
APOLLO: Automatic Detection and Diagnosis of
Performance Regressions in Database Systems

Jinho Jung Hong Hu Joy Arulraj Taesoo Kim Woonhak Kang
{jinho.jung, hhu86, arulraj, taesoo}@gatech.edu wokang@ebay.com

Georgia Institute of Technology eBay Inc.

ABSTRACT
The practical art of constructing database management systems
(DBMSs) involves a morass of trade-offs among query execution
speed, query optimization speed, standards compliance, feature
parity, modularity, portability, and other goals. It is no surprise that
DBMSs, like all complex software systems, contain bugs that can
adversely affect their performance. The performance of DBMSs is
an important metric as it determines how quickly an application can
take in new information and use it to make new decisions.

Both developers and users face challenges while dealing with
performance regression bugs. First, developers usually find it chal-
lenging to manually design test cases to uncover performance regres-
sions since DBMS components tend to have complex interactions.
Second, users encountering performance regressions are often un-
able to report them, as the regression-triggering queries could be
complex and database-dependent. Third, developers have to expend
a lot of effort on localizing the root cause of the reported bugs, due
to the system complexity and software development complexity.

Given these challenges, this paper presents the design of APOLLO,
a toolchain for automatically detecting, reporting, and diagnosing
performance regressions in DBMSs. We demonstrate that APOLLO
automates the generation of regression-triggering queries, simpli-
fies the bug reporting process for users, and enables developers to
quickly pinpoint the root cause of performance regressions. By
automating the detection and diagnosis of performance regressions,
APOLLO reduces the labor cost of developing efficient DBMSs.

PVLDB Reference Format:
Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, Woonhak Kang. APOLLO:
Automatic Detection and Diagnosis of Performance Regressions in Database
Systems. PVLDB, 13(1): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3357377.3357382

1. INTRODUCTION
Database management systems (DBMSs) are the critical com-

ponent of modern data-intensive applications [50, 19, 65]. The
performance of these systems is measured in terms of the time for
the system to respond to an application’s request. Improving this
metric is important, as it determines how quickly an application can
take in new information and use it to make new decisions.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 1
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3357377.3357382

The theories of optimizing and processing SQL queries in rela-
tional DBMSs are well developed [42, 58]. However, the practical
art of constructing DBMSs involves a morass of trade-offs among
query execution speed, query optimization speed, standards compli-
ance, feature parity achievement, modularity, portability, and other
goals [4, 9]. It should be no surprise that these complex software
systems contain bugs that can adversely affect their performance.

Developing DBMSs that deliver predictable performance is non-
trivial because of complex interactions between different compo-
nents of the system. When a user upgrades a DBMS installation,
such interactions can unexpectedly slow down certain queries [8,
3]. We refer to these bugs that slow down the newer version of the
DBMS as performance regression bugs, or regressions for short. To
resolve regressions in the upgraded system, users should file regres-
sion reports to inform developers about the problem [2, 7]. However,
users from other domains, like data scientists, may be unfamiliar
with the requirements and process for reporting a regression. In
that case, their productivity may be limited. A critical regression
can reduce performance by orders of magnitude, in many cases
converting an interactive query to an overnight execution [56].
Regression Detection. To detect performance regression bugs,
developers have employed a variety of techniques in their software
development process, including unit tests and final system validation
tests [10, 5]. However, these tests are human-intensive and require a
substantial investment of resources, and their coverage of the SQL
input domain is minimal. For example, existing test libraries com-
pose thousands of test scripts of SQL statements that cover both
individual features and common combinations of multiple features.
Unfortunately, studies show that composing each statement requires
about half an hour of a developer’s time [63]. Further, the coverage
of these libraries is minimal for two reasons: the number of possi-
ble combinations of statements and database states is exponential;
components of a DBMS tend to have complex interactions. These
constraints make it challenging to uncover regressions with testing.
Regression Reporting. Performance regressions in production
DBMSs are typically discovered while running complex SQL queries
on enormous databases, which make the bug analysis time-consuming
and challenging. Therefore, developers typically require users to
simplify large bug-causing queries before reporting the problem, in
a process known as test-case reduction [2, 7]. However, simplifying
a query to its essence is often an exercise in trial and error [12, 59,
63]. A user must repeatedly experiment by removing or simplifying
pieces of the query, running the reduced query, and backtracking
when a change no longer triggers the performance degradation [63].
It is common that regressions go unreported because of the high
difficulty of simplifying them. When confronted with a Regression,
a reasonable user might easily decide to find a workaround (e.g.,
change the query), instead of being sidetracked by reporting it.

57

mailto:\protect \T1\textbraceleft jinho.jung, hhu86, arulraj, taesoo\protect \T1\textbraceright @gatech.edu
mailto:wokang@ebay.com

Regression Diagnosis. Even if a user successfully files a minimal
bug report, it is still challenging for developers to identify the root
cause of the problem [45, 64]. Currently, a developer may manually
examine the control-flow and data-flow of the system, or use a
performance profiler to determine where the system is spending its
computational resources. However, such tools will not highlight
why these resources are being spent [53, 54]. A recent study shows
that a developer usually invests more than 100 days on average, a
significant amount of effort, on diagnosing a bug [64] 1.

Prior research on the automatic bug detection in DBMS has fo-
cused on correctness bugs. The RAGS automated testing system,
designed by the Microsoft SQL Server testing group, stochasti-
cally generates valid SQL queries and compares the results for the
generated queries on diverse DBMSs [63]. While this technique
uncovered several correctness bugs, it suffers from three limitations.
First, it is not tailored for detecting performance regression bugs.
It often misclassifies queries that do not suffer from performance
regression as candidates for reporting. Second, it does not assist
developers with the Regression-diagnosis process, leading to longer
bug-fixing periods. Finally, the test-case reduction algorithm em-
ployed in RAGS is not effective on complex SQL queries (§7.2).

This paper addresses these challenges by developing techniques
for automatically detecting Performance regressions, minimizing the
queries for bug-reporting, and assisting developers with bug diag-
nosis. We implemented these techniques in a prototype, called
APOLLO. We demonstrate that APOLLO simplifies the Regres-
sion reporting process for users and enables developers to quickly
pinpoint the root cause of performance regressions. We evaluate
APOLLO on two DBMSs: SQLite and PostgreSQL [6, 1]. APOLLO
discovered 10 previously unknown performance regression bugs,
where seven of them have been acknowledged by developers. Among
these discovered regressions, it accurately pinpoints the root causes
for eight bugs. By automating the detection and diagnosis of regres-
sions, APOLLO reduces the labor cost of developing DBMSs.

In summary, we make the following contributions:
• We introduce a technique to automatically detect performance

regression bug in DBMSs using domain-specific fuzzing (§4).
• We propose an algorithm to automatically reduce queries for

reporting regression bugs (§5).
• We formulate a technique to automatically locate the root cause

of regressions through bisecting and statistical debugging (§6).
• We demonstrate the utility of our automated techniques for de-

tecting, reporting, and diagnosing Performance regressions on
two popular DBMSs: SQLite and PostgreSQL (§7).
We will release the source code of our system at: https://

github.com/sslab-gatech/apollo.

2. MOTIVATION & BACKGROUND
In this section, we first demonstrate the necessity of the detection

and automatic diagnosis of performance regressions in DBMSs.
Then, we present the challenges to achieve these goals and briefly
discuss our corresponding solutions. At the end, we provide an
overview of greybox fuzzing and statistical debugging techniques.

2.1 Motivating Examples
DBMSs are enigmatic for many users, as their performance is

highly dependent on the complex interactions among many compo-
nents. These interactions can trigger performance regressions that
limit the users’ productivity. For example, when a user upgrades the

1The authors attribute the delayed diagnosis process to: (1) commu-
nication delays between bug reporters and developers, (2) inability
to reproduce the symptoms, and (3) lack of good diagnosis tools.

DBMS to a new version, a critical regression bug can slow down
certain queries by orders of magnitude, in many cases converting an
interactive query to an overnight one [56, 21, 8, 3].
SELECT R0.S_DIST_06 FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < CAST(LEAST(0, 1) AS INT8));

Example 1. Impact on Runtime Performance. Consider the
SQL query above derived from the TPC-C benchmark [15]. When
we run this query on the latest version of PostgreSQL v11.1 (main-
tained since NOV 2018), it takes 15800× more time to execute
compared to that taken on an earlier version v9.5.0 (maintained
since JAN 2016). We attribute this performance regression to the
interplay between the query optimizer that overestimates the number
of rows in a table and a recently introduced policy for choosing the
scan algorithm. Due to the misestimation, the optimizer in the latest
version selects an expensive sequential scan algorithm, while in
the earlier version, it picks the cheaper bitmap scan instead. This
example illustrates the impact of performance regressions on user
productivity. We defer a detailed discussion of this bug to §7.3.1.
SELECT R0.NO_O_ID FROM MAIN.NEW_ORDER AS R0
WHERE EXISTS (
SELECT R1.O_OL_CNT FROM MAIN.OORDER AS R1
WHERE EXISTS (
SELECT R2.H_C_ID FROM MAIN.HISTORY AS R2
WHERE (R0.NO_W_ID IS NOT NULL) AND (R2.H_C_ID IS ’A’)));

Example 2. Debugging Complexity. The SQL query above
takes two hours to complete on the latest version of SQLite v3.27.2
(FEB 2019), while an earlier version of SQLite v3.23.0 (APR 2018)
completes this query in an hour. The commit that introduced this
regression contains 242 lines of additions and 116 lines of deletions,
spanning 20 files. The developer has to spend a significant amount
of time to pinpoint the root cause of this regression even if she
knows the bug is introduced in this commit. This example illustrates
the complexity of debugging performance regressions. We defer a
detailed discussion of this regression to §6.2.2.

2.2 Challenges & Our Approaches
The oft-repeated struggles of DBMS users and developers with

discovering, reporting, and diagnosing performance regressions
motivate the need for an automated toolchain to assist with these
key tasks. Unfortunately, prior research on automated bug detection
in DBMSs focused on functionality-related bugs [63]. For example,
the RAGS system cannot uncover any performance regression or
help diagnose the root cause. We develop APOLLO to tackle the
following challenges to provide automatic performance regression
detection, minimization, and diagnosis in DBMS systems:
Finding Regressions. We stochastically generates SQL state-
ments for uncovering performance regressions using fuzzing [34,
40, 44]. This technique consists of bombarding a system with many
randomly generated inputs. Researchers have successfully used it
to find security vulnerabilities and correctness bugs [70, 67]. Un-
like those bugs, validating performance regressions is challenging
because the ground truth of the regression is unclear and may be
heavily affected by the execution environment. We tackle these
problems by applying a set of validation checks, incorporating the
feedback from DBMS developers, to reduce false positives.
Reducing Queries. When a regression is discovered, the next
challenge is for users to report it [7, 2]. As the queries are usually
large and spans multiple files, users have to perform query reduction
to minimize the report. However, manual query reduction is time-
consuming and challenging, especially for users who are non-experts
in the domain of databases [12, 59]. We solve this problem by
iteratively distilling a regression-causing statement to its essence.
This takes out as many elements of the statement as possible while

58

https://github.com/sslab-gatech/apollo
https://github.com/sslab-gatech/apollo

Input
Mutation

Execution
& Monitor

Interesting test case
input
queue

crashed
testcases

Input
Selection

Fuzzer

❶
❷ ❸ ❹

❺

❻
seed

inputs

target
prog

Figure 1: Overview of greybox fuzzing. A fuzzer keeps mutating known
inputs to generate new ones. It feeds each input to the tested program and
monitors the execution behavior. Based on the result, it updates the input
generation policy to trigger desired program features.

ensuring that the reduced query still triggers the problem.
Diagnosing Causes. Once a regression report is filed, the final
challenge is for developers to diagnose its root cause [45, 64]. To
accomplish this, a developer either manually examines the program,
or utilizes a performance profiler to determine how the CPU time
is distributed on different functions. However, this process cannot
highlight why the time is distributed this way [53]. To simplify the
diagnosis process, we use two techniques to automatically identify
the root cause. First, we bisect historical commits to locate the
first one that introduces the performance decrease. Second, we
leverage statistical debugging to co-relate the execution decrease to
suspicious source lines within the commit [33, 53].

2.3 Background
Fuzzing. Fuzzing is an automated technique for testing soft-
ware [55]. It mutates inputs in a pseudo-random fashion and moni-
tors whether the target program shows unexpected behaviors (e.g.,
crashes) on each mutated input. Feedback-driven fuzzing utilizes the
feedback (e.g., code coverage) from previous runs to dynamically
update the policy of input selection and mutation. Figure 1 illus-
trates the fuzzing process in AFL, a widely used feedback-driven
fuzzer [22]. The detailed steps are as follows: 1 AFL initializes a
priority queue with the given input. 2 It selects the most interesting
input from the queue. 3 AFL mutates the input using predefined
policies (e.g., modifying several bytes, inserting interesting values,
or deleting some blocks). 4 It launches the target program with
the newly generated input and monitors the execution status for
anomaly behaviors. 5 AFL collects feedback metrics of the execu-
tion (e.g., code coverage) and 6 compares the metric against prior
runs. If the execution crashes with a new code coverage, it reports
the bug-triggering input; if the execution terminates normally with a
new code coverage, AFL appends the new input to the queue and
go to 1 ; otherwise, it returns to 2 for another iteration.
Statistical Debugging. Statistical debugging is an effective tech-
nique for diagnosing failures in systems [33, 53, 54, 64]. It formal-
izes and automates the process of finding program (mis)behaviors
that correlate with the failure. Statistical debugging consists of two
steps. First, it uses binary instrumentation to keep track of various
program behaviors. Second, it uses a statistical model to automati-
cally identify predicates on the program state that highly correlated
with the program failure. The overall steps of a statistical debugging
pipeline are as follows: 1 It injects code to the target program to
evaluate boolean predicates (e.g., true or false) at various program
points. 2 Upon termination, the instrumented program will gener-
ate a trace that records how often each predicate was observed and
found to be true. 3 It constructs a statistical model by consolidating
a large number of traces (e.g., across many inputs) to find predicates
that are predictive of failure. 4 It ranks these predicates based on
their sensitivity (i.e., account for many failed runs) and specificity
(i.e., do not mispredict failure in successful runs). 5 The developer
may use the list of predicates to identify buggy program components
(e.g., functions containing branches that are highly correlated with
failures). We will further describe more details in §6.2.

v1
Apollo System

SQLFuzz
§IV

SQLMin
§V

SQLDebug
§VI

DBMS

commit
file
func

v2

Bug report

Figure 2: Architecture of APOLLO. It takes in two versions of one DBMS,
and produces a set of performance regression reports. Internally, APOLLO
mutates SQL queries to trigger significant speed difference. Then it mini-
mizes the bug-triggering queries and performs diagnosis on the regression.

3. SYSTEM OVERVIEW
APOLLO will help developers build DBMSs that deliver robust

performance: it detects performance regression bugs, simplifies bug
reports and automates bug diagnosis. Therefore, we design APOLLO
to contain three components: the fuzzing engine SQLFUZZ (§4),
the query minimization framework SQLMIN (§5), and the diagnosis
engine SQLDEBUG (§6), as shown in Figure 2. SQLFUZZ relies
on a feedback-driven fuzzing engine to generate SQL statements
to uncover performance regressions. It provides a wider coverage
of the SQL input domain compared to prior work [63]. Also, it
generates expressive SQL statements to support many combina-
tions of DBMS features. This allows us to empirically measure
the utility of fuzzing DBMSs. SQLMIN leverages domain-specific
query-reduction algorithms to provide compelling evidence that a
regression exists. Formalizing the statement-reduction problem al-
lows us to investigate the effectiveness of a collection of complex
query-reduction transformations. SQLDEBUG assists with identify-
ing the root cause of performance regressions in DBMSs. It relies on
a statistical model of program successes and failures to track down
causes across versions of a DBMS. This model enables developers
to isolate the relationships between specific program behaviors and
the eventual success or failure of a program run.
Workflow. We anticipate that users and developers will adopt
APOLLO in the following steps. A user first deploys APOLLO on
her machine and connects it to the target DBMS. 1 SQLFUZZ will
perform feedback-driven mutational fuzzing to generate SQL state-
ments and provide wider coverage of the SQL input domain (§4).
The key idea is to guide the fuzzing engine based on domain-specific
feedback (i.e., probability for each clause in a SQL query), including
runtime performance. 2 Next, SQLMIN will automatically distill
the regression-activating SQL statements discovered by SQLFUZZ
to their essence for filing regression reports. The user will send the
regression report to the developers containing the query reduced by
SQLMIN. 3 The developer will use SQLDEBUG to diagnose the
root cause of the regression from the simplified test case produced
by SQLMIN.

4. SQLFuzz: DETECTING REGRESSIONS
SQLFUZZ automatically constructs SQL queries and runs them

for uncovering performance regressions in a target DBMS. Figure 3
illustrates the architecture of SQLFUZZ. It begins by stochastically
generating a set of general SQL queries. These queries are based
on the widely supported SQL-92 standard [11] and do not rely on
any features that are only available in a particular DBMS version.
Next, SQLFUZZ sends each generated query to two versions of
the DBMS and records the execution time for each version. If the
ratio of the latest version’s execution time to the earlier version’s
exceeds the threshold (e.g., 3 times), SQLFUZZ treats the query
as a potential regression-triggering input. Finally, it applies a set
of validation rules on the short-listed SQL queries to confirm that
each input consistently activates a performance regression. This
validation step is crucial for reducing the number of false positives
and is tailored for reporting performance regressions.

59

Query
Executor

Query
Generator

Bug
Validator

updated probability table

SQLFuzz
random
queries

regression
queries

Figure 3: Overview of SQLFUZZ. Our query generator keeps constructing
queries based on the user specification and the probability table. The executor
sends each query to both DBMS versions, and records execution plans and
used times. The validator conducts a series of checks to remove false
positives on each query that exhibits a significant performance drop on the
newer version. Based on validated regressions, we update the probability
table for guiding subsequent query generation.

4.1 SQL Query Generation
SQLFUZZ employs a top-down approach to generate SQL state-

ments. As shown in the GenerateQuery procedure of Algorithm 1,
it first collects the meta-data regarding the target DBMS and the
database (line 13). This meta-data includes information of the sup-
ported operators by the DBMS and the schema of the tables in the
database. Since the latest version of the DBMS may implement new
operators, we use the old version to collect the meta-data. Next,
SQLFUZZ derives a query specification from the meta-data (line 15).
The specification consists of a set of rules for symbol substitution,
which can be recursively applied for generating queries [49, 71].
SQLFUZZ constructs the specification based on a probability ta-
ble, which defines a frequency for each clause in a SQL query (e.g.,
WHERE clause is used in 70% of generated queries). If the constructed
query requires a target, like a column or a table, we randomly select
an appropriate one based on the schema of the database. SQLFUZZ
then populates the abstract syntax tree (AST) of the query based on
the specification (line 16). We use AST in query generation as it
provides a simple way to mutate the query. For example, SQLFUZZ
easily inserts subqueries by adding subquery branches into existing
AST. It then transforms the AST to the query (line 17).

SQLFUZZ provides supports for controlling the query complexity
(line 18). It first validates whether the generated query conforms
to the SQL grammar. After that, it checks if the generated query
satisfies user-defined query complexity, like the maximum depth of
subqueries, number of used subqueries, number of JOINs, number of
clauses, and length of total query (line 18). If the query passes those
checks, the procedure returns the query to the caller. Otherwise, it
repeats these steps to generate another query.

Feedback-driven Query Generation Process. SQLFUZZ uti-
lizes information from prior fuzzing rounds to improve the probabil-
ity of discovering queries that trigger performance regressions [27,
22, 51]. Specifically, it uses the probability table to manage this
information across rounds. When SQLFUZZ confirms that a query
uncovers a performance regression, it extracts all the entities (e.g.,
clauses) from the query, and increases the probabilities of these
entities in the probability table. The intuition is that these entities
may contain certain characteristics that lead to sought-after DBMS
behaviors. By constructing queries that contain these entities, it is
more likely to generate queries that trigger performance regressions.
For example, if most of the regression-triggering queries contain the
JOIN clause, the feedback-driven mechanism will gradually increase
the frequency for JOIN, like from 50% to 60%. Therefore, the newly
generated queries are more likely to contain a JOIN clause.

Algorithm 1 presents the procedure for discovering performance
regressions. SQLFUZZ starts with a probability table that assigns
the same priority to all entities (line 1). It relies on the afore-
mentioned GenerateQuery procedure to generate well-formed SQL
queries (line 3). It sends each generated query to two versions of
the DBMS, i.e., DBMSold and DBMSnew and computes the ratio of

Algorithm 1: Procedure for generating SQL queries and discov-
ering performance regressions

Input :DBMSold: old DBMS version, DBMSnew: new DBMS version
DB: given database, threshold: least time difference

Output :query: bug-triggering queries
1 prob_table← InitProbTable();
2 while True do

// Generate random queries for each round
3 query← GenerateQuery(DBMSold, prob_table) ;

// Run queries on specified DBMSs
4 timeold, planold← RunQuery(query, DBMSold) ;
5 timenew, planold← RunQuery(query, DBMSnew) ;
6 diff_ratio← timenew / timeold ;

// Store regression query after FP test
7 if diff_ratio > threshold then
8 if Validate(query) then
9 StoreQuery(query) ;

10 UpdateProbTable(prob_table, query, diff_ratio) ;
11
12 Procedure GenerateQuery(DBMSold, prob_table)

// Retrieve meta-data about DBMS and database
13 meta-data← RetrieveMetaData(DBMSold) ;

// Construct query specification for query generation
14 while True do
15 specification← BuildSpecification(meta-data, prob_table) ;
16 ast← SpecificationtoAST(spec) ;
17 query← ASTtoQuery(ast) ;
18 if SyntaxCheck(query) and ComplexityCheck(query) then
19 return query ;

the corresponding execution times (line 6). If DBMSnew exhibits a
significant performance drop for the current query, SQLFUZZ ap-
plies a set of validation rules to confirm the performance regression
(line 8). Finally, it stores the regression-triggering query after and
updates the probability table to increase the frequency for each con-
tained entity (line 10). To avoid overfitting problem (e.g., generated
query always contains JOIN clause), SQLFUZZ assigns maximum
probability for each clause. SQLFUZZ continuously executes this
loop for discovering more performance regressions.

4.2 Regression Validation
Validating queries that trigger performance regressions is chal-

lenging [63]. The reasons for this are twofold. First, developers
may attempt to improve the performance of frequently executed
queries, even if the changes result in slowing down other queries.
We should report only regressions that affect a wide range of queries
of real-world applications. This is different from uncovering cor-
rectness bugs or security vulnerabilities, where the ground truth
(i.e., the sought-after program behavior) is well-defined. Second,
the query execution time may be affected by the environment (e.g.,
number of CPU cores, memory capacity). This makes it challenging
to reproduce the performance regression in a different environment.

SQLFUZZ tackles these problems by applying a set of validation
checks to reduce false positives. These checks incorporate the
feedback we received from DBMS developers. We demonstrate that
these validation checks effectively reduce false positives in §7.1.
• Non-executed Plan. When a query is submitted to the DBMS,

the query optimizer attempts to find the optimal execution plan
from a large number of alternatives [39]. However, the old version
and the new version of the DBMS may select different plans
for the same query, resulting in different execution times. One
special case resulting in significant time difference is when the
plan selected by the old version produces an empty result in the
middle of its execution, which immediately returns the empty
result without running the left subplans. Meanwhile, the plan
selected by the new version does not see any empty result, and
thus it will complete the whole plan without any early termination.
A major source of false positives is such non-executed plans [30].
DBMS developers clarified that this is an inherit problem of

60

DBMS, and they do not consider such plans to be bugs.
• Non-deterministic Behavior. Non-deterministic clauses and

routines may return different results for the same query, result-
ing in many false alarms. For example, the LIMIT K clause
should return the top K records. However, without an ORDER BY
clause, the top K records are randomly selected [28]. The re-
sult of statement WHERE (timestamp>now()) depends on the non-
deterministic routine now(). To avoid such false positives, we
only use deterministic clauses and routines for query generation.

• Catalog Statistics. If the statistics maintained by the DBMS are
not up-to-date, the optimizer may not select the optimal plan. We
eliminate false positives due to out-of-date statistics by always
updating the statistics (e.g., using ANALYZE for PostgreSQL).

• Environment Settings. To mitigate the impact of environment
settings on performance, we configure SQLFUZZ to use the
same settings across different DBMS versions. For example,
PostgreSQL uses a 4 MB memory buffer for sorting and JOIN. If
the executor requires more memory, it has to spill over the results
to disk, leading to a high execution time. We resolve this problem
by increasing the size of the memory buffer to 256 MB.

4.3 Design Details
The design goals for SQLFUZZ are threefold: (1) efficiency, (2)

reproducibility, and (3) extensibility. We now discuss the technical
details we leverage in SQLFUZZ to accomplish these goals.
Efficiency. Canonical fuzzers usually restrict the size of test cases
so that the fuzzer can process more test cases, like limiting the
file size to accelerate the fuzzing of a file parser [48]. However, in
DBMSs, even a short query with a few JOIN clauses can take several
hours to complete. Therefore, we leverage the following DBMS-
aware techniques for maximizing the efficiency of SQLFUZZ.
• Limiting Query Complexity. The following features of a SQL

query have a heavy impact on its execution time: the number
of JOIN clauses, the number of subqueries, and the number of
statements. To accelerate fuzzing, we constrain the complexity of
generated queries (line 18 in Algorithm 1) regarding these aspects.
For example, a query contains at most four JOIN clauses).

• Syntax Check. Executing queries with syntax errors reduces
computational efficiency. SQLFUZZ circumvents this problem by
applying syntax checks before running the query and discarding
invalid queries (line 18 in Algorithm 1).

• LIMIT Clause. SQLFUZZ uses the LIMIT clause to restrict the
number of returned rows to accelerate query execution. However,
as LIMIT introduces non-deterministic behavior, during valida-
tion we remove all LIMIT clauses from the queries and confirm
whether they consistently activate the regressions.

• Query Timeout SQLFUZZ applies a user-defined timeout for
each generated query to amortize the time budget across several
queries. This allows the tool to gracefully handle time-consuming
queries that satisfy the above checks. We adopt two different
timeout values, one for the query generation and another for each
query execution. To decide the timeout value, we empirically
assign them to utilize machine as much as possible. Developers
can adjust the timeout number as they want.

Reproducibility. DBMS developers may want to configure the tool
to reproduce queries in a deterministic way and focus on specific
classes of regressions. Table 1 lists a subset of the settings currently
supported by SQLFUZZ: regression threshold, depth of subqueries,
number of JOINs, the depth of expressions, the seed of the random
number generator, and other features of the validator.
• Query Generator: When the Non_Deterministic flag is en-

abled, the query generator refrains from constructing queries
containing non-deterministic clauses and routines. The Max_Join

Table 1: Configurable Settings of SQLFUZZ. While settings for the
query generator and validator help reduce false positives, those for the query
executor allow SQLFUZZ to support different DBMSs.

Configuration Description

Query Generator
Non_Deterministic Discard non-deterministic funcs
Max_Query_Size Maximum query size
Max_Join Maximum number of JOINs
Allow_DB_Update Allow DB modifications
Timeout Maximum generation time

Query Executor

Regression_Threshold Magnitude of regression
DBMS Targeted DBMS
DBMS_configuration DBMS-specific configuration
Execute_Analyze Update catalog statistics
Timeout Maximum execution time

Bug Validator Non_Executed Discard non-executed plans
LIMIT_Clause Discard LIMIT clauses

and Max_Query_Size settings determine the maximum number of
JOIN clauses and the query size, respectively.

• Query Executor: Regression_Threshold indicates the minimal
performance gap for the tool to consider a query as regression-
triggering. DBMS and DBMS_Configuration are used for connect-
ing to the target DBMS. Execute_Analyze parameter contains
the DBMS-specific command for updating the catalog’s statistics.

• Regression Validator: When the Non_Executed flag is enabled,
the validator discards any query if its plan contains any non-
executed part. When LIMIT_Clause is enabled, we remove LIMIT
clauses before regression validation to eliminate this randomness.

Extensibility. We leverage three techniques to improve the exten-
sibility of SQLFUZZ to support multiple DBMSs. First, the core
components of SQLFUZZ (i.e., query generator, executor, and val-
idator) are DBMS-agnostic. We introduce a layer of indirection
between general-purpose parameters and specific commands used
by a target DBMS (e.g., Execute_Analyze). Second, the fuzzer
supports both client-server DBMSs (e.g., PostgreSQL, MySQL, or
MariaDB) and embedded DBMSs (e.g., SQLite). It communicates
with client-server DBMSs using a networking component. In the
case of embedded DBMSs, SQLFUZZ spawns the system as a new
process and directly executes queries. Third, SQLFUZZ supports
two types of query generators to address query dialect problem: a
SQLSmith-based generator [26] for SQLite and PostgreSQL sys-
tems, and a RQG-based random query generator [20] for MySQL
and MariaDB systems.

5. SQLMin: QUERY REDUCTION
After discovering a regression-triggering query of the target

DBMS, the user may try to minimize the query before sending
the bug report to developers. This minimization technique consists
of repeatedly removing as many elements of the query as possible,
while ensuring that the performance regression is still preserved.
Therefore, manual effort for query-reduction is time-consuming and
error-prone. SQLMIN addresses these problems by automating this
process in a general way. Besides queries produced by SQLFUZZ,
SQLMIN can also minimize regression-triggering queries from
other sources, like normal executions or other fuzzing tools.
Comparison with Prior Research. We note that the RAGS sys-
tem [63] and Reducer [23] also try to tackle the automated query-
minimization problem. The minimization algorithm of RAGS con-
sists of two steps: discard terms in expressions and remove WHERE
and HAVING clauses. Reducer also applies two steps for query-
minimization: delete line by line and remove column name from
SELECT or INSERT. Because of the simplicity, their algorithms suffer
from three limitations. First, they do not consider dependencies
between the removed expressions and the rest of the query, resulting
in invalid queries. For example, if they remove expression E from

61

Algorithm 2: Procedure for reducing bug-triggering queries
Input :DBMSold: old DBMS version, DBMSnew: new DBMS version,

query: original query, min_time: minimum execution time,
threshold: minimum regression threshold

Output :min_query: minimal query triggering regression
1 Procedure Minimize(DBMSold, DBMSnew, query, min_time, threshold)
2 old_size← min_size←∞ ;

// Bottom-up reduction
3 for subquery ∈ query do
4 timeold, planold← RunQuery(subquery, DBMSold) ;
5 timenew, plannew← RunQuery(subquery, DBMSnew) ;
6 if time > min_time and timenew

timeold
> threshold then

7 if Length(subquery)< min_size then
8 min_query← subquery ;
9 min_size← Length(subquery) ;

// Top-down reduction
10 for element ∈ GetComponents(min_query) do

// Component = {subquery, clauses, lists}

11 min_query′← min_query - element ;
12 timeold, planold← RunQuery(min_query′, DBMSold) ;
13 timenew, plannew← RunQuery(min_query′, DBMSnew) ;
14 if time > min_time and timenew

timeold
> threshold then

15 min_query← min_query′ ;
// Iterate until no reduction

16 if Length(min_query) < old_size then
17 old_size← min_size← Length(min_query) ;
18 go to line 3 ;
19 else
20 return min_query

a query Q but the reduced query Q′ still uses E, the DBMS will
throw a syntax error. Because of the lack of dependency-tracking,
they also cannot handle correlated subqueries. Second, they employ
a top-down approach that starts from the entire query and iteratively
removes as many expressions as possible. If the performance re-
gression is associated with a nested subquery, a top-down approach
will end up with a syntax error due to the dependencies between
inner and outer queries. Finally, they are tailored for correctness
or functionality bugs and will not preserve the performance regres-
sion during query reduction. Specifically, the reduced query should
produce the same result, or crash the program in the same way.
However, for regression bugs, the reduced query just has to exhibit
a performance drop over the developer-specified threshold.

5.1 General Query Reduction Framework
SQLMIN is a general framework for reducing regression-triggering

queries. It takes three sets of input from the user: the two versions
of the DBMS, the original regression-triggering query, and the
min_execution_time and regression_threshold parameters. We
require the execution time of a reduced query to be larger than
min_execution_time (e.g., 10 ms) to ensure that the reduction al-
gorithm is not misled by the inaccuracy of time measurement or
the environmental noises (e.g., interference from other concurrently
running processes). We require the reduced query to trigger a per-
formance drop higher than the regression_threshold parameter.

Algorithm 2 illustrates the query-reduction algorithm. SQLMIN
iteratively reduces the query until convergence. It initially adopts a
bottom-up approach to reduce each subquery (line 3 to line 9). For
each valid subquery, it checks whether the subquery exhibits the de-
sired performance drop and takes non-trivial time to complete. If so,
we set this as the best reduced query (min_query) (line 8). SQLMIN
then adopts a top-down approach to further reduce the subquery by
removing different components of the query: subqueries, clauses,
and lists (line 10 to line 11). If the reduced subquery still exhibits
the desired performance drop and takes non-trivial time to complete,
we will update min_query to the reduced one (line 15). Finally,
SQLMIN checks whether this loop iteration successfully reduced
the query (line 17). If so, it continues on to the next iteration to check

 1 SELECT S1.C2
 2 FROM (
a

 3 SELECT
 4 CASE WHEN EXISTS (
 5 SELECT S0.C0
 6 FROM OORDER AS R1
 7 WHERE ((S0.C0 = 10) and (S0.C1 IS NULL))
 8) THEN S0.C0 END AS C2,
 9 FROM (
10 SELECT R0.I_PRICE AS C0, R0.I_DATA AS C1,
11 (SELECT I_ID FROM ITEM) AS C2
12 FROM ITEM AS R0
13 WHERE R0.I_PRICE IS NOT NULL
14 OR (R0.I_PRICE IS NOT S1.C2)
15 LIMIT 1000) AS S0
dddd

16dd) AS S1;
a

❶ Extract subquery

❹ Remove subquery

❸ Remove column list

❺ Remove clause

❷ Remove condition

Remove
Dependency

Figure 4: Query Minimization Example. SQLMIN reduces the size of
the discovered query while preserving the performance regression property.
It adopts both top-down and bottom-up approaches for the reduction.

whether it is possible to further reduce the min_query (line 18). Oth-
erwise, it returns min_query after detecting convergence (line 20).
Example 3. Query Minimization. We use the example in Fig-
ure 4 to illustrate the query-reduction process. The original SQL
query Q contains 3,912 bytes and the performance drop associated
with it is 2.4×. We relax the regression threshold to 1.8×. With
the bottom-up approach, SQLMIN 1 extracts the largest subquery
and transforms it to a valid query (shaded region) by eliminating
dependencies between the outer and the inner queries. For example,
it removes referred column name from the WHERE clause (line 14).
With the top-down approach, it sequentially removes several entities
from the query (2 - 5): condition in the WHERE clause (line 7), col-
umn list and subquery in the SELECT (line 10 and 11), and the LIMIT
clause (line 15). SQLMIN iterates this reduction until convergence.
This enables it to resolve dependencies between entities. For exam-
ple, there is a dependency between the condition SubQ_0.C1 (2)
and the column Ref_0.O_I_DATA (3). If SQLMIN removes the
referencing condition without eliminating the referenced column,
the reduced query will be syntactically invalid. During the first
iteration, SQLMIN only removes the referencing condition since
eliminating it does not trigger a syntax error. During the second
iteration, it removes the referenced column, thereby converging to a
syntactically valid reduced query.

6. SQLDebug: DIAGNOSING ROOT CAUSE
Even with the reduced regression-triggering query, DBMS devel-

opers still need to invest a significant amount of effort on diagnosing
the root cause of the problem [64]. In this section, we present the
design of SQLDEBUG, a tool for assisting developers with root
cause diagnosis. SQLDEBUG first identifies the commit (i.e., a set
of changes) to the DBMS source code that gave rise to the problem
(§6.1). It then localizes the root cause of the regression among these
changes using statistical debugging (§6.2).

6.1 Identification of Problematic Commit
Developers co-ordinate changes to the source code of a DBMS

using version control systems (e.g., git [13] and fossil [14]). Each
change is identified using a unique commit identifier (e.g., 307a94f).
Two different versions of a DBMS may be separated by tens to
thousands of commits. SQLDEBUG uses a binary search algorithm
across these commits to identify the one that introduced the perfor-
mance regression. This technique, referred to as commit bisecting,
has been applied to other complex software systems [16, 18, 17].

SQLDEBUG first extracts all commits between the old version
and the new version of the DBMS from the version control system.
It then checks whether the query triggers the performance regression
between the two commits corresponding to two versions. This check

62

❷ Query
Minimizer

buggy
queries

commit 9 commit 7 commit 6 commit 1

DBMS (slow)

❸ Dynamic Log src/expr.c:9774query 0x501: true
0x709: false

trace
(slow)

trace
(fast)

Bug Cause Report❶ Bisect

Bisecting

Statistical Debugging
❺ Statistical

Debugger

commit 5

slow version fast version

first slow last fast

0x401: true
0x4bb: false

❹Align

DBMS (fast)

Figure 5: Architecture of SQLDEBUG. The diagnosis process consists of two techniques: (1) commit bisecting and (2) statistical debugging. First,
SQLDEBUG identifies the earliest commit that introduced the performance regression. Then, it collects execution traces on the identified commit and utilizes
statistical debugging to localize the root cause of the regression (i.e., file name, function name, and line number).

is to confirm the source code is consistent with the released DBMS
binaries regarding the regression. If the query does not trigger the
performance regression, SQLDEBUG just includes more older and
newer commits until it finds two commits that show the regression.
After that, SQLDEBUG uses a binary search algorithm to find the
first commit that introduces the regression. We call the commit
corresponding to the older and faster version as fast commit, and
call the on corresponding to the newer and slower version as slow
commit. In each iteration of the binary search, we pick up the
commit in the middle between the current fast commit and the slow
commit, called middle commit. If the DBMS compiled from the
middle commit is much slower than the fast commit, we set the
middle commit as the new slow commit. Otherwise, we set the
middle commit as the new fast commit. We keep this search until
no commit exists between the fast commit and slow commit. The
slow commit is the first one that triggers the regression.
Compilation Cache. During the commit bisecting, SQLDEBUG
retrieves and compiles many versions of the DBMS, which leads
to a slow diagnosis process. To address this problem, SQLDEBUG
caches the compiled versions of the DBMS and reuses them when
possible across searches to accelerate the diagnosis process.
Example 4. Commit Bisecting. Figure 5 illustrates a commit
bisecting process. There is a performance regression between the
first commit c1 and the latest commit c9. Our goal is to find the
first commit that introduces the regression. SQLDEBUG starts by
validating the performance regression between c1 and c9. It then
retrieves and compiles the middle commit c5 and runs the regression-
triggering input on that version. If the query runs fast on c5, it
updates the search to begin at c5. By iterating this binary search,
SQLDEBUG concludes that the regression is activated by c5.

6.2 Localization of Root Cause
After identifying the commit that introduced the regression, a

developer will further localize the root cause of the problem to a
particular source line of the source code. This step is crucial for a
major commit that contains changes spans a large number of source
code files. We automate this localization process in SQLMIN by ex-
tending the traditional statistical debugging technique (Figure 2.3).
Challenges. The canonical statistical debugging technique suf-
fers from two limitations in locating regression bugs. First, it
only supports analysis in one version of the program. However,
SQLMIN has to perform comparative analysis across two versions
of the DBMS. Second, it requires a significant number of regression-
triggering inputs to construct a statistical model. However, it is
challenging to collect a large set of loosely correlated queries that
trigger the same regressions in DBMSs. SQLDEBUG addresses the
first challenge by aligning execution traces from two versions of the
DBMS. It tackles the second challenge by using SQLMIN to derive
loosely correlated queries that trigger the same regression.

Figure 5 illustrates the way we extend the statistical debugging
technique for diagnosing performance regressions. 1 SQLDEBUG
begins with the first slow commit and the last fast commit identified

through commit bisecting. It compiles these versions to binaries
with debugging information [38]. 2 It then uses SQLMIN to pro-
duce more regression-triggering queries during the query reduction.
Specifically, it collects all the intermediate sub-optimally reduced
queries no matter they trigger the performance regression or not.
3 Next, SQLDEBUG instruments the binaries to collect the list of
evaluated branches while executing these bad and good queries in
both versions. 4 For each query, it aligns the pair of traces obtained
from the two versions, based on the differences from the source code.
We discuss the trace collection and alignment steps in detail later in
this section. 5 Finally, it leverages statistical debugging to process
the aligned traces from all queries and generates a list of branches
in the source code that strongly correlate with the regression.

6.2.1 Trace Collection and Alignment
Execution Trace Collection. SQLDEBUG utilizes dynamic bi-
nary instrumentation to collect the execution traces from both ver-
sions of the DBMS. Specifically, it instruments the binary to record
each conditional branch instruction to obtain the list of branches
that are either taken or not taken during execution. Since the dy-
namic instrumentation tool, DynamoRIO [35], does not support
multi-processed software systems, we configure the DBMS in the
single-process mode for bug diagnosis (e.g., single-user mode in
PostgreSQL [29] launches DBMS within one process). By applying
the single-process mode, DBMS runs necessary modules in multiple
threads within the same process; thus, APOLLO can diagnose the
root cause correctly. We introduce implementation detail in §7.
Trace Alignment. Since two binaries of a DBMS have dif-
ferent address space layouts, the execution traces collected by
SQLDEBUG do not share the same set of addresses. SQLDEBUG
aligns these different layouts using three steps for statistical debug-
ging. First, it only considers instructions in functions that were mod-
ified across these two binaries. Second, it maps each instruction to a
(function,offset) pair, where offset is the distance from the given
instruction to the first instruction of the function. For example,
(TupleHashTableMatch,0x445) identifies that the instruction starts
at offset 0x445 from the start of the TupleHashTableMatch function.
Finally, it sequentially aligns instructions from two versions if their
function names and offsets match each other. SQLDEBUG exam-
ines both instructions with and without matches in the other version,
since the latter changes may also correlate with the regression.

6.2.2 Applying Statistical Debugging
After aligning the traces, we build statistical debugging model.

by following a conventional method to infer buggy locations. We
calculate the probability that an execution fails when the correspond-
ing predicate (branch) is taken. Using the calculated probability,
we infer possible buggy locations with its rank. We introduce a
great reference for readers who would like to know the details of
statistical debugging method [64].
2-Version Statistical Debugging. Our statistical debugging model
differs from the traditional one in two ways. First, since we are

63

Table 2: SQLDEBUG validation. Validation result on existing regressions.

DBMS Version Bisecting Statistical Debugging Validate

SQLite v3.6.23 defaf0d99 where.c:sqlite3WhereBegin() ✓
v3.7.14 ddd5d789e where.c:bestBtreeIndex() ✓

PostgreSQL v8.1.2 7ccaf13a0 nbtutils.c:_bt_checkkeys() ✓

targeting performance regressions, our notions of program success
and failure correspond to fast and slow query execution, respec-
tively. Second, we restrict the number of ranked predicates (i.e.,
conditional branches) by only examining those related to the commit
identified using bisection. The statistical debugging model returns a
list of predicates and their Importance metric [64] (e.g., predicate A:
0.887). Using the debugging information in the compiled binaries,
SQLDEBUG maps the addresses of the predicates to the source code
of the DBMS: (function_name, line_number).
Validation with Existing Regressions. To confirm the validity
of the diagnosis result, we collect reproducible performance re-
gressions that are submitted to the DBMS community. Then we
manually compare the actual bug fix with our diagnosis result. As
shown in Table 2, SQLDEBUG correctly pinpoints the root cause of
the regressions. After bisecting roughly identifies multiple candidate
locations, statistical debugging diagnosed the actual location, i.e.,
the file, the function, and the related predicates.
Example 5. Diagnosing Root Cause. We use SQLDEBUG for
identifying the root cause of the performance regression triggered
by Example 2 in §2.1. 1 After 11 binary search iterations, bisec-
tion reveals that the last fast-commit and the first slow-commit are
f856676 (DEC-31-2018) and e130319 (DEC-31-2018), respectively.
2 SQLDEBUG then constructs a set of loosely related intermediate
queries using SQLMIN. Among the queries, it randomly chooses 10
that trigger the regression and 10 that do not trigger the bug. 3 We
feed these 20 queries to the corresponding binaries and collect the
execution traces. 4 SQLDEBUG filters out all instructions that are
not relevant to the changes between these two commits and aligns
the left instructions for each query. In this example, the filtering step
reduces the number of instructions from 4,106 to 136 on average. 5
SQLDEBUG then applies statistical debugging to localize the root
cause of the regression. It returns the top three predicates with the
highest Importance metric. 6 With the debugging information of
the binaries, it maps these predicates back to the source code [38].
We manually inspect these three predicates and confirm that two of
them in functions sqlite3VdbeJumpHere and sqlite3VdbeAddOp0
are responsible for the performance regression.

7. EXPERIMENTAL EVALUATION
We implement APOLLO with 3,054 lines of Python code and

156 lines of C++ code. We develop SQLFUZZ based on SQL-
Smith and Random Query Generator (RQG) [20]. We leverage
DynamoRIO [35] to collect execution traces in SQLDEBUG. Dur-
ing the fuzzing, we use the TPC-C benchmark in our fuzzing and
corresponding evaluations [15]. In particular, we use the queries as a
corpus for bootstrapping SQLFUZZ and execute the queries on the
tables contained in the benchmark. We configure the benchmark’s
scale factor to be one and 50 for fuzzing and validation, respectively.

Our evaluation aims to answer the following questions:
• Regression Detection: Is APOLLO effective at finding perfor-

mance regressions in real-world DBMSs? How effective is
SQLFUZZ at removing false positives? (§7.1)

• Query Reduction: Can SQLMIN outperform RAGS on reducing
discovered queries? How effective are different strategies? (§7.2)

• Regression Diagnosis: Can SQLDEBUG localize the root cause
of detected performance regressions? (§7.3)

Table 3: APOLLO configuration. Settings used in our evaluation.

Configuration Default

Query Generator
Non_Deterministic exclude
Max_Query_Size < 4000 bytes, < 4 joins
Allow_DB_Update do not modify DB
Timeout 0.2 second per query

Query Executor

Threshold 150%
DBMS PostgreSQL and SQLite

DB_Configuration
WORK_MEM(128MB),
SHARED_MEM(128MB)

Execute_Analyze run every 1,000 Execs.
Timeout 5 seconds per query

Bug Validator Non_Executed remove
LIMIT_Clause include when query

• Query Patterns: Can the feedback improve the performance
of fuzzing? Are there certain query patterns that are strongly
correlated with performance regressions? (§7.4)

Experimental Setup. We evaluate APOLLO on two DBMSs:
SQLite (v3.23 and v3.27.2) in the client-server mode, and PostgreSQL
(v9.5.0 and v11.1) in the embedded mode. We evaluate APOLLO on
a server with Intel(R) Xeon(R) Gold 6140 CPU (32 processors) and
384 GB of RAM. We ran APOLLO on these systems for two months
using the configuration shown in Table 3.
Fuzzing Performance. On average, SQLFUZZ effectively pro-
duces and executes 5.8 queries per second. Although the query mu-
tation is efficient, about 68% of the generated queries are discarded
due to syntax or semantic errors. To improve the performance, we
utilize multi-threaded fuzzing. Also, SQLMIN and SQLDEBUG
can process one regression-triggering within 30 minutes.

7.1 Performance Regression Detection
APOLLO discovered 10 unique performance regressions from

two tested DBMSs. Table 4 summarizes the key characteristics of
these regressions. The performance regressions in SQLite lead to a
1.6× to more than 1,000× performance drop, while the regressions
in PostgreSQL reduce the performance from 1.9× to more than
1,000×. The first regressions in the table for each DBMS leave the
system keeps running for more than one day. We reported these
10 regressions to the corresponding developers with the minimized
regression-triggering queries and the diagnosis results. Developers
have already confirmed seven regressions and fixed two of them in
the latest versions. Next we discuss the details of two performance
regressions, one from SQLite and another from PostgreSQL.
/∗ [Fast Version] Scan STOCK -> Search CUSTOMER ∗/
/∗ [Slow Version] Scan CUSTOMER -> Search STOCK ∗/
SELECT COUNT(∗)
FROM (SELECT R0.C_ID
FROM MAIN.CUSTOMER AS R0 LEFT JOIN MAIN.STOCK AS R1
ON (R0.C_STREET_2 = R1.S_DIST_01)
WHERE R1.S_DIST_07 IS NOT NULL) AS S0

WHERE EXISTS (SELECT C_ID FROM MAIN.CUSTOMER);

Example 6. Performance Drop due to Bug Fix. The latest ver-
sion of SQLite spends >1,000× more time to execute the query
above, compared to the time taken by the older version v3.23.0. Our
investigation reveals that this performance regression was inadver-
tently introduced when the developer attempted to fix a correctness
bug. Originally, if the WHERE clause satisfies a particular predi-
cate, the DBMS will degenerate the LEFT JOIN clause to a faster
JOIN. However, this optimization has an unforeseen interaction with
the IS NOT NULL operator, resulting in a correctness bug. In com-
mit d840e9b (FEB-05-2019), the developer fixed this correctness
bug by skipping the optimization if the WHERE clause contains a
IS NOT NULL operator. After this commit, the query above exhibits
a performance drop due to the lack of this optimization. The SQLite

64

Table 4: Discovered performance regressions. List of regressions uncovered by APOLLO in SQLite and PostgreSQL DBMSs. The Perf. drop column
refers to the drop in performance across the two versions of the DBMS. The Query minimization columns indicate the size of the query before and after the
minimization step. The Commit bisecting columns indicate the commit associated with a regression and the number of discovered queries that were found to be
associated with that commit. The Statistical Debugging column presents the predicate reported by the diagnosis tool (file name: function name). We reported
all the listed regressions to the developers who have confirmed seven of them and already fixed two of them. † indicates the cases where the commit identified
via bisection is different from the actual commit that caused the regressions.

DBMS Versions Perf. Drop Query Minimization Commit Bisecting Statistical Debugging Bug Statusoriginal reduced reduction% identifier # of queries

SQLite
3.23.0

3.27.2

> 1000× 3,875 270 93.0% d840e9b 1,823 expr.c:impliesNotNullRow Confirmed
24.5× 1,447 706 51.2% 172f5bd 1 where.c:whereLoopAddBtree Reported
51.9× 1,717 626 63.5% 57eb2ab 1 select.c:sqlite3Select Confirmed

2.4× 3,912 548 86.0% 7d9072b 17 expr.c:codeApplyAffinity Confirmed

1.6× 923 406 56.0% e130319 16 expr.c:sqlite3VdbeJumpHere,
expr.c:sqlite3VdbeAddOp0

Confirmed

PostgreSQL
9.5.0

11.1

> 1000× 572 130 77.3% 5edc63b† 1 costsize.c:compute_bitmap_pages Fixed
3.2× 767 295 61.5% bf6c614 23 execGrouping.c:BuildTupleHashTable Fixed
2.7× 1,619 205 87.3% 77cd477† 277 costsize.c:max_parallel_degree Confirmed
2.0× 531 409 23.0% 0c2070c 11 costsize.c:cost_seqscan Reported
1.9× 659 206 68.7% 7ca25b7 98 selfuncs.c:neqjoinsel Reported

10−3
10−2
10−1
100
101
102

Orig NE ND ANLZ CONF LMT DEDUP

FP
ra

te
(%

) FP TP

Figure 6: Factor analysis of regression validation checks. SQLFUZZ
reduces false positives (FP) and increases true positives (TP). NE: discard
queries with a non-executed plan; ND: discard non-deterministics; ANLZ:
periodically update statistics; CONF: change configuration; LMT: disable
LIMIT; DEDUP: deduplicate queries associated with the same problem.

community has acknowledged this problem and is seeking to con-
currently solve both correctness and performance regressions [31].
/∗ Same plan but different execution time ∗/
SELECT R0.O_D_ID FROM PUBLIC.OORDER AS R0
WHERE EXISTS (SELECT COUNT(∗)
FROM (SELECT DISTINCT R0.O_ENTRY_D
FROM PUBLIC.CUSTOMER AS R1
WHERE (FALSE)) AS S1);

Example 7. Expensive Hash-table Construction. The query
above triggers a 3 .2× performance drop in PostgreSQL compared
to the time taken on v9.5.0. This regression was introduced by the
commit bf6c614 (FEB-16-2018) for improving the performance
with a hashed aggregation executor. The hashed aggregation execu-
tor uses a hash table to store a representative tuple and an array of
AggStatePerGroup structures for each distinct set of column val-
ues. To improve the query performance, this commit replaces the
execTuplesMatch function with a faster function (ExecQual) for tu-
ple comparison. To do so, it executes the ExecBuildGroupingEqual
function to build the tuple hash table every time. Since the con-
struction of the hashtable is computationally expensive, the query
execution takes more time compared to the original hashed aggrega-
tion executor. This regression was recently fixed in commit 356687b
(FEB-09-2019) by resetting the hashtable if it already exists instead
of building a new empty hashtable every time.
False Positive Reduction. We next examine the efficacy of our val-
idation techniques for reducing false positives (§4.2). In particular,
we measure the number of false positives and true positives during a
24-hour fuzzing experiment using a factor analysis to understand the
impact of each validation technique. We measure the effectiveness
of the following techniques: NE discards the query if it contains
a Non-Executed Plan; ND avoids utilizing Non-Deterministic be-
haviors to generate queries; ANLZ periodically updates the catalog
statistics; CONF increases memory limits compared to the default
DBMS configuration; LMT validates the query without using the
LIMIT clauses; DEDUP clusters queries associated with the same
problem together using commit bisecting. During the factor analysis,

we added these validation techniques one at a time. We use the same
random seed in SQLFUZZ to avoid non-determinism during query
generation. We pass the regression-triggering queries discovered by
SQLFUZZ through SQLDEBUG to identify the unique regressions.
Figure 6 summarizes the results of this experiment. NE, ND, and
ANLZ reduce the percentage of false positives to 48.49%, 32.57%,
and 1.49%, respectively. By combining these six checks, we are
able to discard all false positives. We note that the fuzzing speed
improves by 1.34× when we add the ANLZ check due to better
plans, thereby improving the efficacy of SQLFUZZ.

7.2 Query Minimization
For the detected 10 performance regressions, SQLMIN success-

fully reduced 66.7% of statements from the original queries: the
regression-triggering queries of SQLite are reduced by 69.9%, while
the queries of PostgreSQL regressions are reduced by 63.5%. This
result shows that SQLMIN is effective in reducing the query size of
real-world performance regressions.

To further understand the contribution of each minimization pol-
icy, we design unit tests and perform evaluation with more examples.
First, we collect all regression-triggering queries from SQLFUZZ,
which has removed false positives. We randomly choose 30 queries
and separate them into three groups according to their size. Then,
for each group, we ran SQLMIN with multiple configurations. Start-
ing with one policy (e.g., subquery removal), we gradually add up
remaining policies on top of the existing ones. We iterate the process
until no further size reduction is possible.

Figure 7 shows our evaluation results. Our algorithms reduce the
size of regression-triggering queries by 55% on average, specifically,
50% for small-sized, 45% for medium-sized, and 71% for large-
sized queries. In the large-sized query group, subquery removal (SR)
shows the best reduction. From the original query, the technique
itself has a reduction of 61%. This is because the large-sized queries
usually contain a multiple number of subqueries. On the other
hand, list and clause removal (LCR) achieves the best reduction for
small-sized queries. Since small-sized queries do not contain many
subqueries, such a fine-grained approach delivers the best result.

In addition, we compare our result with RAGS, a well-known
query-minimization platform [63]. As the source code of RAGS
is not available, we implement our version based on the original
paper. RAGS tries to remove expressions and two clauses – WHERE
and HAVING) – and does not delete any element in other clauses
(e.g., SELECT, GROUP BY). Further, RAGS does not remove or extract
subqueries, and its operations are performed once in a sequential
order. The comparison result in Figure 7 shows that SQLMIN
outperforms RAGS by 4.6×, where our approach achieves a 55%

65

20
40
60
80

100

Large Medium Small

Si
ze

re
du

ct
io

n
(%

)
Original
RAGS
TD←SR
TD←SR+LCR
BU←TD+BU
Iter (TD+BU)

Figure 7: Effectiveness of SQLMIN. The graph shows the query reduction,
unified on the original size. We use three query groups based on their size:
large (1500,∞), medium (600,1500), small (1,600). RAGS is the previously
developed system [63]. TD and BU indicate the top-down and bottom-up
subquery extraction policy. SR and LCR indicate subquery removal and list
and clause removal, respectively. Iter runs minimization iteratively.

reduction, while RAGS merely reduces queries by 12%. Especially,
RAGS is not able to reduce any query from the small-sized group,
where most of the reduction can be achieved only through column
list removal in the SELECT clause.

7.3 Regression Diagnosis
We next examine the efficacy of SQLDEBUG on localizing the

root cause of the discovered performance regressions.
Efficacy of Commit Bisecting. Among 1,621 commits between
two evaluated versions of SQLite, our bisecting method is able to
identify all five regression-inducing commits. From 6,880 commits
between two evaluated versions of PostgreSQL, the bisecting suc-
cessfully identifies three commits, and fails to locate another two
commits. We defer a detailed analysis of the failed cases to §7.3.1.
In the first time we report our bisecting results to the DBMS devel-
opers, we find that the commits we identify are off by a few commits
(e.g., ±5 commits) from the ones detected by the developers. After
we integrated their built-in command (e.g., SQLite fossil bisect)
in SQLDEBUG, we obtained the same commits as the developers.

In addition to identifying the regression-inducing commits, bisect-
ing can also cluster queries associated with the same regression in
one group. With the bisecting, we are able to remove 225 duplicated
queries per regression on average (370 queries in SQLite and 81
queries in PostgreSQL). For example, in SQLite, we found 1,823
queries that triggered the same performance regression, introduced
in commit d840e9b (FEB-15-2019). Our bisecting technique can
be used as an efficient clustering tool to avoid duplicate regression
reports from the same regression, thereby saving valuable developer
time. We note that the bisecting-based clustering may acciden-
tally merge two or more different regressions as one, if they are
introduced in the same commit. We discuss this limitation in §8.
Efficacy of Statistical Debugging. Using dynamic binary instru-
mentation, SQLDEBUG keeps track of 3,534 and 3,442 predicates
in the latest and the older versions of the DBMS on average. It
then selects a subset of these predicates based on the bisected com-
mit. These reduced traces contain 71 and 47 predicates from the
latest and the older versions of the DBMS on average. Using these
reduced traces, statistical debugger ranks the predicates based on
their importance metric. It then returns a ranked list of 12 predi-
cates on average. The final report contains the predicate address
(i.e., the address of the conditional branch), the function name, the
line number associated with that address, and its rank (i.e., how
closely it is related to the regression). To validate the efficacy of
statistical debugging, we examine the reported locations and patch
them back to the original code. If the patch has other dependencies,
we patch all the necessary code snippets to avoid any compilation
errors. Although the final report has several predicates (e.g., 20), we
only need to patch up to three predicates on average. After patching,
we run the relevant queries and verify if patching restores their per-
formance. We found that statistical debugging correctly identifies
the problematic locations for eight out of ten regressions.

Table 5: Profiler-based diagnosis. The table shows diagnosis result from
Linux Perf and Intel VTune on Example 8 and 9.

Profiler Method Diagnosis Result

Perf Branch record Recorded branches do not contain root cause location
Tracepoint probe Difficult to insert tracepoint for unknown root cause

VTune Hot-spot analysis Result does not contain actual root cause location
Call-stack diffing 1 Ex8: Does not capture root cause location

2 Ex9: Identifies parallel exec. and cost estimation

7.3.1 Analysis of Diagnosis Failures
We find two reasons that make SQLDEBUG fail to diagnose a

performance regression: a query triggers multiple regressions in
the DBMS, rendering our diagnosis incomplete; the performance
regression is enabled by another recently introduced benign feature.
/∗ [Fast Version] Bitmap Heap Scan on STOCK R0 ∗/
/∗ [Slow Version] Seq Scan on STOCK R0 ∗/
SELECT R0.S_DIST_06 FROM PUBLIC.STOCK AS R0
WHERE (R0.S_W_ID < CAST(LEAST(0, 1) AS INT8));

Example 8. Existence of Two Problems. We found that the query
above triggers two problems in the latest version of PostgreSQL.
During the commit bisecting, SQLDEBUG identifies that the prob-
lematic commit 5edc63b (NOV-10-2017) changes the policy for
launching bitmap heap scan (BHS), and leads to the performance
regression. Specifically, the newer version uses BHS only if the
DBMS has enough space in the working memory. Although this
query does not return any rows, both versions over-estimate the
number of returned rows. However, the older version uses BHS,
while the newer version uses sequential scan (SS) due to the policy
change. Given this property, BHS immediately skips the predicate
evaluation, while SS evaluates the predicate on all the tuples in the
table. Thus, the newer version is more than 1,000× slower than
the older version. We attribute the misestimation problem in the
optimizer to another regression. Although LEAST(0,1) reduces to 0,
the optimizer does contain relevant constant-folding logic, thereby
misestimating the number of returned tuples. When we reported this
regression, PostgreSQL developers confirmed that this regression
has been patched in the latest release.
/∗ [Fast Version] SEQ SCAN ON ORDER_LINE R0 ∗/
/∗ [Slow Version] Gather -> Workers Plan/Launch: 2 ∗/
SELECT R0.OL_DELIVERY_D FROM PUBLIC.ORDER_LINE AS R0
WHERE EXISTS (
SELECT R1.I_IM_ID FROM PUBLIC.ITEM AS R1
WHERE R0.OL_D_ID <= R1.I_IM_ID);

Example 9. Cascaded Performance Drop. The query above illus-
trates the cascading flow of control from the root cause. SQLDEBUG
identifies that the problematic commit 77cd477 (APR-26-2016) en-
ables the parallel query execution by default. However, for this
query, the parallel scan is slower than the sequential scan, and the
newer version is slower than the old version. Although the parallel
execution seems to be the root case, the crux of this problem lies in
misestimation. Specifically, the newer version over-estimates the
query execution time and resorts to an expensive parallel scan oper-
ator. SQLDEBUG currently cannot handle this type of regressions.

7.3.2 Complement with Profiler-based Diagnosis
Software profiling techniques help developers understand the

distribution of computing resources during the program execution.
Such information can be used by a profile-based diagnosis system
or performance tuning system to diagnose performance regression
bugs. To understand whether the profiler-based analysis can help
regression-diagnosis or not, we tried profilers Linux Perf [36] and
Intel VTune [61] on Example 8 and Example 9, where SQLDEBUG
failed to diagnose the regression correctly. Table 5 shows the result.
First, regression diagnosis using Linux Perf failed to identify any

66

Feedback-driven Random Testing

Regression queries 441 / 347,616 (0.126%) 243 / 340,416 (0.071%)
Regression rate (Avg.) 10.8× 10.2×

(a) Efficacy of feedback-driven fuzzing

0x
3x
6x
9x

12x
15x

disti
nct

left join

right join join cast or
lim

it not
exists where

D
iff

er
en

ce
ra

tio
(f

as
tv

s.
no

rm
al

)

Slow query contains more clauses
Normal query contains more clauses

(b) Impact of query clauses in PostgreSQL

-2x
0x
2x
4x
6x
8x

10x

left join
operator on

disti
nct

nullif cast

coalesce
when else offse

t

D
iff

er
en

ce
ra

tio
(f

as
tv

s.
no

rm
al

)

(c) Impact of query clauses in SQLite

Figure 8: Importance of feedback and query clauses. Table (a) shows
impact of feedback-driven fuzzing. Figure (b) and (c) show importance of
query clauses. Red and green-colored bars indicate that regression-triggering
queries contain the associated clauses more and less frequently compared to
normal queries, respectively.

root cause. The reason is that the recorded branch predicates missed
several branches where the actual root cause stays. We also find it
is challenging to insert a tracepoint to record the call-stack as we
do not know the possible root cause; thus a tracepoint is not suit-
able for regression diagnosis. Second, diagnosis with Intel VTune
successfully identified the root cause of Example 9, but failed on
Example 8. When we extracted different call-stacks from the good
and bad profiles, we noticed that the bad query is executed when the
parallel execution was enabled by default (in execscan.c) and the
cost estimator (in costsize.c) showed the difference. This result
shows that profiler-based approaches may help diagnose the root
cause of some regressions. However, they do not guarantee the
completeness in debugging because the sampling process may miss
important predicates or functions during the recording.

7.4 Analysis of Regression-inducing Queries
We next study the efficacy of the feedback and the characteristics

of regression-inducing queries along three dimensions: the effect of
the feedback on fuzzing, the importance of different query clauses
and the importance of the query size.
Efficacy of Fuzzing Feedback. To demonstrate the potential
usefulness of feedback (i.e., updating the probability table for each
clause) on the regression detection, we run fuzzing with and without
the feedback for 24 hours on PostgreSQL. Since the fuzzing stage
does not consider false positive filtering for LIMIT clause and DEDUP,
we collect all queries if any query show regression than the threshold
(i.e., 150%) without the two validations. Overall, feedback-driven
fuzzing shows better regression-detecting performance than random
testing. Feedback improves the detection rate by 76%, specifically
from 0.071% (i.e., without feedback) to 0.125% (i.e., with feedback).
Also, we further investigate the regression ratio between two fuzzing
setups. We found that the feedback is not relevant to enlarge the
regression ratio of discovered queries as shown in Figure 8a.
Importance of Query Clauses. We construct a dataset with
1,000 normal queries (i.e., no performance regression) and 2,268
regression-triggering queries for PostgreSQL and SQLite. We count

the frequency of each clause in these queries and normalize the count
by their size. Figure 8 illustrates the distribution of clauses across
normal and regression-triggering queries. The most notable obser-
vation is that the JOIN clause is particularly effective at uncovering
regressions in both DBMSs. In particular, the LEFT clause appears
13.0× more often (PostgreSQL) and 8.9× (SQLite) more often
in regression-triggering queries than that in normal queries. The
DISTINCT clause appears 14.8× more often in PostgreSQL queries
and operators (e.g., <>, +, and %) appear 8.3× more often in SQLite
queries. In contrast, certain clauses are less frequently present in
regression-triggering queries. For example, CAST, OR, or LIMIT are
1.3× to 1.9× less frequently present in PostgreSQL queries. These
results show that certain types of clauses are more capable of un-
covering performance regressions. Based on these observations,
SQLFUZZ dynamically increases the probabilities associated with
these clauses in the probability table.
Unimportance of Query Size. We found that the query size is not
relevant to uncover performance regressions. In our experiment, nor-
mal queries are 3% larger and 9% smaller than regression-triggering
queries in PostgreSQL and SQLite, respectively.

8. LIMITATIONS AND FUTURE WORK
We now discuss the limitations of APOLLO and present our ideas

that may address the problems in the future work.
Coping with Multiple Problems in a Commit. SQLDEBUG
currently cannot distinguish multiple performance regressions intro-
duced in the same commit. Specifically, if two queries are bisected
to the same commit, SQLDEBUG assumes they trigger the same re-
gression and drop one to avoid duplicated reports. For example, we
cluster together 1,823 duplicated queries related to the same commit
d840e9b in SQLite. However, this clustering technique may lead to
false negatives as we discuss in §7.3.1. We can solve this problem
by passing all discovered queries to statistical debugging, without
bisecting. However, this requires developers to do more subsequent
analyses of the reports generated by the statistical debugger.
Alternate Statistical Debugging Models. We plan to investigate
the efficacy of alternate statistical debugging models in the future.
Besides the current boolean-value predicate (i.e., a predicate is true
or false), we will investigate integer-valued predicates (e.g., the
times a predicate is true in each run). Prior research has shown
that Latent Dirichlet Allocation (LDA) can support integer-valued
predicates [32]. Consider a predicate P that is true 10 times and
false 20 times in a successful run, and true 20 times and false 10
times in a failed run. The traditional statistical debugging model
will not prioritize P , as P is both true and false in both runs. In
contrast, LDA will rank P higher since it takes into consideration
that P is true more often during failures than during successful runs.
Augmenting the Impact of Performance Regression. Some
regression-triggering queries demonstrate a significant performance
drop, but suffer from a short execution time. For example, consider a
query that completes in 0.1 ms and 10 ms in the older version and the
latest versions of a DBMS, respectively. We currently ignore these
queries since their execution time is short and DBMS developers
do not take them seriously. However, we contend that such queries
should not be ignored. First, if such queries are used as subqueries
in larger queries, the execution time of the larger query may exhibit
a similar performance drop (e.g., ⟨0.1 ms, 10 ms⟩ → ⟨10 s, 1,000 s
⟩). Second, the size of the tested database often determines the
execution time. The same query can exhibit a longer execution
time on a larger database. Third, DBMS may consist of massive
number of short-time executions. For example, On-line Transaction
Processing (OLTP) involves many short online transactions such as

67

UPDATE, INSERT, and DELETE. In this scenario, short-time difference
may cause significant performance regressions.
Supporting Other DBMSs. We can easily extend APOLLO to sup-
port other DBMSs. Taking MySQL as an example: First, SQLFUZZ
uses RQG [20] for query generation since it is geared towards
MySQL. We add a DBMS-specific configuration file (e.g., port num-
ber, database name, command for updating statistics). Second, our
general-purpose SQLMIN can reduces the discovered query with-
out any additional modification. Lastly, SQLDEBUG can perform
commit bisecting on MySQL code repository and then executes
statistical debugging on collected execution traces.
Code Coverage as a Feedback Mechanism. Code coverage is a
frequently used feedback mechanism in fuzzing engines [22, 27].
We found that this metric is not particularly useful for fuzzing
DBMSs, since the core components of DBMS (e.g., query optimizer)
already have high coverage (e.g., > 95%) after running tens of
queries. Thus, we instead use the clause-occurrence frequency as a
feedback mechanism in SQLFUZZ, as discussed in §7.4.
Fuzzing on Fixed Dataset. The current design of APOLLO uses a
fixed database to fuzz the target DBMS, which may constrain the
fuzzing coverage due to the repetitious schema. Specifically, a fixed
database lacks in variety of relationships between tables, defined
indexes and triggers, data types for each column, and number of
rows in table. If many performance regressions attribute to one of the
varieties, APOLLO will unlike unearth these regressions regardless
of the advance in query generation and fuzzing strategy. We plan
to include random dataset generation in the future work, which will
define arbitrary DB schema and insert random data automatically.
User Privacy in Regression Report. Current version of APOLLO
does not handle the problem of sharing the user dataset and cor-
responding regression query. However, we consider this is an im-
portant problem because users may not be able to export internal
dataset due to their confidentiality constraints. We believe differen-
tial privacy [46, 37] is a promising solution for addressing this issue,
as it allows general data analytics of data (i.e., same performance
regression) while providing a strong guarantee of privacy. We plan
to investigate the efficacy of differential privacy in the future.
Performance Regression from Statistics Collection Logic. We
consider the identical statistics important for reducing the false posi-
tives; thus we periodically update the statistics during the fuzzing.
Therefore, if the performance regression is caused by the logic in
statistics collection, APOLLO is not able to detect the problem in
the current setting. If we disable the periodical update and record
sequence of queries that can affect to the internal statistics, we will
be able to figure out problem in statistics collection logic.

9. RELATED WORK
The need for tools that can accelerate the testing and debugging of

large-scale software systems has been well-known for decades [43,
57, 62]. As such, there is an extensive corpus on the problems of
detecting and diagnosing bugs in software systems. In this section,
we discuss methods for testing and debugging DBMSs with a special
focus on performance regressions.
Detecting Functional Bugs. Although grammar-based testing has
a long history in compiler validation, it has not been extensively
studied by the DBMS community. RAGS was a system built by
the Microsoft SQL Server group to explore automated testing for
functional bugs in DBMSs [63]. It generates SQL statements by
stochastically constructing a parse tree based on the database schema
and printing it out. When a statement generated by RAGS causes an
error, the debugging process is often difficult if the statement is long

and complex. The paper describes a technique for simplifying the
offending statement by taking out as many elements of the statement
as possible while preserving the original error message. This top-
down greedy approach for simplifying statements can get stuck at a
local minimum. The reduced statement may require further manual
reduction before it can be submitted in a bug report.
Detecting and Diagnosing Performance Bugs. BmPad [60],
Snowtrail [69], and Oracle SQL Performance Analyzer [68] defined
multiple test suites (i.e., workloads) for testing DBMS performance.
To monitor any performance anomaly, testers monitors if the exe-
cuted result exceeds performance barrier (i.e., baseline). FlexMin
builds minimization techniques on SQL query to isolate bug by
applying delta debugging and clause simplification. APOLLO dif-
fers from these approaches by adopting multiple versions of DBMS
without pre-determined performance baseline and by applying the
query minimization for performance regression domain.
Fuzzing DBMS. There were several fuzzing projects to discover
inputs that can cause a system crash on DBMSs [25, 24, 66, 23,
41]. They showed effectiveness by discovering the vulnerabilities
of DBMS and releasing them as a form of CVE (Common Vulner-
abilities and Exposures). However, APOLLO shows contrast with
these approaches. Unlike the traditional fuzzing projects, which
attempted to identify vulnerability and designed to find problem
mainly on parser, APOLLO is specially designed to discover perfor-
mance regressions in planner, optimizer, and executor.
Genetic Algorithms & Query Morphing. Another line of re-
search for testing DBMSs focuses on genetic algorithms. SQLSmith
generates arbitrary SQL statements based on the database schema
and has been used to find functional bugs [26]. Also, an automated
and feedback-driven query generator have developed to support
targeted test requirement in DB2 database [52]. More recently, re-
searchers have developed a bug-detection tool, called SQLScalpel,
that eschews randomized testing and genetic algorithms in favor of
a targeted search based on stepwise query morphing [47]. However,
this guided search technique limits the tool’s expressiveness and
thereby reduces coverage.

APOLLO differs from prior work in that it is the first to explore
the problems of automatically diagnosing performance regressions
in DBMSs using domain-specific input mutation, feedback-driven
fuzzing, and statistical debugging techniques.

10. CONCLUSION
We presented APOLLO, a toolchain for automatically detecting

and diagnosing performance regressions in DBMSs. APOLLO lever-
ages domain-specific fuzzing to detect performance regressions. It
then uses a hybrid minimization algorithm to reduce queries. Finally,
it identifies the root cause of regressions using commit bisecting and
statistical debugging techniques. APOLLO discovered 10 previously
unknown performance regressions from SQLite and PostgreSQL.
It reduced query size by 66.7% and can effectively eliminate false
positives. By automating the detection and diagnosis of performance
regressions, APOLLO reduces the labor cost of developing DBMSs.

11. ACKNOWLEDGMENT
We thank the anonymous reviewers and development teams of

PostgreSQL and SQLite for their helpful feedback. This research
was supported, in part, by the NSF awards CNS-1563848, CNS-
1704701, CRI-1629851, CNS-1749711, IIS-1850342 and IIS-1908984,
ONR under grants N00014-18-1-2662, N00014-15-1-2162, N00014-
17-1-2895, DARPA TC (No. DARPA FA8650-15-C-7556), and
ETRI IITP/KEIT[B0101-17-0644], and gifts from Facebook, Mozilla,
Intel, VMware, and Google.

68

12. REFERENCES
[1] PostgreSQL. https://www.postgresql.org/.
[2] PostgreSQL Bug Reporting Guidelines.
https://www.postgresql.org/list/pgsql-bugs/.

[3] PostgreSQL Performance Regression Reports.
https://www.postgresql.org/search/?m=1&q=
performance+regression&l=8&d=-1&s=r.

[4] PostgreSQL Roadmap.
https://wiki.postgresql.org/wiki/Todo.

[5] PostgreSQL Testing.
https://www.postgresql.org/developer/testing/.

[6] SQLite. https://www.sqlite.org/index.html.
[7] SQLite Bug Reporting Guidelines. https://www.chiark.
greenend.org.uk/~sgtatham/bugs.html.

[8] SQLite Performance Regression Reports.
https://www.sqlite.org/src/rptview?rn=1.

[9] SQLite Roadmap. https:
//sqlite.org/src4/doc/trunk/www/design.wiki.

[10] SQLite Testing. https://sqlite.org/testing.html.
[11] Database Language SQL. http://www.contrib.andrew.

cmu.edu/~shadow/sql/sql1992.txt, 1992.
[12] How to Report Bugs Effectively. https://www.chiark.

greenend.org.uk/~sgtatham/bugs.html, 1999.
[13] Git-scm. https://git-scm.com, 2005.
[14] Fossil-scm. https://fossil-scm.org, 2006.
[15] TPC-C Benchmark.

http://www.tpc.org/tpcc/spec/tpcc_current.pdf,
2007.

[16] Fighting Regressions with Git Bisect. http://www.linux-
kongress.org/2009/abstracts.html#3_7_1, 2008.

[17] Fossil-bisect. https://www.fossil-
scm.org/index.html/help/bisect, 2008.

[18] Git-bisect. https://git-scm.com/docs/git-bisect,
2008.

[19] A Data-Driven Glimpse into the Burgeoning New Field.
http://emc.com/collateral/about/news/emc-data-
science-study-wp.pdf, 2011.

[20] RQG: Random Query Generator.
https://launchpad.net/randgen, 2012.

[21] 100x Faster Postgres Performance by Changing 1 Line.
https://www.datadoghq.com/blog/100x-faster-
postgres-performance-by-changing-1-line/, 2013.

[22] AFL: American Fuzzy Lop, 2015.
http://lcamtuf.coredump.cx/afl/.

[23] PQuery: Multithreaded SQL Tester / Reducer.
https://github.com/Percona-QA/pquery, 2015.

[24] Finding Bugs in SQLite, the Easy Way, 2016.
https://lcamtuf.blogspot.com/2015/04/finding-
bugs-in-sqlite-easy-way.html.

[25] OSS-Fuzz: Continuous Fuzzing for Open Source Software,
2016. https://github.com/google/oss-fuzz.

[26] SQLSmith. https://github.com/anse1/sqlsmith,
2016.

[27] libFuzzer. http://llvm.org/docs/LibFuzzer.html,
2018.

[28] PostgreSQL LIMIT and OFFSET.
https://www.postgresql.org/docs/11/queries-
limit.html, 2018.

[29] PostgreSQL Single-User Mode. https:
//www.postgresql.org/docs/11/app-postgres.html,
2018.

[30] PostgreSQL Table Partitioning.
https://www.postgresql.org/docs/current/ddl-
partitioning.html, 2019.

[31] SQLite performance bug response.
http://mailinglists.sqlite.org/cgi-
bin/mailman/private/sqlite-users/2019-
April/083864.html, 2019.

[32] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu.
Statistical Debugging using Latent Topic Models. In ECML,
pages 6–17. Springer, 2007.

[33] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical
Debugging using Compound Boolean Predicates. In ISSTA,
pages 5–15. ACM, 2007.

[34] S. Bratus, A. Hansen, and A. Shubina. LZfuzz: A Fast
Compression-based Fuzzer for Poorly Documented Protocols.
Darmouth College, Hanover, NH, Tech. Rep. TR-2008, 634,
2008.

[35] D. Bruening and S. Amarasinghe. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD thesis, MIT,
2004.

[36] A. C. De Melo. The new linux ‘perf’ tools. In Linux Kongress,
2010.

[37] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, pages
265–284, 2006.

[38] M. J. Eager. Introduction to the DWARF Debugging Format,
2012.

[39] R. Elmasri and S. Navathe. Fundamentals of Database
Systems. Addison-Wesley Publishing Company, USA, 6th
edition, 2010.

[40] G. Fraser and A. Arcuri. Evosuite: Automatic Test Suite
Generation for Object-oriented Software. In ESEC/FSE, pages
416–419. ACM, 2011.

[41] R. Garcia. Case study: Experiences on sql language fuzz
testing. In DBTEST. ACM, 2009.

[42] G. Graefe. Query Evaluation Techniques for Large Databases.
ACM Computing Surveys (CSUR), 25(2):73–169, 1993.

[43] K. V. Hanford. Automatic Generation of Test Cases. IBM
Systems Journal, 9(4):242–257, 1970.

[44] C. Holler, K. Herzig, and A. Zeller. Fuzzing with Code
Fragments. In SECURITY, pages 445–458, 2012.

[45] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and Detecting Real-world Performance Bugs.
SIGPLAN Notices, 47(6):77–88, 2012.

[46] N. Johnson, J. P. Near, and D. Song. Towards practical
differential privacy for sql queries. PVLDB, 11(5):526–539,
2018.

[47] M. L. Kersten, P. Koutsourakis, and Y. Zhang. Finding the
Pitfalls in Query Performance. In DBTEST, page 3. ACM,
2018.

[48] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating Fuzz Testing. In SIGSAC CCS, pages 2123–2138.
ACM, 2018.

[49] R. Lämmel and W. Schulte. Controllable Combinatorial
Coverage in Grammar-based Testing. In IFIP ICTCS, pages
19–38. Springer, 2006.

[50] D. Laney. 3-D Data Management: Controlling Data Volume,
Velocity and Variety, Feb. 2001.

[51] C. Lemieux, R. Padhye, K. Sen, and D. Song. PerfFuzz:
Automatically Generating Pathological Inputs. In SIGSOFT
ISSTA, pages 254–265. ACM, 2018.

69

https://www.postgresql.org/
https://www.postgresql.org/list/pgsql-bugs/
https://www.postgresql.org/search/?m=1&q=performance+regression&l=8&d=-1&s=r
https://www.postgresql.org/search/?m=1&q=performance+regression&l=8&d=-1&s=r
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org/developer/testing/
https://www.sqlite.org/index.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.sqlite.org/src/rptview?rn=1
https://sqlite.org/src4/doc/trunk/www/design.wiki
https://sqlite.org/src4/doc/trunk/www/design.wiki
https://sqlite.org/testing.html
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://git-scm.com
https://fossil-scm.org
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.linux-kongress.org/2009/abstracts.html#3_7_1
http://www.linux-kongress.org/2009/abstracts.html#3_7_1
https://www.fossil-scm.org/index.html/help/bisect
https://www.fossil-scm.org/index.html/help/bisect
https://git-scm.com/docs/git-bisect
http://emc.com/collateral/about/news/emc-data-science-study-wp.pdf
http://emc.com/collateral/about/news/emc-data-science-study-wp.pdf
https://launchpad.net/randgen
https://www.datadoghq.com/blog/100x-faster-postgres-performance-by-changing-1-line/
https://www.datadoghq.com/blog/100x-faster-postgres-performance-by-changing-1-line/
http://lcamtuf.coredump.cx/afl/
https://github.com/Percona-QA/pquery
https://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
https://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
https://github.com/google/oss-fuzz
https://github.com/anse1/sqlsmith
http://llvm.org/docs/LibFuzzer.html
https://www.postgresql.org/docs/11/queries-limit.html
https://www.postgresql.org/docs/11/queries-limit.html
https://www.postgresql.org/docs/11/app-postgres.html
https://www.postgresql.org/docs/11/app-postgres.html
https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/ddl-partitioning.html
http://mailinglists.sqlite.org/cgi-bin/mailman/private/sqlite-users/2019-April/083864.html
http://mailinglists.sqlite.org/cgi-bin/mailman/private/sqlite-users/2019-April/083864.html
http://mailinglists.sqlite.org/cgi-bin/mailman/private/sqlite-users/2019-April/083864.html

[52] D. Letarte, F. Gauthier, E. Merlo, N. Sutyanyong, and
C. Zuzarte. Targeted genetic test sql generation for the db2
database. In DBTEST. ACM, 2012.

[53] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
Isolation via Remote Program Sampling. In Sigplan Notices,
volume 38, pages 141–154. ACM, 2003.

[54] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable Statistical Bug Isolation. Sigplan Notices,
40(6):15–26, 2005.

[55] B. P. Miller, L. Fredriksen, and B. So. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM,
33(12):32–44, Dec. 1990.

[56] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Sigmod
Record, volume 21, pages 39–48. ACM, 1992.

[57] P. Purdom. A Sentence Generator for Testing Parsers. BIT
Numerical Mathematics, 12(3):366–375, 1972.

[58] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, Inc., New York, NY, USA, 3 edition,
2003.

[59] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
Test-case Reduction for C Compiler Bugs. In SIGPLAN
Notices, volume 47, pages 335–346. ACM, 2012.

[60] K.-T. Rehmann, C. Seo, D. Hwang, B. T. Truong, A. Boehm,
and D. H. Lee. Performance monitoring in sap hana’s
continuous integration process. ACM SIGMETRICS
Performance Evaluation Review, pages 43–52, 2016.

[61] J. Reinders. Vtune performance analyzer essentials. Intel
Press, 2005.

[62] R. L. Sauder. A General Test Data Generator for COBOL. In
Proceedings of the May 1-3, 1962, spring joint computer

conference, pages 317–323. ACM, 1962.
[63] D. R. Slutz. Massive Stochastic Testing of SQL. In VLDB,

volume 98, pages 618–622, 1998.
[64] L. Song and S. Lu. Statistical Debugging for Real-world

Performance Problems. In SIGPLAN Notices, volume 49,
pages 561–578. ACM, 2014.

[65] M. Stonebraker, S. Madden, and P. Dubey. Intel "Big Data"
Science and Technology Center Vision and Execution Plan.
SIGMOD Rec., 42(1):44–49, May 2013.

[66] J. Wang, P. Zhang, L. Zhang, H. Zhu, and X. Ye. A
Model-based Fuzzing Approach for DBMS. In CHINACOM,
pages 426–431. IEEE, 2013.

[67] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim.
Fuzzing File Systems via Two-Dimensional Input Space
Exploration. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2018.

[68] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and
H. Yu. Oracle’s sql performance analyzer. IEEE Data Eng.
Bull., pages 51–58, 2008.

[69] J. Yan, Q. Jin, S. Jain, S. D. Viglas, and A. Lee. Snowtrail:
Testing with production queries on a cloud database. In
DBTEST. ACM, 2018.

[70] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In Proceedings of the 27th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2018.

[71] K. Z. Zamli, M. F. Klaib, M. I. Younis, N. A. M. Isa, and
R. Abdullah. Design and Implementation of a T-way Test
Data Generation Strategy with Automated Execution Tool
Support. Information Sciences, 181(9):1741–1758, 2011.

70

	Introduction
	Motivation & Background
	Motivating Examples
	Challenges & Our Approaches
	Background

	System Overview
	SQLFuzz: Detecting Regressions
	SQL Query Generation
	Regression Validation
	Design Details

	SQLMin: Query Reduction
	General Query Reduction Framework

	SQLDebug: Diagnosing Root Cause
	Identification of Problematic Commit
	Localization of Root Cause
	Trace Collection and Alignment
	Applying Statistical Debugging

	Experimental Evaluation
	Performance Regression Detection
	Query Minimization
	Regression Diagnosis
	Analysis of Diagnosis Failures
	Complement with Profiler-based Diagnosis

	Analysis of Regression-inducing Queries

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgment
	References

