One may raise a concern that blind code removal arises a new
vulnerability because any code relevant to security checks could be
eliminated in case that profiling does not capture them (e.g., bound
checks to prevent memory corruption, access control checks). How-
ever, since Slimium rewrites unused code with illegal instructions,
a debloated version of Chromium would not introduce a new vul-
nerability from such missing security checks but trigger exceptions
instead. We believe that machine learning and pattern matching
can identify code relevant to security checks, which we leave as
part of our future work.

7.2 Applications

The conceivable application of Slimium is twofold: from an end user
and developer perspective. One of promising applications would be
a restricted browsing in a public place (e.g., library, hotel, kiosk) or
government departments (e.g., DoD, CDC), which requires an access
to a set of authorized websites only. Although there are other means
to limit the access, Slimium can provide a systematic way for secure
browsing that cannot be circumvented through direct elimination of
unneeded functionality. Another fruitful case with Slimium would
be supporting a development framework based on a Chromium
engine such as Electron [10] that produces environment-agnostic
applications. It helps a developer to generate the slim version of an
application with a subset of features by integrating Slimium with
such frameworks. We anticipate that a profiling process would be
more straightforward because the developer is aware of the needed
features for an application much better.

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

471

8 RELATEDWORK

It is crucial to identify accurately unneeded code to avoid accidental
removal. To that end, prior works largely fall into three categories
to identify unused features: a) binary analysis (e.g., static or dy-
namic analysis), b) supplementary information with the help of a
compilation toolchain, and c) machine learning techniques.

Debloating with binary analysis. One of the early works based on
static analysis is CodeFreeze [31]. It presents a technique, dubbed
“code stripping and image freezing” that eliminates imported func-
tions not in use at load time, followed by freezing the remaining
code to protect it from further corruption (e.g., injecting code). Be-
cause it targets executable binaries whose sources are unavailable,
this approach performs code removal atop a conservative static
analysis. DamGate [53] introduces a framework to customize fea-
tures at runtime. It leverages a handful of existing tools to build a
call graph through both static and dynamic analyses. In a similar
vein, TRIMMER [15] begins with identifying unnecessary features
based on an user-defined configuration, followed by eliminating
corresponding code from interprocedural analysis statically.

Meanwhile, Shredder [28] aims to filter out potentially danger-
ous arguments of well-known APIs (e.g., assembly functions). It
first collects the range of API parameters that a benign application
takes and then enforces a policy to obey the allowable scope of the
parameters from initial analysis. For example, a program would
be suspended upon a call invocation with unseen arguments. Both
FACE-CHANGE [55] and Kernel tailoring [22, 23] apply the con-
cept of debloating to the kernel. The former makes each application
view its own shrinking version of the kernel, facilitating dynamic
switching at runtime across different process contexts, whereas the
latter automatically generates a specific kernel configuration used
for compiling the tailored kernel. Razor [38] proposes a heuristic
technique to infer additional code paths that contain expected fea-
tures based on exercised code. However, this work cannot directly
be applied to Chromium debloating due to a large performance over-
head while analyzing the execution trace after its collection with
Intel PT, and the limitations of the heuristics used for inferring
additional code paths. Meanwhile, both the bloat-aware design [7]
and JRed [52] apply program customization techniques to Java-
based applications; whereas Babak et al. [4] propose a debloating
technique for web applications.

Debloating with supplementary information. Another direction
toward code debloating takes advantage of a compilation toolchain
to obtain additional information. Piece-Wise [40] introduces a spe-
cialized compiler that assists in emitting call dependencies and
function boundaries within the final binary as supplementary in-
formation. The modified loader then takes two phases (i.e., page
level and function level) to invalidate unneeded code at load time.

Debloating with machine learning techniques. Recent advance-
ments in debloating leverage various machine learning techniques
to identify unused code or features. CHISEL [16] produces a trans-
formed version that removes unneeded features with reinforcement
learning. Because it relies on test cases as an input to explore inter-
nal states, it might suffer from incorrect results when running a mu-
tation that encounters an unexpected state. Hecate [51] leverages
deep learning techniques to identify features and corresponding

functions. It uses both a recursive neural network (RNN) to compute
semantic representation (e.g., unique embedding vector per each
opcode and operand) and a convolutional neural network (CNN) for
a function mapping as a multi-class classifier. Binary control flow
trimming [11] introduces a contextual control flow graph (CCFG)
that enables the expression of explicitly user-unwanted features
among implicitly developer-intended ones, learning a CCFG policy
based on runtime traces. BlankIt [34] applies machine learning to
predicate functions needed at load time.

Other efforts to reduce attack surface. The work of Snyder et
al. [42] is probably the closest in spirit to our work in that they
leverage Web API standards to limit the functionality of a website.
However, it has two major differences: a) the attack surface only
contains standard Web APIs without considering non-web features,
and b) the hardening mechanism lies in disabling specific features
by intercepting JavaScript, implemented as one of the browser
extensions. The actual implementation code still resides in memory;
thus it could be circumvented [43] with an expected access. On the
contrary, our browser hardening nullifies actual binary functions
corresponding to a unit feature for debloating.

Anh et al. [39] propose bloat metrics for the first time to sys-
tematically quantify the bloatness of each program, library, and
system library. CARVE [5] takes an approach of debloating unused
source code, which requires both open source and a rebuilding
process. Cimplifier [41] demonstrates that a container image could
shrink its size up to 95%, preserving its original functionalities. Re-
cently, Microsoft released ApplicationInspector [26], an attack
surface analysis tool based on known patterns, automatically iden-
tifying third-party software components that might impact security.
Other efforts include code removal based on configurable features
for applications [21], system call specialization [13], and its policy
generation [12] for containers.

9 CONCLUSION

This paper presents a novel debloating framework, Slimium, for
a browser that leverages a hybrid approach for generating a slim
version that removes unused features. We target Chromium, the
most popular and leading browser that supports numerous features
and thereby unavoidably exposes a wide range of attack vectors
from its large code base. We introduce feature subsetting whose
main idea is to determine a set of predefined features as a debloating
unit. To this end, we devise a relation vector technique to build a
feature-code map and a new means to enable a prompt webpage
profiling to tackle the limitations of classic approaches. Our ex-
perimental results demonstrate the practicality and feasibility of
Slimium, which eliminates 94 CVEs (61.4%) by cutting off 23.85 MB
code (53.1%) of the whole feature code.

10 ACKNOWLEDGMENT

We thank the anonymous reviewers, and our shepherd, Nick Niki-
forakis, for their helpful feedback. This research was supported by
the ONR under grants N00014-17-1-2895, N00014-15-1-2162 and
N00014-18-1-2662. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of ONR.

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

472

REFERENCES

[1] Feross Aboukhadijeh. 2012. Using the HTML5 Fullscreen API for Phishing
Attacks. https://feross.org/html5-fullscreen-api-attack/.

[2] AFL 2020. american fuzzy lop. http://lcamtuf.coredump.cx/afl/. Accessed:
2020-2-12.

[3] Alexa. 2020. The top 500 sites on the web. https://www.alexa.com/topsites.
[4] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:

Quantifying the Security Benefits of Debloating Web Applications. In Proceedings
of the 28th USENIX Security Symposium (USENIX Security 19).

[5] Michael D. Brown and Santosh Pande. 2019. CARVE: Practical Security-Focused
Software Debloating Using Simple Feature Set Mappings. In Proceedings of the Sec-
ond Workshop on Forming an Ecosystem Around Software Transformation (FEAST).

[6] Derek Bruening and Saman Amarasinghe. 2004. Efficient, Transparent, and Com-
prehensive Runtime Code Manipulation. Ph.D. Dissertation. Massachusetts Insti-
tute of Technology, Department of Electrical Engineering and Computer Science.

[7] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. 2013. A bloat-
aware design for big data applications. In Proceedings of the 2013 international
symposium on memory management (ISMM).

[8] Caniuse.com. 2020. Support tables for HTML5, CSS3, etc. https://caniuse.com/
#feat=feature-policy.

[9] CVE Details. 2019. Vulnerabilities statistics on Google Chrome. https://www.
cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224.

[10] Electron. 2020. . https://www.electronjs.org/.
[11] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming.

In Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS).

[12] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated System Call Policy Generation for Con-
tainer Attack Surface Reduction. In Proceedings of the International Conference on
Research in Attacks, Intrusions, and Defenses (RAID).

[13] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security 20).

[14] Google. 2018. Introduction to Feature Policy. https://developers.google.com/
web/updates/2018/06/feature-policy#list.

[15] Ashish Gehani Hashim Sharif, Muhammad Abubakar and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE).

[16] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS).

[17] LLVM Compiler Infrastructure. [n.d.]. Writing an LLVM Pass. http://llvm.org/
docs/WritingAnLLVMPass.html.

[18] Zero Day Initiative. [n.d.]. Published Advisories. https://www.zerodayinitiative.
com/advisories/published/.

[19] S. Kell, D. P. Mulligan, and P. Sewell. 2016. The missing link: Explaining ELF
static linking, semantically. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

[20] Steve Kobes. 2020. Life of a pixel. https://bit.ly/lifeofapixel.
[21] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.

Configuration-Driven Software Debloating. In Proceedings of the 12th European
Workshop on Systems Security (EuroSec).

[22] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the
Configuration for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating. In Proceedings of the ACM on Measurement and Analysis of
Computing Systems.

[23] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schroder-Preikschat, Daniel Lohmann,
and Rudiger Kapitza. 2013. Attack Surface Metrics and Automated Compile-Time
OS Kernel Tailoring. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation.

[25] Net Marketshare. 2015. Browser Market Share. https://netmarketshare.com/
browser-market-share.aspx.

[26] Microsoft. 2020. Application Inspector. https://github.com/microsoft/
ApplicationInspector.

[27] misc-pt-site 2020. Intel Processor Trace Tools. https://software.intel.com/en-
us/node/721535. Accessed: 2020-2-12.

[28] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking Exploits
through API Specialization. In Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC).

[29] Mozilla. 2019. Content Security Policy (CSP). https://developer.mozilla.org/en-
US/docs/Web/HTTP/CSP.

[30] Mozilla. 2020. Feature-Policy. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Feature-Policy#Directives.

[31] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with
Runtime Code Stripping and Image Freezing.

[32] National Institute of Standards and Technology. 2020. National Vulnerability
Database. https://nvd.nist.gov/.

[33] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos P.
Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. 2019. Master of Web Puppets:
Abusing Web Browsers for Persistent and Stealthy Computation. In Proceedings
of the Network and Distributed System Security Symposium (NDSS).

[34] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt
Library Debloating: Getting What You Want Instead of Cutting What You Don’t.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[35] The Chromium Projects. 2020. Getting Around the Chromium Source Code
Directory Structure. https://www.chromium.org/developers/how-tos/getting-
around-the-chrome-source-code.

[36] The ChromiumProjects. 2020. User Experience. https://www.chromium.org/user-
experience.

[37] The Chromium Projects. 2020. Web IDL in Blink. https://www.chromium.org/
blink/webidl.

[38] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In Proceedings of the 28th USENIX Security Symposium.

[39] Anh Quach and Aravind Prakash. 2019. Bloat Factors and Binary Specialization.
In Proceedings of the Second Workshop on Forming an Ecosystem Around Software
Transformation (FEAST).

[40] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security 18). 869–886.

[41] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick D.
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE).

[42] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most Websites Don’t
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Security. In
Proceedings of the 23rd ACMConference on Computer and Communications Security
(CCS).

[43] snyderp. 2018. Some blocked features still accessible. https://github.com/
snyderp/web-api-manager/issues/97.

[44] StatCounter. 2020. Browser Market Share Worldwide. https://gs.statcounter.
com/browser-market-share/desktop/worldwide.

[45] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security 14).

[46] W3C. 2019. Feature Policy. https://w3c.github.io/webappsec-feature-policy/.
[47] W3C. 2020. All standars and drafts. https://www.w3.org/TR/.
[48] we are social. 2019. DIGITAL 2019: GLOBAL INTERNET USE ACCELER-

ATES. https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-
accelerates.

[49] Wikipedia. 2020. Hamming distance. https://en.wikipedia.org/wiki/Hamming_
distance.

[50] Wikipedia. 2020. Pwn2Own. https://en.wikipedia.org/wiki/Pwn2Own.
[51] Hongfa Xue, Yurong Chen, Guru Venkataramani, and Tian Lan. 2019. Hecate:

Automated Customization of Program and Communication Features to Reduce
Attack Surfaces. In International Conference on Security and Privacy in Communi-
cation Systems (SecureComm).

[52] Dinghao Wu Yufei Jiang and Peng Liu. 2016. Jred: Program customization and
bloatware mitigation based on static analysis. In Proceedings of the 40th Annual
Computer Software and Applications Conference (ACSAC).

[53] Tian Lan Yurong Chen and Guru Venkataramani. 2017. DamGate: Dynamic
Adaptive Multi-feature Gating in Program Binaries. In Proceedings of the Second
Workshop on Forming an Ecosystem Around Software Transformation (FEAST).

[54] ZDNet. 2018. Microsoft’s Edge to morph into a Chromium-based, cross-platform
browser. https://zd.net/2OUytjP.

[55] Xiangyu Zhang Zhongshu Gu, Brendan Saltaformaggio and Dongyan Xu. 2014.
FACE-CHANGE: Application-Driven Dynamic Kernel View Switching in a Vir-
tual Machine. In Proceedings of the 44th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

473

https://feross.org/html5-fullscreen-api-attack/
http://lcamtuf.coredump.cx/afl/
https://www.alexa.com/topsites
https://caniuse.com/#feat=feature-policy
https://caniuse.com/#feat=feature-policy
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://www.electronjs.org/
https://developers.google.com/web/updates/2018/06/feature-policy#list
https://developers.google.com/web/updates/2018/06/feature-policy#list
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html
https://www.zerodayinitiative.com/advisories/published/
https://www.zerodayinitiative.com/advisories/published/
https://bit.ly/lifeofapixel
https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
https://github.com/microsoft/ApplicationInspector
https://github.com/microsoft/ApplicationInspector
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy#Directives
https://nvd.nist.gov/
https://www.chromium.org/developers/how-tos/getting-around-the-chrome-source-code
https://www.chromium.org/developers/how-tos/getting-around-the-chrome-source-code
https://www.chromium.org/user-experience
https://www.chromium.org/user-experience
https://www.chromium.org/blink/webidl
https://www.chromium.org/blink/webidl
https://github.com/snyderp/web-api-manager/issues/97
https://github.com/snyderp/web-api-manager/issues/97
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://w3c.github.io/webappsec-feature-policy/
https://www.w3.org/TR/
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Pwn2Own
https://zd.net/2OUytjP

APPENDIX

Algorithm 1: Explore a pertinent object to a feature
Result: added_ob jects

1 in_nodes = f eature .in_nodes; ; // Obtain the incoming/outgoing nodes

2 out_nodes = f eature .out_nodes;
3 r_c , r_s = 0.7; ; // Initialize hyperparameters

4 for node : in_nodes do
5 sum_c , sum_in_c , sum_in_s , in_num = 0;
6 for edдe : node .out_edдes do
7 (c , s) = edдe .r elation;
8 sum_c += c ; ; // Sum up call invocations

9 if edдe .end_node in f eature .nodes then
10 sum_in_c += c ;
11 sum_in_s += s ; ; // Sum up hamming distance values

12 in_num += 1;
13 end

14 end

15 if sum_in_c / sum_c > r_c || sum_in_s / in_num > r_s then
16 added_ob jects .add(node);
17 end

18 end

19 for node : out_nodes do
20 sum_c , sum_in_c , sum_in_s , in_num = 0;
21 for edдe : node .in_edдes do
22 ...
23 if edдe .start_node in f eature .nodes then
24 ...
25 end

26 end

27 ...
28 end

Table 3: Summary of Chromium CVEs and relevant unit features for debloating.

Vulnerability Type High Medium Low Total Relevant Features

Bad cast 1 0 0 1 -

Bypass 3 22 2 27 document.{currentScript, domain}, Page Visibility, requestIdleCallback,
Extensions, Service Workers, Video, and Web Audio

Disclosure 1 16 1 18 Extensions, Media Source, third_party_boringssl, Timing, Video, and Web Audio

Inappropriate implementation 0 14 1 15 DevTools, Extensions, and PDF

Incorrect security,
handling, permissions 9 31 0 40 Extensions, DevTools, Navigator, Service Workers,

URL, URL formatter, Web Assembly, WebRTC, and XMLHttpRequest

Insufficient policy
enforcement 3 36 4 43

Canvas 2D, createImageBitmap, DevTools, Extensions, Payment, WebGL,
Service Workers, Shared Web Workers, Page Visibility, requestIdleCallback,
createImageBitmap, and document.{currentScript, and domain}

Insufficient validation 5 11 0 16 DevTools, IndexedDB, PDF, WebGL, and Web Assembly

Out of bound read 2 12 0 14 PDF, third_party_sqlite, and WebRTC

Out of bound write 3 5 0 8 PDF and Web Assembly

Overflow 14 32 0 46 Blob, Canvas 2D, Media Stream, PDF, Web Assembly, Web SQL,
WebGL, WebGPU, WebRTC, and third_party_{angle, icu, and libxml}

Spoof 1 26 3 30 DevTools, Extensions, Full screen, Media Stream, and Web Bluetooth

Type Confusion 5 2 0 7 PDF, SVG, and WebRTC

Use after free 16 36 0 52

DevTools, Extensions, File, File System, IndexedDB, Media Capture,
MediaRecorder, PDF, Payment, Web Assembly, Web Audio,
Web MIDI, WebRTC, createImageBitmap,
execution-while-out-of-viewport, and third_party_{libvpx, and libxml}

Others 8 34 5 47
Canvas 2D, createImageBitmap, DevTools, Directory selection, Extensions,
Full screen, PDF, Service Workers, Web Assembly, Web Audio, WebRTC,
and third_party_ffmpeg

Total 71 277 16 364

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

474

Table 4: Chromium features as a unit of debloating. The columns V, P, C, and E represent the number of CVEs, Feature Policy

support, Chromium support, and Experimental flag support respectively (Yes: ●, No: ✗, Partial: ◗).

Class Feature Name Func. Size (B) V P C E Class Feature Name Func. Size (B) V P C E

Accessibility 3,018 774,862 ✗ ● ✗ Synchronous Clipboard 500 108,156 ✗ ◗ ✗
HTML5 Canvas 2D 1,153 254,979 3 ✗ ● ✗ JS API TextEncoder & TextDecoder 68 15,068 ✗ ● ✗

SVG 3,884 710,004 1 ✗ ● ✗ Timing 634 142,366 1 ✗ ● ✗
Video 518 98,402 2 ✗ ● ✗ Touch events 117 61,599 ✗ ● ✗
WebGL 1,789 445,175 5 ✗ ● ✗ URL 82 19,462 1 ✗ ● ✗
WebGPU 470 80,706 5 ✗ ● ✗ Vibration 104 14,600 ● ● ✗
AbortController & AbortSignal 33 5,187 ✗ ● ✗ Wake Lock 142 20,954 ● ● ✗

JS API Accelerometer 13 887 ● ● ● Web Animations 2,524 705,348 ● ◗ ✗
Ambient Light Sensor 16 1,936 ● ● ● Web Audio 2,485 587,711 5 ✗ ● ✗
Autoplay 65 13,763 ● ● ✗ Web Authentication 28 1,972 ● ● ●
Background Sync 739 145,961 ✗ ● ● Web Bluetooth 4,896 1,216,400 1 ✗ ● ●
Base64 12 2,356 ✗ ● ✗ Web Cryptography 664 148,808 ✗ ● ✗
Console 122 49,646 ✗ ● ✗ Web MIDI 339 56,585 1 ● ● ✗
Battery Status 123 13,889 ● ● ✗ Web Notifications 1,539 342,313 ✗ ● ✗
Beacon 13 2,071 ✗ ● ✗ Web Sockets 921 195,979 ✗ ● ✗
BigInt 95 34,269 ✗ ● ✗ Web SQL 923 185,985 1 ✗ ● ✗
Blob 850 205,670 1 ✗ ● ✗ Web Storage 3,177 698,731 ✗ ● ✗
Broadcast Channel 116 17,948 ✗ ● ● Web Workers 1,549 246,759 ✗ ● ✗
Channel messaging 106 31,310 ✗ ● ✗ WebRTC 16,993 4,797,715 8 ✗ ● ●
Constraint Validation 100 12,812 ✗ ● ✗ WebUSB 577 131,635 ● ● ✗
createImageBitmap() 613 116,031 4 ✗ ● ✗ WebVR 255 55,213 ● ● ●
Credential Management 224 57,680 ✗ ● ✗ WebXR 859 177,361 ● ● ●
Cross-Origin Resource Sharing 196 68,668 ✗ ● ✗ Window 325 73,359 ✗ ● ✗
crypto.getRandomValues() 6 642 ✗ ● ✗ XMLHttpRequest 164 41,196 1 ● ● ✗
CSS.supports() 3 617 ✗ ● ✗ DevTools 10,273 2,889,315 15 ✗ ● ✗
Custom Event 10 1,134 ✗ ● ✗ Non-web Extensions 25,073 5,735,571 29 ✗ ● ✗
Device Events 341 48,431 ✗ ◗ ✗ NACL & PNACL 671 187,277 ✗ ● ✗
Directory selection 324 53,452 1 ✗ ● ✗ PDF 8,253 2,601,303 26 ✗ ● ✗
Do Not Track 9 1,403 ✗ ● ✗ third_party_abseil-cpp 30 3,274 ✗ ● ✗
Document Object Model Range 89 37,579 ✗ ● ✗ third_party_angle 1,503 636,685 4 ✗ ● ✗
document.currentScript 1,073 230,083 3 ✗ ● ✗ third_party_boringssl 2,142 824,106 1 ✗ ● ✗
document.domain 929 209,395 3 ● ● ✗ third_party_breakpad 109 49,047 ✗ ● ✗
document.evaluate & XPath 335 92,237 ✗ ● ✗ third_party_brotli 42 34,158 ✗ ● ✗
document.execCommand() 6 1,282 ✗ ● ✗ third_party_cacheinvalidation 891 187,681 ✗ ● ✗
DOM Element 568 143,336 ✗ ● ✗ third_party_ced 46 50,842 ✗ ● ✗
DOM Parsing and Serialization 457 111,963 ✗ ● ✗ third_party_cld_3 332 82,148 ✗ ● ✗
Encrypted Media Extensions 374 67,794 ● ● ✗ third_party_crc32c 3 3,209 ✗ ● ✗
execution-while-not-rendered 1,029 217,103 ● ● ✗ third_party_dav1d 422 316,415 ✗ ● ✗
execution-while-out-of-viewport 2,621 587,719 1 ● ● ✗ third_party_ffmpeg 1,453 795,694 1 ✗ ● ✗
Feature Policy 152 53,400 ✗ ◗ ● third_party_flac 148 86,028 ✗ ● ✗
Fetch 2,418 509,398 ✗ ● ✗ third_party_fontconfig 394 126,702 ✗ ● ✗
FIDO U2F 1,456 467,216 ✗ ● ✗ third_party_freetype 776 400,392 ✗ ● ✗
File 1,833 390,459 3 ✗ ● ✗ third_party_harfbuzz-ng 993 554,211 ✗ ● ✗
Filesystem & FileWriter 947 169,129 ✗ ● ✗ third_party_hunspell 264 221,096 ✗ ● ✗
Full Screen 196 42,364 5 ● ● ● third_party_iccjpeg 2 1,302 ✗ ● ✗
Gamepad 709 143,215 ✗ ● ✗ third_party_icu 5,782 1,793,490 1 ✗ ● ✗
Geolocation 235 41,809 ● ● ✗ third_party_inspector_protocol 197 85,215 ✗ ● ✗
Gyroscope 13 919 ● ● ● third_party_jsoncpp 79 37,373 ✗ ● ✗
High Resolution Time 464 102,944 ✗ ● ✗ third_party_leveldatabase 608 180,080 ✗ ● ✗
IndexedDB 3,053 861,111 2 ✗ ● ✗ third_party_libaddressinput 281 92,267 ✗ ● ✗
Internationalization 73 45,243 1 ✗ ● ✗ third_party_libjingle_xmpp 399 87,405 ✗ ● ✗
IntersectionObserver 191 44,669 ✗ ● ✗ third_party_libjpeg_turbo 325 196,271 ✗ ● ✗
Intl.PluralRules 13 7,239 ✗ ● ✗ third_party_libphonenumber 235 85,665 ✗ ● ✗
Magnetometer 13 919 ● ● ● third_party_libpng 231 99,653 ✗ ● ✗
Media Capture 198 52,530 1 ● ● ✗ third_party_libsrtp 121 34,315 ✗ ● ✗
Media Recorder 275 67,833 1 ✗ ● ✗ third_party_libsync 1 163 ✗ ● ✗
Media Source Extensions 374 67,794 1 ✗ ● ✗ third_party_libvpx 1,696 1,456,960 2 ✗ ● ✗
Media Stream 83 14,057 2 ✗ ● ✗ third_party_libwebm 111 40,614 ✗ ● ✗
Mutation Observer 179 34,649 ✗ ● ✗ third_party_libwebp 672 399,824 ✗ ● ✗
Native Filesystem 433 104,131 ✗ ● ● third_party_libxml 977 498,403 2 ✗ ● ✗
navigator.hardwareConcurrency 1 19 1 ✗ ● ✗ third_party_libxslt 394 216,254 ✗ ● ✗
Network Information 64 8,960 ✗ ● ✗ third_party_libyuv 455 172,021 ✗ ● ✗
Orientation Sensor 54 7,314 ✗ ● ● third_party_lzma_sdk 6 1,458 ✗ ● ✗
oversized-images 59 18,273 ● ● ✗ third_party_modp_b64 2 774 ✗ ● ✗
Page Visibility 946 214,054 3 ✗ ● ✗ third_party_openscreen 1 67 ✗ ● ✗
Payment 841 232,875 3 ● ◗ ✗ third_party_opus 304 313,488 ✗ ● ✗
Permissions 494 119,978 ✗ ● ✗ third_party_ots 220 141,284 ✗ ● ✗
Picture-in-Picture 225 35,203 ● ● ✗ third_party_perfetto 720 183,312 ✗ ● ✗
Pointer events 146 42,262 ✗ ● ✗ third_party_pffft 35 23,113 ✗ ● ✗
Pointer Lock 14 1,786 ✗ ● ✗ third_party_re2 320 168,288 ✗ ● ✗
Push 629 134,239 ✗ ● ✗ third_party_s2cellid 8 2,280 ✗ ● ✗
requestAnimationFrame() 85 19,503 ✗ ● ✗ third_party_sfntly 1,350 114,962 ✗ ● ✗
requestIdleCallback 1,175 260,757 3 ✗ ● ✗ third_party_smhasher 6 2,386 ✗ ● ✗
Resize Observer 127 28,509 ✗ ● ✗ third_party_snappy 20 4,492 ✗ ● ✗
Screen Orientation 170 26,174 ✗ ● ✗ third_party_sqlite 896 1,016,192 1 ✗ ● ✗
Selection 511 156,461 ✗ ● ✗ third_party_tcmalloc 167 37,048 ✗ ● ✗
Server-sent events 75 11,329 ✗ ● ✗ third_party_unrar 384 175,136 ✗ ● ✗
Service Workers 4,518 1,049,970 4 ✗ ● ✗ third_party_usrsctp 397 310,183 ✗ ● ✗
Shared Web Workers 419 79,337 1 ✗ ● ✗ third_party_webrtc_overrides 44 3,876 ✗ ● ✗
Speech Recognition 843 229,729 ✗ ◗ ✗ third_party_woff2 18 24,982 ✗ ● ✗
Speech Synthesis 216 35,928 ✗ ● ✗ third_party_zlib 177 92,515 ✗ ● ✗
Streams 698 126,798 ✗ ◗ ✗ wasm 2,723 1,893,353 ✗ ● ✗

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

475

Table 5: Chromium CVEs associated with our feature set. The severity column ranges from low(❘), medium(❚) to high(■).

Features Category Sev. CVE Features Category Sev. CVE

Blob Overflow ❚ 2017-15416 PDF Overflow ❘ 2018-6120
Canvas 2D Insufficient policy ■ 2019-5766 ❚ 2017-15408

■ 2019-5814 ❚ 2018-17461
Others ❚ 2019-5787 ❚ 2018-17469
Overflow ■ 2018-18338 ❚ 2019-5792
UAF ❚ 2019-5758 ❚ 2019-5795

DevTools Inappropriate implementation ❚ 2018-18344 ❚ 2019-5820
Incorrect security ❘ 2018-6112 ❚ 2019-5821

❚ 2018-6112 Type Confusion ❚ 2018-6170
❚ 2018-6139 UAF ■ 2017-15410

Insufficient policy ❚ 2017-15393 ■ 2017-5127
❚ 2019-5768 ■ 2018-18336

Insufficient validation ■ 2018-6101 ■ 2019-5762
❚ 2018-6039 ❚ 2017-15411
❚ 2018-6046 ❚ 2017-5126

Others ❚ 2018-6152 ❚ 2018-6088
UAF ■ 2018-6111 ❚ 2019-5756

❚ 2018-6111 ❚ 2019-5772
Directory selection Others ❚ 2018-6095 ❚ 2019-5805
document.* Bypass ❚ 2019-5799 ❚ 2019-5868

❚ 2019-5800 Service Workers Bypass ❚ 2018-6093
Insufficient policy ❚ 2018-18350 Incorrect security ❚ 2018-6091
UAF ■ 2019-5759 Insufficient policy ❚ 2019-5779

Extensions Bypass ❚ 2018-6070 Others ❚ 2019-5823
❚ 2018-6089 Shared Web Workers Insufficient policy ❚ 2018-6032

Disclosure ■ 2018-6179 SVG Type Confusion ❚ 2019-5757
Inappropriate implementation ■ 2018-20065 third_party_angle Overflow ■ 2018-17466
Incorrect security ■ 2018-16064 ❚ 2019-5806

■ 2019-5793 ❚ 2019-5817
❚ 2017-15420 ❚ 2019-5836
❚ 2018-6110 third_party_boringssl Disclosure ■ 2017-15423

Insufficient policy ■ 2019-13754 third_party_ffmpeg Others ■ 2017-1000460
❘ 2018-6045 third_party_icu Overflow ■ 2017-15422
❚ 2017-15391 third_party_libvpx UAF ❚ 2018-6155
❚ 2017-15394 ❚ 2019-5764
❚ 2018-6035 third_party_libxml Overflow ❚ 2017-5130
❚ 2019-13755 UAF ❚ 2017-15412
❚ 2019-5778 third_party_sqlite OOB read ❚ 2019-5827

Others ■ 2019-5838 Timing Disclosure ❚ 2018-6134
❚ 2018-16086 URL Incorrect security ❚ 2019-5839
❚ 2018-6121 ❚ 2018-6042
❚ 2018-6138 Video, Web Audio Bypass ❚ 2018-6168
❚ 2018-6176 Disclosure ❚ 2018-6177
❚ 2019-5796 Web Assembly Incorrect security ❚ 2018-6116

Spoof ❚ 2019-13691 ❚ 2018-6131
UAF ■ 2018-20066 Insufficient validation ❚ 2018-6036

■ 2018-6054 OOB write ❚ 2017-15401
❚ 2018-20066 Others ■ 2017-5132
❚ 2019-5878 ❚ 2018-6061

Extensions, DevTools Incorrect security ❚ 2018-6140 Overflow ❘ 2018-6092
Others ❚ 2018-16081 UAF ❚ 2017-15399
Spoof ❚ 2018-6178 Web Audio Bypass ❚ 2018-6161

File UAF ❚ 2018-6123 Others ■ 2018-16067
❚ 2019-5786 UAF ■ 2018-18339
❚ 2019-5788 ■ 2018-6060

File System ❚ 2019-5872 ❚ 2017-5129
Full screen Others ❚ 2018-17471 Web Bluetooth Spoof ■ 2018-16079

❚ 2018-17476 Web MIDI UAF ❚ 2019-5789
Spoof ❚ 2017-15386 Web SQL Overflow ■ 2018-20346

❚ 2018-16080 WebGL Insufficient policy ❚ 2018-6047
❚ 2018-6096 Insufficient validation ■ 2018-6034

IndexedDB Insufficient validation ❚ 2019-5773 Overflow ■ 2017-5128
UAF ❚ 2019-13693 ❚ 2018-6038

Media Capture ■ 2017-15395 ❚ 2018-6162
Media Source Extensions Disclosure ■ 2018-16072 WebGPU ❚ 2018-17470
Media Stream Overflow ❚ 2019-5824 ❚ 2018-17470

Spoof ❚ 2018-6103 ❚ 2018-6073
MediaRecorder UAF ■ 2018-18340 ❚ 2018-6154
Navigator Incorrect security ❚ 2018-6041 ❚ 2019-5770
Payment Insufficient policy ❚ 2018-20071 WebRTC Incorrect security ❚ 2018-6130

❚ 2019-13763 OOB read ❚ 2018-16083
UAF ❚ 2019-5828 ❚ 2018-6129

PDF Inappropriate implementation ❚ 2018-20065 Others ❚ 2018-6132
Insufficient validation ■ 2016-10403 Overflow ❚ 2018-6156
OOB read ❚ 2018-16076 Type Confusion ❚ 2018-6157
OOB write ■ 2017-5133 UAF ■ 2019-5760

❚ 2018-6144 ❚ 2018-16071
Others ■ 2019-13679 XMLHttpRequest Incorrect security ■ 2019-5832

Session 2C: Browser Security CCS '20, November 9–13, 2020, Virtual Event, USA

476

	Abstract
	1 Introduction
	2 Background
	2.1 Browser Features and Web APIs
	2.2 Feature Policy
	2.3 The Chromium Browser
	2.4 Chromium Binary Structure

	3 Debloating Chromium
	3.1 Challenges and Approach
	3.2 Slimium Overview
	3.3 Chromium Attack Surface

	4 Slimium Design
	4.1 Feature Set for Chromium Debloating
	4.2 Feature-Code Mapping
	4.3 Prompt Webpage Profiling

	5 Implementation
	6 Evaluation
	6.1 Code Discovery with a Relation Vector
	6.2 Non-deterministic Paths Discovery with Webpage Profiling
	6.3 Hyperparameter Tuning
	6.4 Chromium Debloating in Practice

	7 Discussion
	7.1 Limitations
	7.2 Applications

	8 Related work
	9 Conclusion
	10 Acknowledgment
	References

