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Persistent Memory (PM)
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Intel Optane DC Persistent Memory

• New storage class memory technology

• Performance similar to DRAM

• Non-volatile & high-capacity

• Up-to 6TB on a single machine
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• PM has high capacity and low latency
• 6TB on a single machine → 100 billion 64-byte key-value pairs

• Indexing data on PM is crucial for efficient data access

Indexing on PM



PM Indexes need to achieve three goals simultaneously

PM Indexes
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PM

• Cache Efficiency
• Persistent memory is attached to the memory bus

• 3x higher latency than DRAM → More cache-sensitive

PM Indexes
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PM

• Concurrency
• High concurrency is necessary for scalability on any modern 

multicore platform

PM Indexes
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PM

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes
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logcommit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes
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Volatile
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Program order

write (log);

write (commit);

① ②

commitlog



commit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes
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Volatile

Persistent

Persistence reordering

write (log);

write (commit);log Reordered

commit



commit

commit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes

10

Volatile

Persistent

Persistence reordering
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Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

• Flush: persist writes to PM

• Fence: ensure one write prior another to be persisted first

PM Indexes
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Volatile

Persistent commitlog

Consistent persistence ordering

write (log)

flush (log)

fence ()

write (commit)

flush (commit)

fence ()



Challenge in building PM indexes
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Correctness condition: return previously
inserted data without data loss or corruption



Bug

Bug

Challenge in building PM indexes

13

Concurrency and crash consistency interact with
each other, a bug in either can lead to data loss
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• We found bugs in FAST&FAIR [FAST’18] and CCEH [FAST’19]

• FAST&FAIR: Concurrent PM-based B+Tree

• One bug in concurrency mechanism

• Two bugs in recovery mechanism

• CCEH: Concurrent PM-based dynamic hash table

• One bug in concurrency mechanism

• One bug in recovery mechanism

Bug in Concurrent PM Index
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How can we reduce the effort involved in 
building concurrent, crash-consistent PM 

indexes?

Answer: We can convert concurrent DRAM 
indexes to PM indexes with low effort

Insight: Isolation and Crash Consistency are similar 
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How can we reduce the effort involved in 
building concurrent, crash-consistent PM 

indexes?

Approach: Convert concurrent DRAM 
indexes to PM indexes with low effort

Insight: Isolation and Crash Consistency are similar 



• Already designed for cache efficiency and concurrency

DRAM Index
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Crash

DRAM Index
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Challenge in Conversion
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• Require minimal changes to DRAM index
• Without modifying the original design principles of DRAM index

DRAM Index
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201. Steven Pelley et al., Memory Persistency, ISCA’14

• Similar semantics between isolation and consistency1

• Isolation
• Return consistent data while multiple active threads are running

• Crash consistency
• Return consistent data even after a crash happens at any point

Insight for Conversion



• Similar semantics between isolation and consistency1

• Isolation
• Return consistent data while multiple active threads are running

• Crash consistency
• Return consistent data even after a crash happens at any point

211. Steven Pelley et al., Memory Persistency, ISCA’14

Insight for Conversion

Approach: reuse mechanisms for isolation in DRAM 

indexes to obtain crash consistency



RECIPE

• Principled approach to convert DRAM indexes into PM indexes

• Case study of changing five popular DRAM indexes

• Conversion involves different data structures such as Hash 

Tables, B+ Trees, and Radix Trees

• Conversion required modifying <= 200 LOC

• Up-to 5.2x better performance in multi-threaded evaluation
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RECIPE

https://github.com/utsaslab/RECIPE

https://github.com/utsaslab/RECIPE


• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline
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Overall Intuition for Conversion
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• Blocking algorithms
• Use explicit locks to prevent the conflicts of threads to shared 

data

• Non-blocking algorithms
• Use well-defined invariants and ordering constraints without 

locks

• Employed by most high-performance DRAM indexes



Overall Intuition for Conversion
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• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• E.g., Ignore duplicated keys

Inconsistency
Reader

Tolerate

Detect



Overall Intuition for Conversion
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• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• E.g., Ignore duplicated keys

• Writers also Detect, but Fix inconsistencies

• E.g., Eliminate duplicated keys

Writer
Detect Fix

Consistent
Inconsistency



Overall Intuition for Conversion
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• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• Writers also Detect, but Fix inconsistencies

• Helping mechanism1 ≈ Crash Recovery2

• Such indexes are *inherently* crash consistent

Writer
Detect Fix

Consistent
Inconsistency

1. Keren Censor-Hillel et al., Help!, PODC’15

2. Ryan Berryhill et al., Robust shared objects for non-volatile main memory, OPODIS’15



• Not all DRAM indexes can be converted with low effort

• Exploit inherent crash recovery in the index

• Provide specific conditions that must hold for a DRAM 
index to be converted

• Provide a matching conversion actions for each condition
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• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline
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• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

• Conditions are not exhaustive!

Three Conversion Conditions
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• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions

32



Condition 1: Updates via Single Atomic Store

33

• Non-blocking readers, (Non-blocking or Blocking) writers

• Updates become visible to other threads via single 
atomic commit store

Atomic Store

Crash

Step 1 Step 2 Step N… Step 1 Step 2 Step N…

Invisible Visible



Condition 1: Updates via Single Atomic Store
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• Updates become visible to other threads via single 
atomic commit store

• Conversion: Add flushes after each store and bind final 
atomic store using fences

Atomic Store

Step 1 Step 2 Step N… Step 1 Step 2 Step N…

Flushes

Flush

FenceFence



• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions
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Condition 2: Writers fix inconsistencies
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• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect ( ), Tolerate ( ), Fix ( )

Step 1 Step 2 Step 3

Update

Writer 1

A sequence of ordered deterministic steps

Commit

Step



Step 3

Condition 2: Writers fix inconsistencies
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• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect (   ), Tolerate (   ), Fix (   )

Step 1 Step 2
Writer 1

Reader

Detect

Commit

Step

Tolerate



Condition 2: Writers fix inconsistencies
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• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect (   ), Tolerate (   ), Fix (   )

Step 1 Step 2
Writer 1

Writer 2
Step 3

Fix

Detect

Commit

Step



PM

Condition 2: Writers fix inconsistencies
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• Readers & Writers → Detect (   ), Tolerate (   ), Fix ( )
• Inherently crash recoverable

Step 1 Step 2 Step 3Writer 1
Commit

Step



PM

Condition 2: Writers fix inconsistencies
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• Readers & Writers → Detect (   ), Tolerate (   ), Fix ( )
• Inherently crash recoverable

Step 1 Step 2 Step 3Writer 1

Crash

Commit

Step



PM

Condition 2: Writers fix inconsistencies
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• Readers & Writers → Detect ( ), Tolerate ( ), Fix ( )
• Inherently crash recoverable

Step 1 Step 2Thread Step 3

Recover

Commit

Step



PM

Condition 2: Writers fix inconsistencies
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• Readers & Writers → Detect ( ), Tolerate ( ), Fix ( )
• Inherently crash recoverable

• Conversion: Adding flushes and fences after each store and 
specific loads

Step 2Thread Step 3

Flushes Flushes Flushes Flushes

Fence Fence Fence

Step 1
Commit

Step



• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions
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• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect ( ), Tolerate ( ), Fix (X)

Condition 3: Writers don’t fix inconsistencies
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Step 1 Step 2 Step 3Writer 1

Step 1 Step 2 Step 3Writer 2

Update

A sequence of ordered deterministic steps

Update
Commit

Step

Commit

Step

A sequence of ordered deterministic steps



• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect ( ), Tolerate ( ), Fix (X)

Condition 3: Writers don’t fix inconsistencies
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Step 1 Step 2 Step 3Writer 1

Step 1 Step 2 Step 3Writer 2

Commit

Step

Commit

Step



• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect ( ), Tolerate ( ), Fix (X)

Condition 3: Writers don’t fix inconsistencies
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Step 1 Step 2Writer 1

Step 1 Step 2 Step 3Writer 2

Crash

Commit

Step

Failure



Writer 2

• Readers & Writers → Detect ( ), Tolerate ( ), Fix ( )

• Conversion: Add helping mechanism
• Reuse existing algorithm handling each step

Condition 3: Writers don’t fix inconsistencies
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Step 1 Step 2 Step 3Thread

Step 1 Step 2

Detect

Fix
Commit

Step



• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline
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• Example: B-link Tree (Masstree)

Conversion of Masstree
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• Example: B-link Tree (Masstree)

Conversion of Masstree
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1. installing new sibling

2.  insert middle key to parent



• Example: B-link Tree (Masstree)

Conversion of Masstree
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Intermediate state



• Example: B-link Tree (Masstree)

Conversion of Masstree
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• Example: B-link Tree (Masstree)

Conversion of Masstree
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• Example: B-link Tree (Masstree)

Conversion of Masstree
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• Example: B-link Tree (Masstree)
• Add helping mechanism to resume split

Conversion of Masstree
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Conversion Results of Five DRAM Indexes
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DRAM Index DS Type

CLHT (Cache-Line Hash Table) [ASPLOS’15] Hash table

HOT (Height Optimized Trie) [SIGMOD’18] Trie

BwTree [ICDE’13] B+Tree

ART (Adaptive Radix Tree) [ICDE’13] Radix Tree

Masstree [Eurosys’12] Hybrid (B+Tree & Trie)



Conversion Results of Five DRAM Indexes
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DRAM Index PM Index Condition

CLHT P-CLHT #1

HOT P-HOT #1

BwTree P-BwTree #1, #2

ART P-ART #1, #3

Masstree P-Masstree #1, #3

• We produce the P-* family of PM indexes



• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

58



• Assume garbage collection in memory allocator

• Assume locks are volatile or re-initialized after a crash

• Provide low level of isolation: Read Uncommitted

• RECIPE applies only to individual data structures

Assumptions & Limitations
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• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline
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Evaluation
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• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

• Are the converted indexes crash consistent?



Evaluation
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• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

• Are the converted indexes crash consistent?



Evaluation

63

• How much effort is involved in converting indexes?

• What is the performance of converted indexes?



Modified Lines of Code
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• Conversion for all indexes → <= 200 LoC changes

RECIPE-converted Indexes
Lines of Code

Index Core Modified

P-CLHT 2.8K 30 (1%)

P-HOT 2K 38 (2%)

P-BwTree 5.2K 85 (1.6%)

P-ART 1.5K 52 (3.4%)

P-Masstree 2.2K 200 (9%)



Modified Lines of Code
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• Conversion for all indexes → <= 200 LoC changes

RECIPE-converted Indexes
Lines of Code

Index Core Modified

P-CLHT 2.8K 30 (1%)

P-HOT 2K 38 (2%)

P-BwTree 5.2K 85 (1.6%)

P-ART 1.5K 52 (3.4%)

P-Masstree 2.2K 200 (9%)

Conversion for all indexes: <= 200 LoC changes

<= 9% from core code base



Evaluation
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• How much effort is involved in converting indexes?

• What is the performance of converted indexes?



• 2-socket 96-core machine with 32MB LLC

• 768 GB Intel Optane DC PMM, 378 GB DRAM

• YCSB with 16 threads

• Ordered/Unordered indexes, Integer/String keys

Performance Evaluation
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Load Workload A Workload B Workload C Workload E

Insertion 100%
Insertion 50%

Point Lookup 50%

Insertion 5%

Point Lookup 95%

Point Lookup 

100%

Insertion 5%

Range Scan 95%



Ordered Index
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• Support both point and range operations

• P-HOT

• Persistent Height-Optimized Trie converted by RECIPE

• FAST & FAIR [FAST’18]

• Hand-crafted PM-based concurrent B+Tree



Ordered Index
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• P-HOT produced by RECIPE conversion

• P-HOT performs up-to 5.2x better in point operations

• Cache-efficient designs of P-HOT → Low cache misses
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RECIPE

• Principled approach to convert concurrent DRAM 
indexes into PM indexes

• Case study of changing five DRAM indexes

• Evaluations with YCSB show RECIPE indexes have 
better performance than hand-crafted PM indexes

• Try our indexes: https://github.com/utsaslab/RECIPE
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RECIPE

https://github.com/utsaslab/RECIPE

