Toward Scaling Hardware Security Module for Emerging Cloud Services

Juhyeng Han*, Seongmin Kim*, Taesoo Kim †, Dongsu Han

**Georgia Tech

* The first two authors contributed equally to this work.

Hardware Security Modules (HSMs)

- Root of trust for various key management services (KMS)
 - Their root keys should be stored in HSMs
- Secure physical separation and protection
- Satisfies security regulation requirements such as FIPS 140-2

Hardware Security Modules (HSMs)

- Root of trust for various key management services (KMS)
 - Root keys should be stored in HSMs
- Secure physical separation and protection
- Satisfies security regulation requirements such as FIPS 140-2

Demands for Scalable Security Services

Can we efficiently scale out HSMs for key management services?

SIGH VIIGOS

Alternative Approach

Leverages commodity Trusted Execution Environment (TEE) instead of HSMs

[S. Chakrabarti et al. "Intel® SGX Enabled Key Manager Service with OpenStack Barbican." arXiv preprint arXiv:1712.07694, 2017.]

Limitation of the Alternative Approach

 Leverages commodity Trusted Execution Environment (TEE) instead of HSMs

[S. Chakrabarti et al. "Intel® SGX Enabled Key Manager Service with OpenStack Barbican." arXiv preprint arXiv:1712.07694, 2017.]

Does not provide physical separation & protection

Approach: Combining HSMs with TEE-based KMS

- Achieves cost-efficient scalability with SGX technology
- Maintains security level of physical separation with HSMs
- SGX enclaves and HSMs collaborate for key management

Deployment Assumption & Threat Model

• Frequent private key operation requests to HSMs can incur performance bottleneck.

 Frequent private key operation requests to HSMs can incur performance bottleneck.

 Frequent private key operation requests to HSMs can incur performance bottleneck.

 Frequent private key operation requests to HSMs can incur performance bottleneck.

Challenge 2: Validation between Enclaves and HSMs

- KMS clients, SGX enclaves and HSMs should trust each others
- Lack of validation mechanism between SGX enclaves and HSMs

Challenge 2: Validation between Enclaves and HSMs

- KMS clients, SGX enclaves and HSMs should trust each others
- Lack of validation mechanism between SGX enclaves and HSMs

Design Goals of ScaleTrust

1. Scalable performance

Enhances performance by scaling out and does not make an HSM a performance bottleneck

2. Cost-effectiveness

Cost-efficiently scales out for key management services

3. Security

Preserves a chain-of-trust from an HSM to clients

Bootstrapping
Enclave

Secure bootstrapping 1:

An HSM generates a root key pairs

Bootstrapping
Enclave

Secure bootstrapping 3:

The bootstrapping enclave attests KMS enclaves

Trusted Host

Bootstrapping

Enclave

Remote attestation

HSM

Secure bootstrapping (5):

The KMS enclaves attest the HSM and build secure channels

Bootstrapping
Enclave

Attestation on enclaves ②:
After a new KMS enclave is created, the bootstrapping enclave attests it.

Attestation on enclaves ③:
Also, the client performs
remote attestation to verify
the KMS enclave.

Enclave

Hierarchical Design for Scaling

KMS requests

Scalable security services

KMS Enclave

Root-of-trust

Hierarchical Design for Scaling

KMS requests

Hierarchical Design for Scaling

R: Refresh token (Lifetime: few hours)

: Access token

(Lifetime: more than a week)

JWT auth server

R: Refresh token (Lifetime: few hours)

A: Access token (Lifetime: more than a week)

Refresh token request

R: Refresh token (Lifetime: few hours)

A: Access token

ent (Lifetime: more than a week)

Refresh token request

JWT auth server

Creates and signs the refresh token

Preliminary Evaluation

Environment setup

- CPU: Quad-core Intel Xeon E3-1280 v6 (SGX-enabled)
- Intel SGX Linux SDK version 2.5
- We use SoftHSM to emulate an HSM device.
- Each enclave and HSM performs the same SHA-256 with RSA-2048 signing

Preliminary Evaluation: Latency Improvement

Scaling out KMS enclaves for latency improvement

Preliminary Evaluation: Cost-effective Scaling

Approach for KMS	Equipment	Performance (RSA-2048 sign)	Price	tps/\$
ScaleTrust (on-premises SGX machine)	Xeon E3-1280 v6 CPU (Quad, 4.2 GHz)	3,600 tps	\$500	7.2
On-premises HSMs-only	Luna SA A790 HSM	10,000 tps	\$29,900	0.33
ScaleTrust (in Azure cloud)	Xeon E-2176G CPU (Quad, 4.7 GHz)	> 3,600 tps (estimated)	\$500 per month	> 7.2 for a month
Cloud HSM (Azure HSM)	Luna SA A790 HSM	10,000 tps	\$5000 + \$3,541 per month	1.17 for a month

^{*}tps = transactions per second

Future work

Evaluation with a real HSM device

Future work

Physical separation by Intel VCA (SGX card)

Conclusion

- We explore new design space to address the limited scalability of HSMs by combining TEE technology
- ScaleTrust preserves chain-of-trust from an HSM to clients
- ScaleTrust utilizes HSMs and SGX enclaves in a hierarchical model to relieve the burden of HSMs
- Our JWT case study shows that ScaleTrust can be applied to key management for microservices.

Thank You