
RECIPE : Converting Concurrent DRAM
Indexes to Persistent-Memory Indexes

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap*,

Taesoo Kim, Vijay Chidambaram

1*On the job market

Persistent Memory (PM)

2

Intel Optane DC Persistent Memory

• New storage class memory technology

• Performance similar to DRAM

• Non-volatile & high-capacity

• Up-to 6TB on a single machine

3

• PM has high capacity and low latency
• 6TB on a single machine → 100 billion 64-byte key-value pairs

• Indexing data on PM is crucial for efficient data access

Indexing on PM

PM Indexes need to achieve three goals simultaneously

PM Indexes

4

PM

Crash

Consistency
Concurrency

Cache

Efficiency

PM

• Cache Efficiency
• Persistent memory is attached to the memory bus

• 3x higher latency than DRAM → More cache-sensitive

PM Indexes

5

Crash

Consistency
Concurrency

Cache

Efficiency

PM

• Concurrency
• High concurrency is necessary for scalability on any modern

multicore platform

PM Indexes

6

Crash

Consistency
Concurrency

Cache

Efficiency

PM

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes

7

Crash

Consistency
Concurrency

Cache

Efficiency

logcommit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes

8

Volatile

Persistent

Program order

write (log);

write (commit);

① ②

commitlog

commit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes

9

Volatile

Persistent

Persistence reordering

write (log);

write (commit);log Reordered

commit

commit

commit

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

PM Indexes

10

Volatile

Persistent

Persistence reordering

write (log);

write (commit);log

commit Inconsistency

Crash

Core

Cache

• Crash Consistency
• CPU cache is still volatile

• Arbitrarily-evicted cache lines → Persistence reordering

• Flush: persist writes to PM

• Fence: ensure one write prior another to be persisted first

PM Indexes

11

Volatile

Persistent commitlog

Consistent persistence ordering

write (log)

flush (log)

fence ()

write (commit)

flush (commit)

fence ()

Challenge in building PM indexes

12

Correct

Concurrency

Correct

Crash

Consistency

Consistent

Data

Conflict Crash

Correctness condition: return previously
inserted data without data loss or corruption

Bug

Bug

Challenge in building PM indexes

13

Concurrency and crash consistency interact with
each other, a bug in either can lead to data loss

Bug

Concurrency

Bug

Crash

Consistency

Data

Loss

Conflict Crash

• We found bugs in FAST&FAIR [FAST’18] and CCEH [FAST’19]

• FAST&FAIR: Concurrent PM-based B+Tree

• One bug in concurrency mechanism

• Two bugs in recovery mechanism

• CCEH: Concurrent PM-based dynamic hash table

• One bug in concurrency mechanism

• One bug in recovery mechanism

Bug in Concurrent PM Index

14

15

How can we reduce the effort involved in
building concurrent, crash-consistent PM

indexes?

Answer: We can convert concurrent DRAM
indexes to PM indexes with low effort

Insight: Isolation and Crash Consistency are similar

16

How can we reduce the effort involved in
building concurrent, crash-consistent PM

indexes?

Approach: Convert concurrent DRAM
indexes to PM indexes with low effort

Insight: Isolation and Crash Consistency are similar

• Already designed for cache efficiency and concurrency

DRAM Index

17

Concurrency

Cache

Efficiency

T-Tree

CSS-

Tree CSB+

Tree

BD-

Tree

FAST

Bw-

Tree

ART

HOT

Mass

tree

1986

CLHT

2010 2019

C
a

c
h

e
 E

ff
ic

ie
n

c
y

C
o
n
c
u
rr

e
n
c
y

Time

18

Crash

DRAM Index

Volatile

Concurrency

Cache

Efficiency

DRAM Index

Concurrency

Cache

Efficiency

Crash

Vulnerable

DRAM Index

Challenge in Conversion

19

• Require minimal changes to DRAM index
• Without modifying the original design principles of DRAM index

DRAM Index

Volatile

Concurrency

Cache

Efficiency

PM Index

Concurrency

Cache

Efficiency

Crash

Consistency

Conversion

201. Steven Pelley et al., Memory Persistency, ISCA’14

• Similar semantics between isolation and consistency1

• Isolation
• Return consistent data while multiple active threads are running

• Crash consistency
• Return consistent data even after a crash happens at any point

Insight for Conversion

• Similar semantics between isolation and consistency1

• Isolation
• Return consistent data while multiple active threads are running

• Crash consistency
• Return consistent data even after a crash happens at any point

211. Steven Pelley et al., Memory Persistency, ISCA’14

Insight for Conversion

Approach: reuse mechanisms for isolation in DRAM

indexes to obtain crash consistency

RECIPE

• Principled approach to convert DRAM indexes into PM indexes

• Case study of changing five popular DRAM indexes

• Conversion involves different data structures such as Hash

Tables, B+ Trees, and Radix Trees

• Conversion required modifying <= 200 LOC

• Up-to 5.2x better performance in multi-threaded evaluation

22

RECIPE

https://github.com/utsaslab/RECIPE

https://github.com/utsaslab/RECIPE

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

23

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

24

Overall Intuition for Conversion

25

• Blocking algorithms
• Use explicit locks to prevent the conflicts of threads to shared

data

• Non-blocking algorithms
• Use well-defined invariants and ordering constraints without

locks

• Employed by most high-performance DRAM indexes

Overall Intuition for Conversion

26

• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• E.g., Ignore duplicated keys

Inconsistency
Reader

Tolerate

Detect

Overall Intuition for Conversion

27

• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• E.g., Ignore duplicated keys

• Writers also Detect, but Fix inconsistencies

• E.g., Eliminate duplicated keys

Writer
Detect Fix

Consistent
Inconsistency

Overall Intuition for Conversion

28

• Non-blocking algorithms
• Readers Detect and Tolerate inconsistencies

• Writers also Detect, but Fix inconsistencies

• Helping mechanism1 ≈ Crash Recovery2

• Such indexes are *inherently* crash consistent

Writer
Detect Fix

Consistent
Inconsistency

1. Keren Censor-Hillel et al., Help!, PODC’15

2. Ryan Berryhill et al., Robust shared objects for non-volatile main memory, OPODIS’15

• Not all DRAM indexes can be converted with low effort

• Exploit inherent crash recovery in the index

• Provide specific conditions that must hold for a DRAM
index to be converted

• Provide a matching conversion actions for each condition

29

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

30

• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

• Conditions are not exhaustive!

Three Conversion Conditions

31

• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions

32

Condition 1: Updates via Single Atomic Store

33

• Non-blocking readers, (Non-blocking or Blocking) writers

• Updates become visible to other threads via single
atomic commit store

Atomic Store

Crash

Step 1 Step 2 Step N… Step 1 Step 2 Step N…

Invisible Visible

Condition 1: Updates via Single Atomic Store

34

• Updates become visible to other threads via single
atomic commit store

• Conversion: Add flushes after each store and bind final
atomic store using fences

Atomic Store

Step 1 Step 2 Step N… Step 1 Step 2 Step N…

Flushes

Flush

FenceFence

• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions

35

Condition 2: Writers fix inconsistencies

36

• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix ()

Step 1 Step 2 Step 3

Update

Writer 1

A sequence of ordered deterministic steps

Commit

Step

Step 3

Condition 2: Writers fix inconsistencies

37

• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix ()

Step 1 Step 2
Writer 1

Reader

Detect

Commit

Step

Tolerate

Condition 2: Writers fix inconsistencies

38

• Non-blocking readers and writers (don’t hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix ()

Step 1 Step 2
Writer 1

Writer 2
Step 3

Fix

Detect

Commit

Step

PM

Condition 2: Writers fix inconsistencies

39

• Readers & Writers → Detect (), Tolerate (), Fix ()
• Inherently crash recoverable

Step 1 Step 2 Step 3Writer 1
Commit

Step

PM

Condition 2: Writers fix inconsistencies

40

• Readers & Writers → Detect (), Tolerate (), Fix ()
• Inherently crash recoverable

Step 1 Step 2 Step 3Writer 1

Crash

Commit

Step

PM

Condition 2: Writers fix inconsistencies

41

• Readers & Writers → Detect (), Tolerate (), Fix ()
• Inherently crash recoverable

Step 1 Step 2Thread Step 3

Recover

Commit

Step

PM

Condition 2: Writers fix inconsistencies

42

• Readers & Writers → Detect (), Tolerate (), Fix ()
• Inherently crash recoverable

• Conversion: Adding flushes and fences after each store and
specific loads

Step 2Thread Step 3

Flushes Flushes Flushes Flushes

Fence Fence Fence

Step 1
Commit

Step

• Condition 1: Updates via Single Atomic Store

• Condition 2: Writers fix inconsistencies

• Condition 3: Writers don’t fix inconsistencies

Three Conversion Conditions

43

• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix (X)

Condition 3: Writers don’t fix inconsistencies

44

Step 1 Step 2 Step 3Writer 1

Step 1 Step 2 Step 3Writer 2

Update

A sequence of ordered deterministic steps

Update
Commit

Step

Commit

Step

A sequence of ordered deterministic steps

• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix (X)

Condition 3: Writers don’t fix inconsistencies

45

Step 1 Step 2 Step 3Writer 1

Step 1 Step 2 Step 3Writer 2

Commit

Step

Commit

Step

• Non-blocking readers, Blocking writers (hold locks)

• Readers & Writers → Detect (), Tolerate (), Fix (X)

Condition 3: Writers don’t fix inconsistencies

46

Step 1 Step 2Writer 1

Step 1 Step 2 Step 3Writer 2

Crash

Commit

Step

Failure

Writer 2

• Readers & Writers → Detect (), Tolerate (), Fix ()

• Conversion: Add helping mechanism
• Reuse existing algorithm handling each step

Condition 3: Writers don’t fix inconsistencies

47

Step 1 Step 2 Step 3Thread

Step 1 Step 2

Detect

Fix
Commit

Step

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

48

• Example: B-link Tree (Masstree)

Conversion of Masstree

49

10

1 10 15 25

30

30

…

…

High Key

High Key

• Example: B-link Tree (Masstree)

Conversion of Masstree

50

Insert 26

1510

1 10

30

30

…

15 25

1. installing new sibling

2. insert middle key to parent

• Example: B-link Tree (Masstree)

Conversion of Masstree

51

Insert 26

10

1 10

30

30

…

15 25

Intermediate state

• Example: B-link Tree (Masstree)

Conversion of Masstree

52

Insert 26

10

1 10

30

30

…

Lookup 25

15 25

• Example: B-link Tree (Masstree)

Conversion of Masstree

53

Insert 26

10

1 10

30

30

…

Lookup 25

15 25

Detect

(25 > 15)

>>>>

Tolerate

• Example: B-link Tree (Masstree)

Conversion of Masstree

54

10

1 10

30

30

…

15 25

Crash Permanent

Inconsistency

• Example: B-link Tree (Masstree)
• Add helping mechanism to resume split

Conversion of Masstree

55

10

1 10

30

30

…

15 25

Insert 30

Detect

15

Resume split (recovery)

Conversion Results of Five DRAM Indexes

56

DRAM Index DS Type

CLHT (Cache-Line Hash Table) [ASPLOS’15] Hash table

HOT (Height Optimized Trie) [SIGMOD’18] Trie

BwTree [ICDE’13] B+Tree

ART (Adaptive Radix Tree) [ICDE’13] Radix Tree

Masstree [Eurosys’12] Hybrid (B+Tree & Trie)

Conversion Results of Five DRAM Indexes

57

DRAM Index PM Index Condition

CLHT P-CLHT #1

HOT P-HOT #1

BwTree P-BwTree #1, #2

ART P-ART #1, #3

Masstree P-Masstree #1, #3

• We produce the P-* family of PM indexes

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

58

• Assume garbage collection in memory allocator

• Assume locks are volatile or re-initialized after a crash

• Provide low level of isolation: Read Uncommitted

• RECIPE applies only to individual data structures

Assumptions & Limitations

59

• Overall Intuition

• Conversion Conditions

• Conversion Example: Masstree

• Assumptions & Limitations

• Evaluation

Outline

60

Evaluation

61

• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

• Are the converted indexes crash consistent?

Evaluation

62

• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

• Are the converted indexes crash consistent?

Evaluation

63

• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

Modified Lines of Code

64

• Conversion for all indexes → <= 200 LoC changes

RECIPE-converted Indexes
Lines of Code

Index Core Modified

P-CLHT 2.8K 30 (1%)

P-HOT 2K 38 (2%)

P-BwTree 5.2K 85 (1.6%)

P-ART 1.5K 52 (3.4%)

P-Masstree 2.2K 200 (9%)

Modified Lines of Code

65

• Conversion for all indexes → <= 200 LoC changes

RECIPE-converted Indexes
Lines of Code

Index Core Modified

P-CLHT 2.8K 30 (1%)

P-HOT 2K 38 (2%)

P-BwTree 5.2K 85 (1.6%)

P-ART 1.5K 52 (3.4%)

P-Masstree 2.2K 200 (9%)

Conversion for all indexes: <= 200 LoC changes

<= 9% from core code base

Evaluation

66

• How much effort is involved in converting indexes?

• What is the performance of converted indexes?

• 2-socket 96-core machine with 32MB LLC

• 768 GB Intel Optane DC PMM, 378 GB DRAM

• YCSB with 16 threads

• Ordered/Unordered indexes, Integer/String keys

Performance Evaluation

67

Load Workload A Workload B Workload C Workload E

Insertion 100%
Insertion 50%

Point Lookup 50%

Insertion 5%

Point Lookup 95%

Point Lookup

100%

Insertion 5%

Range Scan 95%

Ordered Index

68

• Support both point and range operations

• P-HOT

• Persistent Height-Optimized Trie converted by RECIPE

• FAST & FAIR [FAST’18]

• Hand-crafted PM-based concurrent B+Tree

Ordered Index

69

• P-HOT produced by RECIPE conversion

• P-HOT performs up-to 5.2x better in point operations

• Cache-efficient designs of P-HOT → Low cache misses

0
1
2
3
4
5
6

Load A B C E

N
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t FAST&FAIR P-HOT

RECIPE

• Principled approach to convert concurrent DRAM
indexes into PM indexes

• Case study of changing five DRAM indexes

• Evaluations with YCSB show RECIPE indexes have
better performance than hand-crafted PM indexes

• Try our indexes: https://github.com/utsaslab/RECIPE

70

RECIPE

https://github.com/utsaslab/RECIPE

