
Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng and Taesoo Kim

Fuzzing File Systems via
Two-Dimensional Input Space Exploration

INTRODUCTION

INTRODUCTION

FILE SYSTEMS 101

�3

Disk image

File system

mount
OS

$ ls -l /mnt
drwxrwxr-x bar
-rw-rw-r—- foo

cat /mnt/foo

"hello"

operation

INTRODUCTION

FILE SYSTEM ATTACKS

�4

crafted image

File system
OS

Privilege escalation

$ ls -l /mnt
drwxrwxr-x ???
-rw-rw-r—- ???

untrusted package

▸ Evil maid attacks
▸ Air-gapped APT attacks

Syscall payload

▸ Linux/macOS root exploits

INTRODUCTION

COMPLEX FILE SYSTEMS

�5

FS LoC Active

ext4 50K ✓
XFS 140K ✓
Btrfs 130K ✓

File systems are hard to be bug-free!

CHALLENGES

SOLUTION: FUZZING

�6

Efficient

Minimal knowledge

Practical

INTRODUCTION

FUZZING FILE SYSTEMS

�7

Images

File operations

mount

execute

binary blob

system calls

AFL
LibFuzzer

Trinity
Syzkaller

CHALLENGES

CHALLENGES

FILE SYSTEM IMAGES REVISITED

▸ Particularly large

�9

ext4: 2MB Btrfs: 100MBXFS: 16MB

▸ Highly structured (metadata)

▸ Checksums

Super
Block

Group
Desc Bitmap

Inode
Table Data Dir

Entry Data Journal Data

ext4 disk layout

CHALLENGES

[1] FUZZING IMAGES AS BLOBS

▸ Particularly large

�10

Huge IO costs on loading and saving testcases

▸ Highly structured

▸ Checksums

Metadata is rarely touched

Corrupted after mutation

CHALLENGES

OUR APPROACH: META-ONLY IMAGE FUZZING

▸ Locate and extract only metadata blocks for mutation
▸ Record checksum information for each metadata block

�11

CHALLENGES

OUR APPROACH

▸ Particularly large

�12

Metadata occupies < 1%

▸ Highly structured

Only metadata is fuzzed

Enough information for fixing
▸ Checksums

CHALLENGES

FILE OPERATIONS REVISITED

�13

File operations File objects
How to operate

What to operate

The inter-dependence between
file operations and files on an image

CHALLENGES

[2] GENERATING FILE OPERATIONS BY SPECS

�14

* open(filename, flag)
* rename(filename, filename)
* mkdir(filename)
* unlink(filename)
* read(fd, buffer, int)
* write(fd, buffer, int)

Static rules (definitions of syscalls)
used by Syzkaller

CHALLENGES

COUNTER EXAMPLE 1

�15

mkdir(“A”);

int fd = open(“A”, O_RDWR);

CHALLENGES

COUNTER EXAMPLE 2

�16

rename(“A”, “B”);

int fd = open(“A”, O_RDWR);

read(fd, buf, 1024);

CHALLENGES

FILE OPERATIONS REVISITED

�17

File operations File objects
How to operate

What to operate

The inter-dependence between
file operations and files on an image

CHALLENGES

OUR APPROACH: CONTEXT-AWARE GENERATION

�18

Syscall0
File Status0

File Status1

Seed image

Syscall1
File Status2

Emulate
Generate

CHALLENGES

[3] FUZZING OS MODULES WITH VMS

�19

▸ Conventional file systems are in-kernel modules
▸ OS fuzzers fuzz with VMs
▸ Never reboot until a VM crashes

Performance Aging kernel
Unstable executions

Hard-to-reproduce bugs

CHALLENGES

OUR APPROACH: LIBOS-BASED OS FUZZING

�20

▸ We use library OS to fuzz OS.
▸ A user application linked with a library OS invokes

syscalls in user space.

Run on the
same host

▸ Coverage monitoring
▸ Testcase sharing

Fast reboot
~10ms

▸ Non-aging OSes and modules
▸ Stable executions
▸ PoCs debugging

CHALLENGES

[4] FUZZING BOTH IMAGES AND SYSCALLS

�21

No existing fuzzing platforms supports
jointly fuzzing binary blobs and API calls!

We propose Janus, which co-ordinates fuzzing in two dimensions.

RESULTS

JANUS FOUND BUGS

�22

▸ We run Janus for 4 months against 8 file systems on 1
workstation.
▸ 90 unique bugs in total
▸ 62 confirmed unknown bugs
▸ 32 assigned CVEs

▸ During the period, Syzkaller found and fixed 8 bugs, and
only one of them is missed by Janus.

RESULTS

SELECTED BUGS

FS #0days/#critical #mount-only
ext4 [*] 16 (12) 1

XFS 7 (2) 0
Btrfs 8 (2) 5
F2FS 11 (5) 5

Overall 42 11

�23

* ext4 developers responded most actively to our bug reports.

JANUS
▸ A coverage-driven fuzzers that efficiently and effectively test

images and file operations in a joint manner.

DESIGN

ARCHITECTURE OVERVIEW

�25

Seed images

Seed programs

Image mutator

Syscall fuzzer

LibOS-based
executor

Corpus
cov+

Results
crash
asset

Fuzzing engineSeeds

DESIGN

IMAGE MUTATOR

00 00 BB BB
00 00 FF FF

LibOS
executor

mount and
run a workload

image compress mutate

fix checksumrelease

FF FF checksum 00 00 immutable (data)

fix checksums �26

BB BB
FF FF

C8 BB
FF FF

C8 BB
FC FC

00 00 C8 BB
00 00 FC FC

[*]

* We develop a specific image parser for each target file system.

DESIGN

SYSCALL FUZZER

�27

Relative path

Type

Xattrs

Live file objects

Stale file objects

Opened fds

Program

A testcase of Janus’ syscall fuzzer

DESIGN

SYSCALL FUZZER

▸ Phase 1: Generate based on the context
▸ Mutating the argument of an existing syscall
▸ or Appending a newly generated syscall

▸ Phase 2: Emulate
▸ Updating the corresponding context

�28

DESIGN

SYSCALL FUZZER

�29

Path (const char[])

 Dir path

 File path

 New path

Argument generation

DESIGN

SYSCALL FUZZER

�30

New file

 Old path

 New path

Context update

open()

open()

New FD

 New path
link()

DESIGN

CO-ORDINATE TWO FUZZERS

▸ First, Janus mutates images.

�31

▸ Second, Janus launches its syscall fuzzer without new coverage.

The image indicates the initial state of a file system, and
its impact on file operations gradually decreases.

Introducing new syscalls quickly increases the mutation
space and erase the changes from past syscalls.

IMPLEMENTATION

IMPLEMENTATION

IMPLEMENTATION OVERVIEW

▸ Janus is a variant of AFL.
▸ Image parsers (8 FSes) 5,229 lines of C++
▸ Syscall fuzzing 4,300 lines of C++

▸ Janus selects Linux Kernel Library as its LibOS solution.
▸ Syscall executor 851 lines of C++
▸ KASAN support 804 lines of C
▸ Instrumentation for coverage 360 lines of C++

▸ Janus supports fuzzing 8 file systems on Linux.
▸ ext4, XFS, btrfs, F2FS, GFS2, HFS+, ReiserFS, and vFAT

▸ Janus supports fuzzing 34 system calls for file operation.

�33

EVALUATION
▸ We compared with the state-of-the-art OS fuzzer, Syzkaller.
▸ We used the same machine, seed images and starting programs to fuzz 8

file systems.

EVALUATION

LIBOS REPRODUCE MORE BUGS

FS Syzkaller (KVM) Janus
ext4 0/3 196/196 (8)

XFS v5 0/6 24/24 (2)
Btrfs 0/0 1793/2054 (18)
F2FS 0/1288 2390/2458 (28)

Overall 0% 88% - 100%
#reproduced/#crashes (#unique) in 12 hours

�35

EVALUATION

JANUS FUZZES IMAGES BETTER

4000

5250

6500

7750

9000

0 1 2 3 4 5 6 7 8 9 101112

Janus(i) Syzkaller

▸ ext4 (16MB seed): 1.5x

0

3500

7000

10500

14000

0 1 2 3 4 5 6 7 8 9 101112

▸ XFS (16MB seed, checksum): 14.3x

Code coverage (12 hours)

�36

EVALUATION

JANUS FUZZES SYSCALLS BETTER
▸ ext4: 1.2x

0

2000

4000

6000

8000

0 1 2 3 4 5 6 7 8 9 101112

Janus(s) Syzkaller
Code coverage (12 hours)

0

2500

5000

7500

10000

0 1 2 3 4 5 6 7 8 9 101112

▸ XFS: 1.5x

�37

EVALUATION

FUZZING BOTH IS MORE EFFECTIVE

0

5000

10000

15000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12

Janus Janus(i) Janus(s) Syzkaller
Code coverage (12 hours)

▸ Btrfs (128MB seed): 4.2x

�38

CONCLUSION

NOT ONLY MEMORY SAFETY BUGS ON LINUX

▸ We believe Janus is a practical one-stop solution for all kinds of
file system or even OS testing in the future.

▸ Janus is easy to be extended for
▸ Testing other types of file systems on other OSes
▸ FUSE
▸ Verified file systems

▸ Finding other types of bugs
▸ Crash consistency
▸ Semantic correctness

▸ Further work is supported by Google Faculty Research Award.

�39

THANKS
We will open source at https://github.com/sslab-gatech/janus

https://github.com/sslab-gatech/janus

