
A Scalable Ordering Primitive
for Multicore Machines

Sanidhya Kashyap   Changwoo Min   Kangnyeon Kim   Taesoo Kim



 2

Era of multicore machines



 3

Scope of multicore machines

Huge hardware
thread parallelism

...

How are operations executed correctly?
Ordering

Becomes scalability bottleneck



 4

Example: Read Log Update (RLU)

● Extension of RCU
● Modifes objects in a thread’s local log
● Clock maintains correct snapshot (old vs new)
● Frees objects via epoch-based reclamation



A B C D

D’

E

B’

A log/bufer to store 
copies (per-thread)

LogLogRLU header

Global Clock 
(22)

Local Clock
(22)

Read on start

Read Log Update (RLU) operation

P

Q



Write Clock
(∞)

Global Clock 
(22)

A B C D

C’D’

E

B’

1. P updates clocks 
2. P executes RCU-epoch
 Waits for Q to fnish

1. P updates clocks 
2. P executes RCU-epoch
 Waits for Q to fnish

Global Clock 
(23)

Local Clock
(22)

Write Clock
(23)

Q will read only old objects

RLU commit operation

P

Q

Logical Clock maintains correctness/ordering
Maintained via atomic instructions  FAA/CAS→



 7

Issue with logical clock
● RLU sufers from global clock contention

– Cache-line contention due to atomic instructions
– Possible to circumvent with our approach

0

30

60

90

120

150

180

0 64 128 192 256

O
ps

/u
se

c

#cores

Phi

Atomic

0

40

80

120

160

0 16 32 48 64 80 96

#cores

ARM

0

30

60

90

120

150

180

0 64 128 192 256

O
ps

/u
se

c

#cores

Phi

Atomic

Ordo

0

40

80

120

160

0 16 32 48 64 80 96

#cores

ARM

How can we achieve ordering
with minimal timestamping overhead?



 8

Our proposed ordering primitive: Ordo

● Exposes a monotonically increasing clock
– Current hardware already provides
– rdtscp (X86), cntvct (ARM), stick (Sparc)

● Relies on a per-core invariant hardware clock
– Monotonically increases with constant skew regardless 

of dynamic frequency and voltage scaling



 9

Challenges with Ordo

● Comparing two clocks
– Clocks are not synchronized
– Cores receive RESET signal at varying times

● Application:
– Modifying algorithms to use Ordo
– Able to compare between two timestamps



 10

Embracing the invariant clocks

● Measure a global uncertainty window
– Ensure a new timestamp once a window is over
– Provides a notion of globally synchronized clock

● Measured ofset MUST have the invariant:
Measured ofset is greater than the physical ofset

– Physical ofset: ofset due to RESET signal
– Measured ofset: physical ofset + one-way delay



 11

Calculating global uncertainty window:
ORDO_BOUNDARY

● Add one-way delay latency on each path

C1 C2

T(C1): 0

T(C2): 20

C1  C→ 2

20

time

1) Calculate C1 timestamp
2) Notify C2 via memory
3) Get C2 timestamp
4) Repeat steps 1-3 to get

 the minimum



 12

Calculating global uncertainty window:
ORDO_BOUNDARY

● Add one-way delay latency on each path

C1 C2

T(C1): 80

T(C2): 50

C2  C→ 1

30

time

●  Repeat prior steps in
 opposite direction

● Do not know which clock
is ahead of the other



 13

Calculating global uncertainty window:
ORDO_BOUNDARY

● Repeat steps for each pair of cores from C1 to Cn

● The maximum ofset is the ORDO_BOUNDARY

C1 C2

C1  C←→ 2

30

T(C1): 80

T(C2): 50

C1  C→ 2

20

C2  C→ 1

30

C1 C2

T(C1): 0

T(C2): 20

time



 14

Ordo application

● Applicable to any timestamp-based algorithm
● Expose Ordo API for these algorithms

– get_time(): Current hardware timestamp
– cmp_time(t1, t2): Compare two timestamps with 

uncertainty, if |t1-t2| < ORDO_BOUNDARY 

– new_time(t): Return tnew > (t + ORDO_BOUNDARY)

● Catch: Algorithms should handle uncertainty



 15

Algorithms with Ordo
handling uncertainty

● Physical to logical timestamping:
– Rely on cmp_time() to compare two timestamps
– Either defer or revert if comparison is uncertain
– Use new_time() to guarantee new time

● Physical timestamping:
– Use new_time() to access the global clock



A B C D

D’

E

B’ LogLog

Q’s core
clock (50)

Local Clock
(50)

P’s local
clock (22)

Read on start

Read Log Update (RLUOrdo) operation

P

Q

Global ofset
(30)



Write Clock
(∞)

A B C D

C’D’

E

B’

Local Clock
(50)

Write Clock
(150)

Q will read only old objects

RLUOrdo commit operation

P

Q

Global ofset
(30)

1. P updates own clock 
2. P executes RCU-epoch
 Waits for Q to fnish

1. P updates own clock 
2. P executes RCU-epoch
 Waits for Q to fnish



 18

Algorithms modifed with Ordo

● RLU
● Transactional Locking (TL2) in STM
● Database concurrency control: OCC, MVCC
● Oplog used in Linux forking functionality

See our paper



 19

Evaluation

● Questions:
– Measured global ofset (ORDO_BOUNDARY)
– Maximum scalability of Ordo
– Ordo’s impact on algorithms

● Machines confguration:
– 240 core, 8 socket Intel Xeon machine (Xeon)
– 256 core, Intel Xeon Phi (Phi)
– 96 core, 2 socket ARM machine (ARM)
– 32 core, 8 socket AMD machine (AMD)



 20

Machine Minimum (ns) Maximum (ns)

Intel Xeon   70   276

Intel Xeon phi   90   270

ARM 100 1,100

AMD   93   203

Ofset between clocks

● Empirically measured ofset after reboots
● ORDO_BOUNDARY is the maximum ofset



 21

Timestamping with Ordo
● Ordo relies on hardware timestamping 
● 17.4 – 285.5x faster than atomic increments

0

4

8

12

0 60 120 180 240

O
ps

/u
se

c/
co

re Xeon(Atomic)

0

4

8

12

0 64 128 192 256

Phi(Atomic)

0

4

8

12

0 16 32 48 64 80 96

O
ps

/u
se

c/
co

re

#core

ARM(Atomic)

0

4

8

12

0 4 8 12 16 20 24 28 32
#core

AMD(Atomic)

0

4

8

12

0 60 120 180 240

O
ps

/u
se

c/
co

re Xeon(Atomic)

Xeon(Ordo)

0

4

8

12

0 64 128 192 256

Phi(Atomic)

Phi(Ordo)

0

4

8

12

0 16 32 48 64 80 96

O
ps

/u
se

c/
co

re

#core

ARM(Atomic)

ARM(Ordo)

0

4

8

12

0 4 8 12 16 20 24 28 32
#core

AMD(Atomic)

AMD(Ordo)



 22

Scaling RLU with Ordo
● RLUOrdo is 2.1x faster on an average
● Still sufers from object copy and its locking

0
30
60
90

120
150

0 60 120 180 240

O
ps

/u
se

c

Xeon

RLU 2% RLU(Ordo) 2%

0
30
60
90

120
150
180

0 64 128 192 256

Phi

0

40

80

120

160

0 16 32 48 64 80 96

O
ps

/u
se

c

#core

ARM
0

20

40

60

80

0 8 16 24 32
#core

AMD



 23

Discussion and limitations

● Simplifes the design and understanding of 
algorithms

● Not a panacea
– Applicable when clock is contentious

● No skew consideration
● Thread ID-based timestamp comparison has its 

limitation



 24

Conclusion

● Ordo is a scalable timestamping primitive
– Relies on invariant hardware clocks

● Exposes time-based API to the user
● Applied Ordo to fve concurrent algorithms
● Improves the scalability of algorithms by at 

most 39.7x across architectures



Backup Slides



 26

Ofset between clocks
● Clocks are not synchronized

– 8th socket in Xeon and 2nd socket in ARM
– Results remain consistent even after reboots and 

measuring after a period of time

0

30

60

90

120

0 30 60 90 120

# core

Xeon

0

75

150

225

0

24

48

72

96

0 24 48 72 96

# core

Arm

0

300

600

900

O
f

se
t b

et
w

ee
n 

cl
oc

ks



 27

Sensitivity of ORDO_BOUNDARY
● Varying ORDO_BOUNDARY from 1/8x – 8x
● Cycles increases from 32.2–18K on Xeon machine

0.92

0.96

1.00

1.04

1.08

1-core 1-socket 8-sockets

N
or

m
al

iz
ed

 th
ro

ug
hp

ut



 28

Physical timestamping: Oplog
● Improves Exim performance by 1.9x at 240 cores

0k

20k

40k

60k

80k

100k

120k

30 60 90 120 150 180 210 240

M
es

sa
ge

s/
se

c

#core

Stock

Oplog(Ordo)



 29

Scaling database concurrency control
● Improves OCC and MVCC by 4.1–39.7x for read-only (YCSB)
● OCCOrdo 1.24x faster than Tictoc and Silo (TPC-C) 

0
30
60
90

120
150
180

0 60 120 180 240

Tx
ns

/u
se

c

Xeon

OCC
OCC (Ordo)

MVCC
MVCC (Ordo)

0
20
40
60
80

100

0 64 128 192

Phi

0
8

16
24
32
40

0 16 32 48 64 80 96

Tx
ns

/u
se

c

# core

ARM

0
7

14
21
28
35

0 8 16 24 32
# core

AMD



 30

Cannot use clock synchronization 
protocols

● No information on minimum bounds on 
message delivery between/among clocks

● Protocols introduce various errors
● Can lead to mis-synchronized clocks

– Larger or smaller than the actual physical ofset

Lead to incorrect implementation of
concurrent algorithms


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	RLU Clocks and Logs
	RLU Commit – Phase 1
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

