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SGX-Tor: A Secure and Practical Tor Anonymity
Network With SGX Enclaves
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Abstract— With Tor being a popular anonymity network, many
attacks have been proposed to break its anonymity or leak
information of a private communication on Tor. However, guar-
anteeing complete privacy in the face of an adversary on Tor
is especially difficult, because Tor relays are under complete
control of world-wide volunteers. Currently, one can gain pri-
vate information, such as circuit identifiers and hidden service
identifiers, by running Tor relays and can even modify their
behaviors with malicious intent. This paper presents a practical
approach to effectively enhancing the security and privacy of
Tor by utilizing Intel SGX, a commodity trusted execution
environment. We present a design and implementation of Tor,
called SGX-Tor, that prevents code modification and limits the
information exposed to untrusted parties. We demonstrate that
our approach is practical and effectively reduces the power of
an adversary to a traditional network-level adversary. Finally,
SGX-Tor incurs moderate performance overhead; the end-to-
end latency and throughput overheads for HTTP connections
are 3.9% and 11.9%, respectively.

Index Terms— Tor network, Intel SGX, anonymous network,
trusted execution environment (TEE).

I. INTRODUCTION

TOR [42] is a popular anonymity network that provides
anonymity for Internet users, currently serving 1.8 million

users on a daily basis [15]. Tor provides sender anonymity
through multi-hop onion routing/encryption as well as respon-
der anonymity using “rendezvous points” that allow the oper-
ation of hidden services. It is a volunteer-based network in
which world-wide volunteers donate their computation and
network resources to run open-source Tor software. At the time
of this writing, Tor consists of 8,186 relays [15]. Some nodes
suspected to be sibyls run by law-enforcement agencies around
the world [7], [17]. However, it is not without limitations.

Fundamentally, Tor is vulnerable when an attacker controls
a large fraction of relays; anonymity (or privacy) can be broken
if all relays in a circuit are compromised because Tor relays
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can identify the circuit using its identifiers. To prevent mali-
cious relays from entering the system, Tor exercises a careful
admission and vetting process in admitting new relays and
actively monitors their operation. At the same time, to make
traffic analysis more difficult, Tor relies on having a large
number of relays and tries to keep a diverse set of relays spread
out world-wide [40], [41], which helps to decrease the chance
of selecting two or more relays controlled by an adversary.
However, having a large network and keeping all relays
“clean” are fundamentally at odds in a volunteer-based net-
work. This is exemplified by the fact that, by design, Tor relays
are not trusted; in operation they are carefully admitted and
their behaviors are examined by a centralized entity [34], [42].

Even having control over a relatively small number of
Tor relays still gives significant advantages to attackers. For
example, a malicious adversary can change the behavior by
running a modified version of Tor, compromise keys, and/or
have access to other internal information, such as the circuit
identifier, header, and hidden service identifiers. In fact, many
low-resource attacks (i.e., attacks that do not require taking
control of a large fraction of the network) heavily rely on
adversaries acquiring internal information or being able to
modify the behavior of Tor relays. These low-resource attacks
utilize a combination of multiple factors, such as being able to
demultiplex circuits, modify the behavior, and access internal
data structures. For example, harvesting hidden service iden-
tifiers [34] requires access to a relay’s internal state, a sniper
attack [51] requires sending false SENDME cells, and tagging
attacks [70] require access to header information. Selective
packet drop [34], [51] or circuit closure [35], used by many
attacks, also requires being able to demultiplex circuits with
circuit identifiers.

This paper aims to address the current limitations of Tor and
practically raise the bar for Tor adversaries by using Intel SGX,
a commodity trusted execution environment (TEE) available
on the latest Skylake and Kaby Lake microarchitectures.
We ask ourselves three fundamental questions: (1) What is
the security implication of applying TEE on Tor? (2) What is
its performance overhead? and (3) Is it deployment viable in
the current Tor network?

To this end, we design and implement SGX-Tor, which
runs on real SGX hardware. We show that it can effectively
reduce the power of Tor adversaries to that of a network-level
adversary that cannot see the internal state of Tor components.
Specifically, we protect private Tor operation, such as TLS
decryption and circuit demultiplexing, from adversaries, so
that only the TLS-encrypted byte stream is exposed to them,
unlike the original vanilla Tor. We further argue that this has
far-reaching implications on the trust model and operation
of Tor:

• Trust model: Currently, Tor relays are semi-trusted.
While they are monitored and vetted during admission
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and operation, their behaviors are not fully verified. In
fact, many attacks have been still effective under the mon-
itoring/vetting mechanism of the existing Tor ecosystem
until they are reported and patched [24], [51], [70], [80].
With SGX-Tor, behaviors are verified through attestation,
and private information is securely contained without
being exposed to untrusted parties. This simplifies the
vetting and monitoring process, allowing Tor to grow
its capacity more easily. This will provide a stronger
foundation for Tor’s privacy (anonymity).

• Operation and deployment: SGX-Tor has significant
implications in Tor operation. First, because we can
both prevent and detect code/data modification, many
attacks can be prevented. Second, because SGX-Tor
controls the information exposed to the external world,
it helps operational privacy. For example, we can ensure
that the consensus document, which lists Tor relays and
their states [42], does not leave the secure container
(i.e., enclave). This effectively turns all relays into bridge
relays, a set of relays that not publicly listed [22].
Finally, SGX-Tor can be easily deployed because it uses
commodity CPUs and can be deployed incrementally.

In summary, we make the following contributions:
1) We analyze the assumptions and components used in

existing attacks on Tor and discuss how the use of Intel
SGX nullifies them.

2) We present the first design and implementation of Tor
that run on real SGX hardware.

3) We demonstrate that SGX-Tor limits the power of Tor
adversaries to that of a network-level adversary.

4) We characterize the performance of Tor-SGX through
extensive micro- and macro-benchmarks.

Organization: § II provides background on Intel SGX and
Tor. § III describes our approach and the attacks SGX-Tor can
defend against. § IV and § V provide the system design and
implementation, which we evaluate in § VI. § VII discusses
remaining issues and concerns. § VIII presents related work,
and § IX concludes our work.

II. BACKGROUND

This section provides key features of Intel SGX and an
overview of the Tor anonymity network.

Intel SGX: Intel SGX provides isolated execution by putting
and executing the code and data of an application inside
a secure container called an enclave. It protects sensitive
code/data from other applications and privileged system soft-
ware such as the operating system (OS), hypervisor, and
firmware. The memory content of the enclave is stored inside a
specialized memory region called Enclave Page Cache (EPC).
The EPC region of memory is encrypted within the Memory
Encryption Engine (MEE) of the CPU and is hardware access
controlled to prevent snooping or tampering with the enclave
page content.

Intel SGX instructions consist of privileged instructions
and user-level instructions. Privileged instructions are used
for loading application code, data, and stack into an enclave.
When the enclave is loaded with appropriate memory con-
tent, the processor generates the identity of the enclave
(i.e., SHA-256 digest of enclave pages) and verifies the
integrity of the program by checking the identity that contained
a signed certificate (EINIT token) of the program. If the
verification succeeds, the CPU enters the enclave mode and the

program within the enclave starts to execute from a specified
entry point. User-level instructions are used after the program
loads.

SGX also provides remote attestation and sealing functions.
Remote attestation allows us to verify whether the target
program is executed inside an enclave without any modifi-
cation on a remote SGX platform [28]. Finally, sealing allows
us to store enclave data securely in a non-volatile memory
by encrypting the content using a SEAL_KEY, provisioned
by SGX CPU [28]. Unseal restores the content back into
the enclave. Intel white papers [47], [48], [63] describe the
specifications in detail.

Tor Network: The Tor network is a low-latency anonymity
network based on onion routing [42]. Tor consists of three
components: clients (Tor proxies), directory servers, and
relays. Suppose that Alice uses Tor proxy to communicate with
Bob through the Tor network. By default, Alice’s proxy sets up
3-hop (entry, middle, exit) onion-encrypted circuit to ensure
that any single Tor component cannot identify both Alice and
Bob (e.g., entry relay knows the source is Alice, but does not
know who Alice is talking to). Directory servers are trusted
nodes that provide signed directories, called the consensus
document. They consist of nine computers run by different
trusted individuals and vote hourly on which relays should be
part of the network. Relays are provided by volunteers who
donate the hosting platform and network bandwidth. Relays
maintain a TLS connection to other relays and clients and
transmit data in a fixed-size unit, called a cell.

Each relay maintains a long-term identity key and a
short-term onion key. The identity key is used to sign the
router descriptor and TLS certificates, and the onion key is
used for the onion routing. The directory server also uses an
identity key for TLS communication and a signing key for
signing the consensus document.

Tor also provides receiver anonymity. It allows Bob to run
a hidden service behind a Tor proxy and serve content without
revealing his address. To publish a service, Bob’s Tor proxy
chooses a relay that will serve as an introduction point (IP)
and builds a circuit to his IP. It then creates a hidden service
descriptor containing its identifier (ID), IP, and public key and
publishes the information in the Tor network. The descriptor
is stored in a distributed hash table called a hidden service
directory. Using the descriptor obtained from the directory,
Alice establishes a circuit to its IP and specifies a rendezvous
point (RP) for Bob. The IP then relays this information to
Bob. Finally, the RP forwards communication between Alice
and Bob.

III. APPROACH OVERVIEW

This section describes our assumptions and threat model,
presents high-level benefits of applying SGX to Tor, and
analyzes how SGX-Tor prevents many attacks.

A. Scope

In this paper, we focus on attacks and information leakage
that target Tor components. Because Tor is a volunteer-based
network, an attacker can easily add malicious relays and/or
compromise existing relays. Subversion of directory author-
ities seriously damages the Tor network, which needs to
be protected more carefully. We also consider attacks and
information leakage that require colluding relays. Obtaining
control over Tor nodes is relatively easier than manipulat-
ing the underlying network [78] or having wide network
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visibility [36], [52], [66]. We follow Tor’s standard attack
model [42] and do not address attacks that leverage plain text
communication between client and server and network-level
adversaries (e.g., traffic analysis and correlation attacks [52]).

Threat Model: We take a look at how Tor’s security model
can be improved with SGX. Instead of trusting the application
and the system software that hosts Tor relays, SGX-Tor
users only trust the underlying SGX hardware. We assume
an adversary who may modify or extract information from
Tor relays. Following the threat model of SGX, we also
assume an adversary can compromise hardware components
such as memory and I/O devices except for the CPU package
itself [63]. In addition, any software components, including
the privileged software (e.g., operating system, hypervisor, and
BIOS), can be inspected and controlled by an attacker [63].
DoS attacks are outside the scope of this paper since malicious
system software or hardware can simply deny the service
(e.g., halt or reboot). Also, side channel attacks, such as
cache timing attacks on SGX, are also outside the scope.
Both assumptions are consistent with the threat model of
Intel SGX [63] and prior work on SGX [32], [71]. Finally,
software techniques for defending against attacks that exploit
bugs [72], [75] (e.g., buffer overflow) in in-enclave Tor soft-
ware is out-of-scope.

B. SGX-Tor Approach and Its Benefits

Main Approach: First, our approach is to enclose all private
operation and security-sensitive information inside the enclave
to make sure that it is not exposed to untrusted parties.
We make sure that private or potentially security-sensitive
information, such as identity keys and Tor protocol headers,
does not leave the enclave by design, relying on the security
guarantees of the SGX hardware. This ensures that volunteers
do not gain extra information, such as being able to demulti-
plex circuits, by running a Tor node other than being able to
direct encrypted Tor traffic.

Second, we prevent modification of Tor components by rely-
ing on remote attestation. When Tor relays are initialized, their
integrity is verified by the directory servers. Thus, directory
servers ensure that relays are unmodified. Directory servers
also perform mutual attestation. We also extend this to attest
SGX-enabled Tor proxies (run by client or hidden server) for
stronger security properties. Unless otherwise noted, we pri-
marily consider a network in which all Tor relays and directory
servers are SGX-enabled. We explicitly consider incremental
deployment in §IV-B. In the following, we summarize the key
benefits of the SGX-Tor design and its security implications.

Improved Trust Model: Currently, Tor relays are
semi-trusted in practice. Some potentially malicious behaviors
are monitored by the directory server, and others are
prevented by design. However, this does not prevent all
malicious behaviors. The fundamental problem is that it is
very difficult to explicitly spell out what users must trust in
practice. This, in turn, introduces difficulties to the security
analysis of Tor. By providing a clear trust model by leveraging
the properties of SGX, SGX-Tor allows us to reason about
the security properties more easily.

Defense Against Low Resource Attacks: To demultiplex
circuits, low resource attacks often require node manipulation
and internal information that is obtained by running Tor relays.
Examples include inflating node bandwidth [34], sending false
signals [51], injecting a signal using cell headers [25], [34],

and packet spinning attack [68]. SGX-Tor prevents modifica-
tions to the code and thus disables these attacks (see §III-C).

Leakage Prevention of Sensitive Information: Directory
servers and Tor relays use private keys for signing, generating
certificates, and communicating with each other through TLS.
Directory servers are under constant threats [39]. If direc-
tory authorities are subverted, attackers can manipulate the
consensus document to admit or to direct more traffic to
malicious relays. Multiple directory authorities have been
compromised in practice [39]. This caused all Tor relays
to update their software (e.g., directory server information
and keys). Relays also contain important information, such
as identity keys, circuit identifiers, logs, and hidden service
identifiers. By design, SGX-Tor ensures that data structures
contained inside the enclave are not accessible to untrusted
components, including the system software.

Operational Privacy: The consensus document distributed
by the directory servers lists Tor relays. However, keeping the
information public has consequences. It is misused by ISPs
and attackers to block Tor [13], to infer whether the relay is
being used as a guard or exit [35], [67], and to infer whether
Tor is being used [66]. The information also has been used
in hidden server location attacks [34], [67]. As a counter-
measure, Tor maintains bridge relays. Currently, users can
obtain a small number of bridge addresses manually. When
all Tor nodes, including Tor proxies, are SGX-enabled, one
can keep the list of all relays private by sending the consensus
document securely between the directory and user enclaves to
enhance the privacy of the Tor network.

C. Attacks Thwarted by SGX-Tor

Attacks on Tor typically use a combination of multiple
attack vectors. To demonstrate the benefit of SGX-Tor, we ana-
lyze existing attacks on Tor and provide a security analysis for
SGX-Tor. First, we show attacks that require node modification
and how SGX-Tor defeats them.

A bandwidth inflation [31], [34], [67] attack exploits the
fact that clients choose Tor relays proportional to the band-
width advertised in the consensus. This provides malicious
relays an incentive to artificially inflate their bandwidths to
attract more clients [34]. Bandwidth inflation has been one
of the key enablers in low resource attacks [31]. When a
relay is first introduced in the network, it reports its band-
width to the directory servers, allowing the relay to falsely
report its bandwidth. To prevent the relays from cheating,
directory servers scan for the relay’s bandwidth. However,
the bandwidth probing incurs pure overhead to create a new
circuit for the scanning, download the file from particular
hosts, and measure the bandwidth. It can also be evaded
by throttling other streams to make scanners misjudge [34]
the bandwidth of relays. Leveraging this, Biryukov et al. [34]
inflated the bandwidth report more than 10 times. SGX-Tor
simplifies bandwidth reports because of the enhanced trust
model. A relay just needs to report the sum of bandwidth
that it uses to serve Tor traffic. Because it can be trusted,
we do not need an external bandwidth scanner. Note SGX-Tor
also defeats replay attacks that might be mounted by an
untrusted OS (e.g., duplicate messages) by generating a nonce
and keeping it within the enclave during the TLS connection
between the relay and directory server.

Controlling Hidden Service Directories [34]: Tor relays that
have an HSDir flag set serve as hidden service directories by
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forming a distributed hash table to which hidden services pub-
lish their descriptors. To use a hidden service, clients must
fetch the hidden service descriptor that contains the descriptor
ID, the list of introduction points, and the hidden service’s pub-
lic key. Biryukov et al. [34] demonstrated an attack in which
the attacker can control access to any hidden services. First,
malicious relays become hidden service directories for the
target hidden services. This amounts to generating a public key
that falls into an interval in which the hidden service descriptor
ID belongs. After this, malicious hidden service directories
can see the requests for the target hidden service descriptors,
which they can drop to deny the service. SGX-Tor prevents
this because 1) untrusted components in the relay do not see
the descriptor; and 2) relay behaviors cannot be altered.

A tagging attack is a type of traffic confirmation attack that
changes the characteristics of a circuit at one end (e.g., exit
relay) for it to be recognized by the other (e.g, entry guard).
This is used to effectively de-anonymize communication
between two parties. These attacks require modification of
relays. For example, a cell counting attack [34], [60], replay
attack [70], and relay early traffic confirmation attack [25]
send more command cells, duplicate existing cells, or adjust
how many cells are sent over the network at a time to create a
distinct pattern. SGX-Tor prevents them because these attacks
require relay modification. Note that tagging has been used to
de-anonymize hidden services. Biryukov et al. [34] shows that
cell counting attack can be applied to reveal the guard nodes
of a hidden service. It assumes an attacker controls both the
rendezvous point and a middle node of a circuit. During the
circuit establishment for hidden services, some circuits pass
through the node controlled by the attacker. Here, the attacker
first modifies the rendezvous point to send 50 PADDING
followed by a DESTROY cell. When clients use the rendezvous
point, the attacker can reliably determine if the hidden service
uses its relay as the entry by counting the number of cells.
At the middle relay, the attacker checks whether the number
of forwarded cells is exactly 2 cells up the circuit and 52 cells
down the circuit. If a pattern is found, the previous node to
the entry is marked as the hidden service.

Consensus Manipulation in Directory Server: By taking
over directory servers, attackers can manipulate the consensus
by accessing the memory content of directory servers. This
allows them to admit malicious relays, cast a tie-breaking
vote, or steal keys [42]. Especially, the admission of malicious
relays is very dangerous; it increases the possibility of various
low-resource attacks using malicious Tor relays. During the
vetting process, the directory authority creates a “status vote,”
which contains the information of relays such as its liveness
and bandwidth information. The authorities then collect the
voting result and generate a consensus document. If more than
half of the authorities are manipulated, they can publish the
consensus document that contains many malicious relays [42].
SGX-Tor not only prevents attackers from accessing the con-
tent by placing the information inside the enclave, but also
detects modified directory servers.

Second, some attacks do not require node modification, but
break the privacy by leveraging a relay’s internal information.
SGX-Tor prevents this by limiting the information available
to the attackers.

Collection of Hidden Service Descriptors [34], [61]: This
attack collects all hidden service descriptors by deploying a
large number of relays that serve as hidden service directories
(HSDir). Obtaining service descriptors is easy because one

can just dump the relay’s memory content. It is shown that
with careful placement of HSDirs in the distributed hash table,
1,200 relays is are enough to harvest the entire list [34],
which is used to launch other attacks, such as opportunistically
de-anonymizing hidden services. The use of SGX-Tor prevents
this, as all potentially security-sensitive information, including
the hidden service descriptor, is stored only inside the enclave.

Demultiplexing and Finger-Printing: Tor multiplexes mul-
tiple circuits in a single TLS connection and multiple streams
(e.g., TCP flows) in a single circuit. Many attacks rely on being
able to identify circuits and streams. For example, cell count-
ing attacks [34], [60] and circuit and website finger-printing
attacks [57] take advantage of the relay’s ability to identify and
count the number of cells in a circuit. Traffic and timing analy-
sis used by Overlier and Syverson [67] leverages circuit-level
information to strengthen the attack. In a vanilla Tor circuit,
demultiplexing is trivial because each relay decrypts the TLS
connection. In contrast, SGX-Tor hides circuit-level informa-
tion, including identifiers, from the rest of the world. Note
that this means running Tor relay does not give any more
information than being a network-level adversary that observes
traffic. This makes traffic/finger-printing analysis attacks much
more difficult because now an adversary must rely on an
additional layer of inference (e.g., timing analysis) for circuit
demultiplexing. This forces adversaries to take more time and
resources to successfully mount an attack and increase the
false positive rates for finger-print attacks, especially in a
heavily multiplexed environment [21], [26], [41], [69]. Thus,
it enhances the privacy of Tor users.

Bad Apple Attack [58]: Making circuit identification
non-trivial also raises the bar for the bad apple attack. In Tor,
multiple TCP streams from a user share the same circuit
because it improves efficiency and anonymity [42]. However,
this means that even if one TCP stream’s source address
is revealed, the source address of all TCP streams within a
circuit is revealed. The attack takes advantage of this and uses
“insecure” applications to de-anonymize secure applications
within the same circuit [58]. With SGX-Tor, the attack is
not as straightforward because an SGX-enabled exit node
that observes many TCP streams cannot easily associate the
streams with their circuit. Even when the node is observing all
packets, circuit association is difficult on a highly multiplexed
exit node (e.g., even if the predecessor is the same for
two packets, they may belong to different circuits). A more
involved traffic analysis and long running TCP sessions may
be required.

Finally, clients (Tor proxies) have also been used to launch
attacks. We discuss how SGX-Tor can protect Tor against
existing attacks with SGX-enabled Tor proxies.

A sniper attack [51] is a destructive denial-of-service attack
that disables Tor relays by making them to use an arbitrarily
large amount of memory [51]. A malicious client sends a
SENDME signal through the circuit without reading any data
from it. SENDME causes the exit relay to send more data,
which exhausts memory at the entry, eventually causing it to be
terminated by the OS. This attack requires Tor proxy (client)
modification, which can be prevented when the proxy uses
SGX. When using SGX-enabled proxies, directory servers or
entry guards can verify their integrity. When there is a mix
of non-SGX and SGX clients, an effective counter-measure
would be to kill circuits [23]. when an entry guard is short of
memory, but it can deprioritize circuits to the SGX-enabled
proxies when looking for victims because they can be trusted.
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Fig. 1. The architecture of SGX-Tor. Gray-colored boxes indicate modified or newly added components from the original Tor. The address space of the
Tor application is divided into: enclave memory and application memory. The enclave communicates only with untrusted software through a well-defined
interface.

Malicious Circuit Creation: Congestion [44] and traffic
analysis attacks [64], [65] use throughput information as a
side channel to break the anonymity of Tor (e.g., de-anonymize
relays offering a hidden service, identify guards or relays used
by a flow). These attacks commonly modify clients to create
1-hop circuits or circuits with a loop to inject measurement
traffic to target relays. An SGX-enabled Tor proxy can prevent
this by enforcing a minimum hop for circuits (e.g., 3) and
disallowing loops when a proxy creates a circuit. Without
creating a loop, throughput finger-printing is made much more
difficult, less accurate, and more expensive.

Hiding Consensus Document: As explained in §III-B,
SGX-enabled clients and directory servers can keep the list of
relays private by enclosing the consensus information inside
the enclave to enhance operational privacy.

IV. DESIGN

SGX-Tor ensures, by design, the confidentiality of security-
sensitive data structures and the integrity of Tor nodes. In addi-
tion to the direct benefits of applying SGX, SGX-Tor is
designed to achieve the following goals:

Trustworthy Interface Between the Enclave and the Priv-
ilege Software: Although Tor must rely on system software
(e.g., system calls) for operation, the interface between the
enclave and operating system (OS) must not be trusted.
A malicious or curious operating system (or even firmware)
can compromise applications running on a secure enclave by
carefully manipulating interface between them (e.g., return
values in system calls [37]). To reduce such an attack surface,
we define a narrow interface between the untrusted and trusted
components of SGX-Tor, making the interface favorable to
verification or formal proof [32]. For example, SGX-Tor
relies on minimal system support for networking, threading,
and memory allocation and performs sanity-checking for
input/output arguments inside the enclave when requesting
services to untrusted system software.

Reducing Performance Overhead: Utilizing SGX causes
inevitable performance degradation for two main reasons:
1) context switches occurring when entering and leaving the
enclave mode require TLB flushes and memory operations
for saving/restoring registers, and 2) memory accesses (not
cache accesses) require additional encryption or decryption by
a Memory Encryption Engine (MEE). In addition, the small
EPC region (e.g., 128 MB in Intel Skylake [8]) can limit the
active working set and thus requires further management of
enclave memory that incurs additional performance overhead.

Since SGX-Tor protects all security-sensitive data structures
and operations within the enclave, large data structures
(e.g., list of router descriptors whose size is 10 MB) easily
deplete the EPC capacity, in which case the kernel evicts
EPC pages through SGX paging instructions (e.g., EWB and
ELDB/U) [63], leading to performance degradation. To reduce
the overhead, we minimize copying already encrypted data
to EPC, such as encrypted packets, and explicitly stage out
from EPC large data structures that are used infrequently while
ensuring their confidentiality with sealing (see §V).

Deployability and Compatibility: We make practical rec-
ommendations to achieve compatibility with existing Tor. Our
design facilitates incremental deployment of SGX-enabled Tor
components. Note that some features such as remote attestation
must have SGX-enabled directory servers, and some properties
are only achieved when all components are SGX-enabled.
In this paper, we discuss potential issues and benefits of
incremental deployment of the SGX-enabled Tor ecosystem.

A. SGX-Tor: Architecture

Figure 1 shows the overall architecture of SGX-Tor, shared
by all components. The memory region is divided into two
parts: the hardware-protected enclave memory region and the
unprotected application memory region. Tor-enclave, staged
inside an enclave, contains the core components, such as
directory authorities, onion routers, and client proxy, which are
protected. The untrusted components in the application mem-
ory implement an interface to system calls and non-private
operations, such as command line and configuration file
parsing.

Tor-enclave also contains essential libraries for Tor applica-
tions. The SSL library handles TLS communication and the
cryptographic operations (e.g., key creation) required for onion
routing. The remote attestation module provides APIs to verify
the integrity of other Tor programs running on the remote
side. The sealing module is used when sensitive information
such as private keys and consensus documents must be stored
as a file for persistence. SGX-Tor uses the sealing API to
encrypt private keys and consensus documents with the seal
key provided by the SGX hardware. The enclosed file is only
decrypted within the enclave through the unsealing API.

The unprotected application code provides support for
Tor-enclave without handling any private information. It han-
dles public data, such as RSA public keys, published cer-
tificates, and router finger-prints. Note that key pairs and
certificates are generated in Tor-enclave. The SGX runtime
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Fig. 2. Overview of SGX-Tor in action. The remote attestation verifies the
integrity of each other. (a) Onion routing for the client anonymity. (b) Onion
routing for the hidden service.

library provides an interface to create or destroy an enclave.
The untrusted part and the Tor-enclave run as a single process,
communicating through a narrow and well-defined interface.
A function that enters the enclave is called an ECALL, and
a function that leaves the enclave is called an OCALL as
defined in the Intel SGX SDK [8]. Table VI (in Appendix)
lists major E/OCALL interfaces. We use ECALLs to bootstrap
Tor-enclave, while OCALLs are used to request services
to the system software. The OCALL wrapper of SGX-Tor
passes the request (e.g., send() system call) and arguments
from the enclave (e.g., buffer and its length) to the system
software and sends the results back to the enclave. Tor-enclave
relies on the following system services:

• Network I/O (socket creation, send/recv packets)
• Threading and signal management for event handling
• Error handling
• Memory mapping for file I/O
Note, we rely on the I/O and resource allocation services

provided by the system software. In addition to providing
the narrow interface, we harden the interface; because the
OCALL interface and its wrapper are untrusted, we validate
the parameters and return a value of OCALL. For example,
we perform sanity-checking for parameters of the OCALL
interface to defend against attacks (e.g., buffer overflow) from
the untrusted code/data by utilizing the Intel SGX SDK. For
every system call used by Tor, we leverage this feature to
validate the pointer variables provided by the untrusted OS by
putting additional arguments (if needed) that specify the size
of the input/output buffer.1

B. SGX-Tor Components and Features

Figure 2 (a) describes the Tor components for providing
sender anonymity and (b) illustrates the scenario for a hidden
service (i.e., responder anonymity). SGX-Tor applies SGX to
every component, including client proxy, directory authorities,

1For example, ocall_sgx_select(), an OCALL for select(int
nfds, ..., struct timeval *timeout) has an additional parame-
ter “int tv_size” to specify the buffer size of “timeout” (See Appendix). The
value is filled in inside the enclave and the sanity-checking routine provided
by the SDK inspects the input/output buffer within the enclave.

onion routers, and hidden services. This section describes how
each component is changed in SGX-Tor. We first present the
design of four common features shared by all components,
followed by the individual Tor components shown in Figure 2.

Initialization (Common): All Tor components except client
proxy create key pairs, a certificate, and the finger-print at
initialization. For this, Tor provides a tor-gencert tool that
creates RSA keys and certificate for directory authorities and
Tor relays. Directory servers create private keys for signing and
verifying votes and consensus documents. A Tor relay creates
an onion key to encrypt and decrypt the payload for onion
routing. Both directory and relay have an identity key pair to
sign TLS certificates and consensus document/router descrip-
tor. The original Tor saves the key pairs as a file, which can be
leaked once the privilege software is compromised. SGX-Tor
protects the cryptographic operations and seals private keys
before storing them in a file.

TLS Communication (Common): When Tor forwards pack-
ets between relays within a circuit, it uses TLS to encrypt
the application-level Tor protocol, such as circuit ID, com-
mand, cell length, and payload. Currently, this information
is visible to relays and system software that hosts the relays.
Thus, security-sensitive information, including session key and
related operations for establishing TLS connection (e.g., hand-
shaking, encryption, and decryption), must be protected from
the untrusted software. In SGX-Tor, the TLS communication
is executed within the enclave, leaving the payload of the
Tor protocol protected. The system software only handles the
network I/O of packets that are encrypted within the enclave.

Sealing of Private Information (Common): When a Tor
application terminates, it stores the cached consensus docu-
ments and private/public key pairs to a second storage space
for later use. To securely perform such an operation, SGX-Tor
utilizes the sealing function. When the Tor-enclave must store
private information in a file, it encrypts the data using a seal
key provided by SGX hardware. The stored data can be loaded
and decrypted when the same program requests an unseal
within an enclave. Based on the sealing/unsealing interface
in the SGX SDK, we develop a high-level API to store the
important data of the directory authorities and client proxies.
The sealed data is never leaked, unless the CPU package is
compromised.

Supporting interoperability (Common): So far, we explained
the system, assuming that all parts are SGX-enabled. However,
we also support interoperability; e.g., it is possible to estab-
lish a circuit with an entry-guard that runs SGX-Tor while
the middle and exit relays run the original Tor. We add
configuration options in the Tor configuration file (torrc)
to enable remote attestation. The EnableRemoteAttest
option is set by directory authorities to indicate whether
it supports remote attestation. It also has RelaySGXOnly
and ClientSGXOnly options to only admit relays and
clients that pass attestation. The relays and clients can set
the RemoteAttestServer option to request attestation
to the directory. For the SGX-Tor client proxy, we add an
option to get the list of validated relays from the SGX-enabled
directory server. Without these options, SGX-Tor behaves like
an ordinary Tor without attestation.

Directory Authority: The directory authority manages
a list of Tor relays from which the client proxy selects
relays. The consensus document, containing the states of
Tor relays, is generated by directory servers through voting
that occurs every hour. The voting result (i.e., consensus
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Fig. 3. Remote attestation procedure. QUOTE contains the hash of the target
enclave in the client.

document) is signed by the directory authority to ensure
authenticity and integrity. SGX-Tor creates a consensus docu-
ment and performs voting inside the enclave. For example,
data structures for keeping the relay’s bandwidth informa-
tion (networkstatus_t), voter list, and voting results are
securely contained inside the enclave.

Onion Router (Relay): Tor relays perform encryp-
tion/decryption of the cell content. Relays periodically
rotate the private onion keys used for onion routing.
SGX-Tor encloses such operations inside the enclave so
that security-sensitive information, such as circuit identifiers,
cannot be manipulated by an attacker. Because TLS com-
munication is also performed inside the enclave, untrusted
components cannot observe Tor commands, unlike in the
original Tor. Finally, bandwidth measurement, stored in the
routerinfo_t data structure, is done securely by calculat-
ing the sum of bandwidth inside the enclave so that it cannot
be inflated or falsely reported.

Client Proxy: The client’s circuit establishment and key
negotiation process with Tor relays are securely executed
inside the enclave. Also, the consensus document and the list
of relays are enclosed within the enclave, unlike in the orig-
inal Tor, where they are transmitted using TCP unencrypted.
We modified it to use TLS inside the enclave so that keys
and consensus documents are not exposed to untrusted com-
ponents. We also disallow clients creating a loop in a circuit.
For hidden services, SGX-Tor securely manages relevant data
structures, such as the hidden service descriptor, address of
rendezvous point, and circuit identifier for hidden services to
prevent any unintended information leakage.

C. Remote Attestation

SGX-Tor uses remote attestation to detect and remove
modified nodes from the network. Currently, the same Tor
binary serves as the directory authority, Tor relay, and client
proxy. Only their configurations are different. This means that
every Tor component has the same measurement.

Figure 3 shows the attestation procedure between a client
in which an enclave program runs and a remote server
that is verifying its integrity. Intel provides Intel Attestation
Server (IAS) [49], whose role is similar to a certificate
authority, to aid the process; it provisions to the remote server
a public key used to authenticate the attestation report. It also
issues an endorsement certificate for each SGX processor’s
attestation key to ensure that the key is stored within the
tamper-resistant SGX CPU [38]. During the remote attestation,
the remote server checks the QUOTE data structure that con-
tains the hash value (code/data pages) to verify the integrity of

the client. The remote server then signs the QUOTE using the
Enhanced Privacy ID (EPID) group key and forwards it to the
IAS. The IAS verifies the signature and QUOTE and sends the
attestation report to the remote server. Here, the EPID group
key provides anonymity and also supports unlinkability [49].
Finally, the server verifies the report signature and sends the
attestation status to the client.

We use remote attestation for a) integrity verification of
relays during onion router (or relay) admission, b) mutual
attestation between authorities, and c) sending the list of relays
to the trustworthy client. SGX-Tor provides high-level APIs
for each remote attestation cases.

Integrity Verification of Relays (Dir-to-Relay): When a
relay contacts directory authorities to register itself in the Tor
network, it requests remote attestation (taking the client role
in Figure 3) to the directory authorities (server role). The
directory server admits only “clean” relays and filters out
suspicious ones that run modified Tor programs. Non-SGX
relays will also fail to pass the attestation.

Mutual Attestation of Directories (Dir-to-Dir): The direc-
tory authorities mutually perform remote attestation to detect
modified servers. A modified directory might try to admit
specific Tor relays (possibly malicious), launch tie-breaking
attacks to interrupt consensus establishment, or refuse to admit
benign relays [42]. However, because malicious directory
servers will fail to pass the attestation with SGX-Tor, it helps
the Tor community to take action quickly (e.g., by launching
a new reliable authority). When the codes related to the
relay admission policy or algorithm of the directory server
are patched, a new measurement can be distributed to check
its validity through remote attestation. Note that the existing
admission control mechanisms for Tor relays can still be used.

Trustworthy Client (Client-to-Dir): To detect modified client
proxies, the directory authority attests clients and transmits
only the consensus document when they pass attestation. This
filters out modified clients that might perform an abnormal
circuit establishment such as creating a loop [44], [64], [65]
and also keeps the consensus document confidential. There-
fore, only benign SGX-enabled Tor clients obtain the consen-
sus document, which contains the list of relays verified by
directory authorities. In summary, if all relays and clients are
SGX-enabled, we can 1) keep the list of relays private and
2) block malicious clients.

D. Supporting Linux Environment

We make SGX-Tor supporting both Windows and Linux
environment. In particular, providing Linux version of
SGX-Tor is important because of following reasons. First,
Windows SGX SDK itself has several limitations compared
to Linux SGX SDK. Currently, Windows SGX SDK provided
by Intel does not support overall functionality of SGX, includ-
ing paging and several SGX instructions introduced in SGX
revision 2 [48]. This leads to the termination of Tor program
if there is lack of EPC memory space when the traffic volume
and number of circuit increases in future. In other words, this
problem makes Windows version of SGX-Tor not scalable.
In contrast, Linux SGX SDK, released after the Windows
version, supports paging. This means that the Linux version
of SGX-Tor does not suffer from the scalability issue because
of the limited EPC memory space.

Additionally, most of Tor relays in the current Tor ecosys-
tem are running on the Linux platform. In January 2018,
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TABLE I

LINES OF CODE FOR SGX-TOR SOFTWARE (WINDOWS)

TABLE II

LINES OF CODE FOR SGX-TOR SOFTWARE (LINUX)

Statistics [19] shows that the number of Linux relays takes
up 94% (5758) of the total live Tor routers (6147) while
the portion of Windows relays is only 1.5% (91). Moreover,
most of measurement tools [18] and simulation tools [6], [11]
only support Linux platform. Developing Linux version gives
chance to make SGX-Tor compatible with the state-of-the-art
tools.

V. IMPLEMENTATION

We developed SGX-Tor for both Linux and Windows by
using the SGX SDK provided by Intel [8]. In total, it consists
of 321K lines of code and approximately 11K lines of code
are modified for Windows SGX-Tor, as broken down in detail
in Table II. For SGX-Tor Linux version, 10K lines of code are
changed as the Table II shows. As part of this effort, we ported
OpenSSL-1.1.0 [10], zlib-1.2.8 [20], and libevent-2.0.22 [9]
inside the enclave. Note that the porting effort is non-trivial;
for one example, OpenSSL libraries store the generated keys
to files, but to securely export them to non-enclave code, we
have to carefully modify them to perform sealing operations
instead of using naive file I/Os. Furthermore, because enclave
programs cannot directly issue system calls, we implemented
shims for necessary system calls with an OCALL interface.
Note that we implement two types of OCALL interface
considering both Linux and Windows operating system. For
the case of Windows SGX-Tor, OCALL wrappers for both
Windows-specific function calls (e.g., GetLastError())
and POSIX system calls are required, while Linux SGX-Tor
requires POSIX system calls only (57 vs 50). To minimize
the TCB size, we ported only required glibc functions, such as
sscanf() and htons(), instead of embedding the entire
library. As a result, our TCB becomes dramatically reduced
compared to other SGX systems such as Graphene [79]
or Haven [32] (more than 200 MB) that implements a
whole library OS to support SGX applications; SGX-Tor
results in 3.8 times smaller TCB compared to Graphene

(320 K vs. 1,228 K LoC). The source code is available at
https://github.com/kaist-ina/SGX-Tor.

Managing Enclave Memory: To work with the limited
EPC memory, SGX-Tor seals and stores large data structures
outside of the enclave. If required, it explicitly loads and
unseals the encrypted data into the enclave. For example,
cached-descriptors that contain the information of
reachable relays (e.g., finger-print, certificate, and measured
bandwidth), are around 10 MB for each, which is too big to
always keep inside the enclave. Unlike the original Tor, which
uses memory-mapped I/Os to access these data, SGX-Tor
loads and unseals them into the EPC only when it has to update
the list of relays, which essentially trades extra computation
for more usable EPC memory. Similarly, certain system calls
such as recv() are implemented to save the enclave memory;
they get a pointer pointing to the data (e.g., encrypted packets)
outside the enclave instead of copying them to the enclave
memory.

Sealing and Unsealing API: We implemented sealing and
unsealing API to substitute file I/O operations for private keys.
SGX-Tor uses C++ STL map to store generated private keys
in the enclave memory. The key of the map is the name of the
private key, and the value of the map is a structure that contains
the contents and length of a private key. When SGX-Tor needs
to read a generated key, it finds the key contents by the key
name through the map. The application side of SGX-Tor can
request the private keys using sealing API to store it in the file
system. SGX-Tor uses sealing before sending the keys outside
the enclave. In reverse, the application side of SGX-Tor also
can request to load the sealed private keys using unsealing
API. SGX-Tor decrypts sealed key by unsealing it and stores
it in the map. These sealing and unsealing mechanisms are
easily usable because they are implemented as macros.

Securely Obtaining Entropy and Time: The vanilla OpenSSL
obtains entropy from the untrusted underlying system through
system calls, like getpid() and time(), that make the
enclave code vulnerable to Iago attacks [37], [50]; for example,
a manipulated time clock can compromise the logic for cer-
tification checking (e.g., expiration or revocation). To prevent
such attacks, we obtain entropy directly from the trustwor-
thy sources: randomness from the rdrand instruction (via
sgx_read_rand) and time clocks from the trusted platform
service enclave (PSE) (via sgx_get_trusted_time)
[8, pp. 88–92 and 171–172].

VI. EVALUATION

We evaluate SGX-Tor by answering three questions:
• What types of Tor attacks can be mitigated?
• What is the performance overhead of running SGX-Tor?

How much does each component of SGX-Tor contribute
to the performance degradation?

• How compatible is SGX-Tor with the current Tor net-
work? How easy is SGX-Tor adopted?

Experimental Setting: We set up two evaluation environ-
ments for SGX-Tor: 1) by admitting SGX-Tor onion router
in the real Tor network and 2) by constructing a private Tor
network where all components, including directories and client
proxies, run SGX-Tor. We used nine SGX machines (Intel
Core i7-6700 3.4GHz and Intel Xeon CPU E3-1240 3.5GHz).
The private Tor network consists of a client proxy, five relays,
and three directory servers. Note that directory servers also
work as relays. We extend the work of Chutney [27] to
configure and orchestrate our private SGX-Tor network.
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TABLE III

INFORMATION VISIBLE TO ADVERSARIES WHO RUN SGX-TOR
AND ORIGINAL TOR AND NETWORK-LEVEL ADVERSARIES.

“V” DENOTES VISIBLE; “N” DENOTES NON-VISIBLE.
COMPONENT “D” DENOTES A DIRECTORY

AUTHORITY, “R” RELAY, “C” CLIENT,
AND “H” HIDDEN SERVICE DIRECTORY

A. Security Analysis

Table III summarizes security- and privacy-sensitive data
structures that are available to three types of adversaries:
1) an adversary who controls relays running original Tor,
2) an adversary who controls the platform running SGX-Tor,
3) and a network-level adversary. V marks the visible infor-
mation to an adversary, whereas N denotes non-visible ones.
An adversary who controls the vanilla Tor can access a great
deal of sensitive information, attracting more adversaries to run
malicious Tor relays. In contrast, an attacker who even controls
the platform running SGX-Tor cannot gain any information
other than observing the traffic, just like a network-level
adversary. This indicates that the power of Tor adversaries
is reduced to that of network-level adversaries with SGX-Tor.
Among the attacks in §III-C, we choose three well-known
classes of attacks considering their reproducibility and severity.
We replicate these attacks (and their key attack vectors) in a
lab environment and evaluate if SGX-Tor correctly mitigates
them.

Bandwidth Inflation: The directory server performs band-
width scanning to check whether a relay actually serves the
bandwidth advertised by itself [12]. During the scanning,
the directory server creates a 2-hop circuit, including the target
relay, and downloads the file from particular hosts to estimate
the bandwidth of the relays. If a malicious relay is selected
as non-exit, it can directly see which connection is originated
from the directory server [34]. By throttling other traffic, the
compromised relay inflates the measured bandwidth and gets
a fast flag, which is given to a high bandwidth relay indicating
that they are suitable for high-bandwidth circuits, in the
consensus document [31], [34], [67]. However, with SGX-Tor,
modifying the Tor code is not fundamentally possible due to
the measurement mismatch during the attestation.

Under our threat model, system software of a Tor relay can
throttle other traffic to make the scanning result of directory
servers incorrect. To reproduce this attack, we construct a
the private Tor network that contains a malicious relay in
the Linux environment. We modify the host of the malicious
relay to mimic a bandwidth inflation using TC utility program.
The malicious host inflates the bandwidth if a destination IP
address is one of the directory servers (well-known) in our
private Tor network. We inflate the bandwidth value of the
malicious relay, stored in the consensus document, as ten fold

Fig. 4. CDF of client throughput.

(from 20KB/s to 200KB/s). However, the inflation is detected
when the circuit establishment from client proxies is occurred.
During the circuit establishment, client proxy receives a list of
router descriptors measured by other relays. Here, a mismatch
between the bandwidth information in the router descriptor
and that of the consensus document (inflated) is detected. Note
that the router descriptor cannot be tampered by the malicious
host since it is enclosed in the SGX enclave. Therefore, client
proxies can detect such bandwidth inflation.

Circuit Demultiplexing: Being able to decrypt cell Tor head-
ers and demultiplex circuits and streams in relays is a common
attack vector exploited in cell counting attacks [34], [60],
traffic analysis [67], website finger-printing attacks [57], bad
apple attacks [58], replay attacks [70], relay early attacks [25],
and controlling access to hidden services [34]. With a modified
relay, we were able to dump Tor commands, circuit IDs,
and stream IDs; count cells per stream [34], [60]; dupli-
cate cells [70]; and even selectively drop particular circuits
and streams [35]. However, with SGX-Tor, the modified
relay failed to be admitted due to attestation failure. With
the attested SGX-Tor relay, it is not possible to dump the
EPC memory outside the enclave unless the code inside the
enclave is compromised due to an exploitable bug (e.g., buffer
overflow). Even inferring the cell boundary was not trivial,
let alone observing decrypted cell headers.

Malicious Circuit Creation: By modifying the original Tor
code, we successfully establish a 3-hop loop circuit. Creating
a loop can be an attack vector for traffic analysis [64], [65] and
congestion attack [44] with a long loop. In SGX-Tor, it is not
possible to introduce loops because the directory authority can
verify the integrity of the client proxies. Therefore, the mod-
ified Tor client fails to manipulate a circuit as it intended.

B. Performance Evaluation

End-to-End Performance: To quantify the effect on perfor-
mance in a wide-area network, we configure a private Tor
network that consists of an entry guard and exit relay located in
East Asia and the U.S. East, respectively. For SGX-Tor, every
Tor component, including client proxy, except the destination
server runs SGX, except for middle relays. To diversify
the middle relay locations, we use Amazon EC2 [2] U.S.
East, U.S. West, and Europe instances. Figure 4 shows the
CDF of throughput while downloading a file (10 MB) via
a HTTP/HTTPS server. The results are based on the aver-
age of 50 runs. SGX-Tor exhibits 11.9% lower throughput
(3.11 Mbps) for HTTP and 14.1% (2.95 Mbps) lower through-
put for HTTPS. Figure 5 shows the CDF of time-to-first-
byte (latency) for HTTP transfer. SGX-Tor (525ms) only gives
3.9% additional delays compared to the original Tor (505ms).
We also evaluate the web latency when a client connects to a
website through Tor. Figure 6 shows the distribution of the web
page loading time for Alexa Top 50 websites [1]. We measure
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Fig. 5. CDF of time-to-first-byte.

Fig. 6. CDF of page loading time.

Fig. 7. Hidden service throughput of SGX-Tor and original Tor.

the time from the initiation of a request until an onload event is
delivered in the Firefox browser. Similar to time-to-first-byte,
SGX-Tor gives 7.4% additional latency on average. We note
that our SGX SDK allows compilation only in debug mode,
since it requires an approved developer key provided by Intel
to run an enclave in release mode. Thus, we used debug mode
for all Tor performance measurements.

Hidden Service: To quantify the overhead of running a
hidden service with an SGX-Tor proxy, we run one on the
real Tor network. At the client side, we use a Tor browser [14]
that automatically picks a rendezvous point. For each measure-
ment, we relaunch a Tor browser to establish a new circuit.
We perform 100 measurements that transfer a 10 MB file from
an HTTP file server running as a hidden service. Figure 7
shows the distribution of the throughput for SGX-Tor and
the original Tor. The hidden service using SGX-Tor gives
only a 3.3% performance degradation from 1.35 to 1.30 Mbps
on average. We see a smaller gap because the performance
is more network bottlenecked as packets from/to a hidden
service traverse two 3-hop circuits and only the hidden service
uses SGX.

Overhead of TLS and Onion Encryption: To quantify the
overhead in a more CPU-bound setting, we create a private
Tor network in which all components are connected locally at
1Gbps through a single switch. We measure the overhead of
SGX-Tor starting from a single TLS connection and increase
the number of onion hops from one to three. Table IV shows
the time-to-first-byte and throughput of TLS communication
without onion routing. The result shows that SGX-Tor has
9.99% (716 to 651 Mbps) of performance degradation and has
6.39% additional latency (2.05 to 2.19 ms). Figure 10 shows
the time-to-first-byte and throughput by increasing the number
of onion hops for downloading a 10 MB file from the HTTP

Fig. 8. End-to-end client throughput in the private Tor network.

Fig. 9. Remote attestation latency of the directory and the client.

TABLE IV

OVERHEAD OF TLS COMMUNICATION

Fig. 10. Overhead of onion encryption (Windows).

server. As the hop is increased, SGX-Tor has 17.7%, 18.3%,
and 18.4% additional latency and the performance is degraded
by 25.6%, 21.1%, 22.7%, respectively.

Figure 8 shows the end-to-end client performance in the pri-
vate Tor network. The vanilla Tor achieves 106 Mbps for HTTP
and 101 Mbps for HTTPS transfers, while SGX-Tor gives
85 Mbps and 77 Mbps respectively, resulting in a throughput
degradation of 24.7% and 31.2%, respectively (for 10 MB).

Remote Attestation: We quantify the latency and computa-
tion overhead of remote attestation. To emulate a Tor network
running in a wide area setting, we introduce latency between
the SGX-Tor directory and relays in our private Tor network to
mimic that of the real network. The round-trip time between
East Asia (where most of our SGX servers are) and nine
directory authorities in Tor falls between 144ms (longclaw [3]
in the U.S.) and 313ms (maatuska [3] in Sweden). The
round-trip time between our directory and IAS was 310ms.
We execute 30 runs for each directory while introducing the
latency of a real Tor network. Figure 9 shows the CDF of the
remote attestation latency when the directory authority verifies
Tor relays. The average attestation latency of the entire process
in Figure 3 is 3.71s.

SGX-Tor relays and clients request the remote attestation
to the directory server once during bootstrapping. This means
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Fig. 11. Compatibility test of SGX-Tor and original Tor while running as a middle relay. Both Tor relays started at the same time and acquire “Fast” and
“Stable” flags during the evaluation [3].

Fig. 12. Stress test of Linux and Windows SGX-Tor.

that this is a one-time bootstrapping cost and is relatively
short compared to the client bootstrapping time, which takes
22.9s on average on a broadband link to download a list of
relays [59]. We quantify the computational cost of remote
attestation for the directory authority for verifying client prox-
ies. For attestation, directory servers calculate the AES-CMAC
of group ID for checking EPID group and ECDSA signa-
ture generation for QUOTE verification. On our i7 machine,
the computation takes 37.3ms in total if the QUOTE veri-
fication succeeds, as annotated in Figure 3. When it fails,
it takes 35.5ms. On a peak day, Tor has about 1.85 million
users [15]. To quantify the amount of computation required,
we perform AES-CMAC and ECDSA signature generation in
a tight loop and measure the throughput. It gives 27.8 opera-
tions per second per core. Thus, with nine directory servers,
assuming each has eight cores, the total computation time
for remote attestation of 1.85 million daily clients will be
about 15.4 minutes. We believe this is a moderate resource
requirement for the directory authority.

Capacity Scaling: To evaluate the capacity scaling, we mea-
sure the onion routing throughput of a single Tor relay
by increasing the number of Tor clients. Note, we use a
private Tor network that we use for evaluating TLS and
onion encryption overhead. One difference is that we launch
multiple Tor clients that are not running SGX-Tor because of
the limited SGX hardware. We use a machine with two Intel
Xeon E5-2690 CPUs to launch Tor clients. We configure every
Tor clients to use fixed SGX-Tor relays for 3-hop onion
routing. Then, we measure the end-to-end performance by
measuring time to download 100MB file at an arbitrary Tor
client. Figure 12 shows the result of stress test for both
Linux and Windows version of SGX-Tor. As the number of
Tor clients increases, the usage of EPC memory is increased
because of circuit creation and handling traffic volume. For
the case of Windows, it bursts when the number of clients
reachs 83, because Windows SGX SDK does not support
paging. In contrast, Linux SGX-Tor works well even if the
throughput is decreased. This performance degradation comes
from the EPC paging. Even though performance degradation
caused by EPC paging is inevitable, Linux SGX-Tor does not

TABLE V

A LIST OF ATTACKS MITIGATED BY SGX-TOR

crash and sustainable to increasing Tor clients. We believe
an overhead raised by paging can be reduced by efficient
enclave memory management; reducing system call and thread
synchronization overhead [29]; or using an SGX-friendly TLS
library [30].

C. Compatibility and Deployability

We demonstrate the compatibility of SGX-Tor by admitting
a long-running SGX-Tor relay into the existing Tor network
as a middle relay. For comparison, we also run a vanilla Tor
side-by-side. We compare both relays in terms of (a) network
I/O bandwidth per second, (b) probability to be selected as
a middle relay, and (c) advertised bandwidth obtained from
a published consensus document from CollectTor [5]. The
bandwidth statistics are averaged over a 30-minute window.
Figure 11 shows the result obtained for two weeks. In total,
SGX-Tor served 10.5 GB of traffic. Both relays obtained fast
and stable flag on the same day. The average advertised band-
width of SGX-Tor relay is 119 KB/s. We see that SGX-Tor is
compatible with the existing Tor network, and for all metrics
SGX-Tor shows a similar tendency with the vanilla Tor.

We also analyze the security and privacy benefits of the
Tor ecosystem for varying SGX-Tor deployment. Table V
summarizes a list of attacks mitigated by SGX-Tor as it is
incrementally deployed. If a single Tor relay runs SGX-Tor,
an attacker cannot modify code, access core data structures
(e.g., list of relays), and steal onion key because of SGX
memory protection. When every exit relay runs SGX-Tor, Tor
network is protected from Bad apple and DoS attack, which
requires code modification on exit relays. As tagging attacks
assume modification on entry and exit relays to generate
and detect tagged payloads, they are also defeated when
both exit and entry relays run SGX-Tor. Finally, bandwidth
inflation and circuit demultiplexing are defeated under full
deployment because an attacker cannot get any sensitive
information related to circuit establishment and 3-hop onion
routing. Note that incremental deployment involves in security
tradeoffs, as not all properties can be achieved as discussed
in §IV. However, we believe the probability of attack can
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be reduced under the partial deployment of SGX-Tor. Let’s
assume that an attacker tries to launch a circuit demultiplexing
attack. Because SGX-Tor relay does not leak any circuit-level
information, an attacker needs additional effort to correlate the
Tor traffic. A simulation to measure the demultiplexing success
ratio under the current circuit selection algorithm is a possible
way to prove our claim. We leave this for future work.

VII. DISCUSSION

Large-Scale Evalaution: To show the practicality of
SGX-Tor, large-scale evaluation by varying the network size
and load distribution is one of the critical issue. Unfortunately,
it is hard to conduct large-scale evaluation because it requires
lots of machines that support SGX hardware. A possible option
is to run multiple Tor relays in a single host equipped with
SGX, but such setting cannot give the accurate systematic
overhead raised by using SGX-Tor. Therefore, we need to
conduct a simulation to get the statistics. To achieve this,
we can use OpenSGX [50], an open source SGX emulator
with Tor Shadow simulator [11]. However, it requires huge
engineering effort to port SGX-Tor on OpenSGX and make
it compatible with a Shadow. Note that cloud providers,
including Microsoft Azure, try to launch virtual machines
supporting SGX technology [4], which makes large-scale
evaluation of SGX-Tor feasible. We would like to quantify
the effect of Tor network size and load distribution as a future
work when the service is available.

Limitation: Although SGX-Tor can mitigate many attacks
against Tor components, attacks assuming network-level
adversaries [52] and Sybil attacks [43] are still effective,
as we mentioned in the §III-A. Additionally, SGX-Tor cannot
validate the correctness of the enclave code itself. SGX-Tor
can be compromised if the code contains software vulnera-
bilities and is subject to controlled side-channel attacks [81].
We believe these attacks can be mitigated by combin-
ing work from recent studies: e.g., by checking whether
an enclave code leaks secrets [77]; by protecting against
side-channel attacks [72], [75]; or by leveraging software
fault isolation [46], [72]).

VIII. RELATED WORK

Software for Trusted Execution Environments: Various TEEs
such as TPM, ARM TrustZone, and AMD SVM have been
used for guaranteeing the security of applications in mobile
and PC environments. Since the traditional trusted computing
technologies (e.g., hypervisor-based approach with TPM) rely
on the chain of trust, it makes the size of TCB larger.
Flicker [62] proposed an approach that executes only a small
piece of code inside the trusted container, where it extremely
reduces the TCB. Nevertheless, it suffers from performance
limitations. Intel SGX removes this challenge by offering
native performance and multi-threading. In addition, the cloud
computing and hosting service providers, where Tor relays are
often hosted [16], is predominantly x86-based.

Applications for Intel SGX: Haven [32] pioneered adopting
Intel SGX in the cloud environment with an unmodified
application. VC3 [71] proposed data analytics combined with
Intel SGX in the cloud. Moat [77] studied the verification
of application source code to determine whether the program
actually does not leak private data on top of Intel SGX.
Kim et al. [55] explore how to leverage SGX to enhance
the security and privacy of network applications such as

software-defined inter-domain routing, Tor, and network mid-
dleboxes. S-NFV [74] applies SGX to NFV to isolate its
state from the NFV infrastructure and platform and presents
preliminary performance evaluations on real SGX hardware.
Bhardwaj et al. [33] integrates Intel SGX to edge services,
considering performance and scalability, to ensure the integrity
and confidentiality of edge functions. These studies are early
studies of SGX that rely on SGX emulators [50]. In contrast,
we show how SGX can improve the trust model and operation
of Tor and SGX-Tor run on real SGX hardware.

At the same time, several studies explore the secu-
rity and performance issues of Intel SGX technology.
T-SGX [75] adopts Intel TSX technology to defend against
Controlled-channel attack [81]. SGX-Shield [72] presents a
fine-grained ASLR for enclave address space. SCONE [29]
suggests the container-based shielded execution framework
that provides its own library to make system call operations
secure. SGXBounds [56] addresses memory-safety exploits for
SGX applications. Note that such approaches can be combined
with the design of SGX-Tor to improve the security of Tor
network.

Attacks and Security Analysis on Tor: §III discussed many
attacks on Tor. SGX-Tor prevents modification of Tor bina-
ries and limits attackers’ ability; attackers can still launch
attacks within the network outside Tor nodes. For example,
attackers can modify data between the exit and the destina-
tion server (man-in-the-middle) when end-to-end encryption
is not used or mount traffic analysis attacks or website
finger-printing attacks. In particular, Cell counting [60], [73],
tagging [34], [70], timing [76], and watermarking attacks [45]
have been used for traffic confirmation. While Tor does
not try to protect against traffic confirmation attacks [42],
it aims to protect against general traffic analysis attacks.
In particular, large-scale traffic correlation [36] and website
finger-printing [53] attacks are believed to be very difficult
in practice [26], [53] because those attacks require achieving
an arbitrarily low false positive rate as the number of users
becomes larger. Security analysis of Tor on a realistic work-
load is an ongoing research [41] area. In this work, we show
how we can thwart known attacks against the Tor ecosystem by
using a commodity trusted execution environment, Intel SGX.

IX. CONCLUSION

Due to the wide adoption of the x86 architecture, Intel
Software Guard Extensions (SGX) potentially has a tremen-
dous impact on providing security and privacy for network
applications. This paper explores new opportunities to enhance
the security and privacy of a Tor anonymity network. Applying
SGX to Tor has several benefits. First, we show that deploying
SGX on Tor can defend against known attacks that manipulate
Tor components. Second, it limits the information obtained
by running or compromising Tor components, reducing the
power of adversaries to network-level adversaries, who can
only launch attacks external to the Tor components. Finally,
this brings changes to the trust model of Tor, which poten-
tially simplifies Tor operation and deployment. Our exten-
sive evaluation of the SGX-Tor shows that SGX-enabled
Tor components incur small performance degradation and
supports incremental deployment on the existing Tor network,
demonstrating its viability.

APPENDIX

See Table VI.



2186 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

TABLE VI

INTERFACE BETWEEN THE TOR ENCLAVE AND THE PRIVILEGE SOFTWARE OF WINDOWS SGX-TOR. SGX-TOR USES SEVEN ECALLS
TO BOOTSTRAP THE TOR-ENCLAVE AND AID REMOTE ATTESTATION. IT USES A TOTAL OF 57 OCALLS

IN FOUR CATEGORIES. WE LIST REPRESENTATIVE OCALLS IN EACH CATEGORY
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