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Era of multicore machines
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Scope of multicore machines

Huge hardware
thread parallelism

...

How are operations executed correctly?
Ordering

Becomes scalability bottleneck
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Example: Read Log Update (RLU)

● Extension of RCU
● Modifes objects in a thread’s local log
● Clock maintains correct snapshot (old vs new)
● Frees objects via epoch-based reclamation
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Logical Clock maintains correctness/ordering
Maintained via atomic instructions  FAA/CAS→
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Issue with logical clock
● RLU sufers from global clock contention

– Cache-line contention due to atomic instructions
– Possible to circumvent with our approach
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How can we achieve ordering
with minimal timestamping overhead?
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Our proposed ordering primitive: Ordo

● Exposes a monotonically increasing clock
– Current hardware already provides
– rdtscp (X86), cntvct (ARM), stick (Sparc)

● Relies on a per-core invariant hardware clock
– Monotonically increases with constant skew regardless 

of dynamic frequency and voltage scaling
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Challenges with Ordo

● Comparing two clocks
– Clocks are not synchronized
– Cores receive RESET signal at varying times

● Application:
– Modifying algorithms to use Ordo
– Able to compare between two timestamps
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Embracing the invariant clocks

● Measure a global uncertainty window
– Ensure a new timestamp once a window is over
– Provides a notion of globally synchronized clock

● Measured ofset MUST have the invariant:
Measured ofset is greater than the physical ofset

– Physical ofset: ofset due to RESET signal
– Measured ofset: physical ofset + one-way delay
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Calculating global uncertainty window:
ORDO_BOUNDARY

● Add one-way delay latency on each path
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time

1) Calculate C1 timestamp
2) Notify C2 via memory
3) Get C2 timestamp
4) Repeat steps 1-3 to get

 the minimum
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Calculating global uncertainty window:
ORDO_BOUNDARY

● Add one-way delay latency on each path
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●  Repeat prior steps in
 opposite direction

● Do not know which clock
is ahead of the other
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Calculating global uncertainty window:
ORDO_BOUNDARY

● Repeat steps for each pair of cores from C1 to Cn

● The maximum ofset is the ORDO_BOUNDARY
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Ordo application

● Applicable to any timestamp-based algorithm
● Expose Ordo API for these algorithms

– get_time(): Current hardware timestamp
– cmp_time(t1, t2): Compare two timestamps with 

uncertainty, if |t1-t2| < ORDO_BOUNDARY 

– new_time(t): Return tnew > (t + ORDO_BOUNDARY)

● Catch: Algorithms should handle uncertainty
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Algorithms with Ordo
handling uncertainty

● Physical to logical timestamping:
– Rely on cmp_time() to compare two timestamps
– Either defer or revert if comparison is uncertain
– Use new_time() to guarantee new time

● Physical timestamping:
– Use new_time() to access the global clock
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Algorithms modifed with Ordo

● RLU
● Transactional Locking (TL2) in STM
● Database concurrency control: OCC, MVCC
● Oplog used in Linux forking functionality

See our paper
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Evaluation

● Questions:
– Measured global ofset (ORDO_BOUNDARY)
– Maximum scalability of Ordo
– Ordo’s impact on algorithms

● Machines confguration:
– 240 core, 8 socket Intel Xeon machine (Xeon)
– 256 core, Intel Xeon Phi (Phi)
– 96 core, 2 socket ARM machine (ARM)
– 32 core, 8 socket AMD machine (AMD)
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Machine Minimum (ns) Maximum (ns)

Intel Xeon   70   276

Intel Xeon phi   90   270

ARM 100 1,100

AMD   93   203

Ofset between clocks

● Empirically measured ofset after reboots
● ORDO_BOUNDARY is the maximum ofset
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Timestamping with Ordo
● Ordo relies on hardware timestamping 
● 17.4 – 285.5x faster than atomic increments
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Scaling RLU with Ordo
● RLUOrdo is 2.1x faster on an average
● Still sufers from object copy and its locking
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Discussion and limitations

● Simplifes the design and understanding of 
algorithms

● Not a panacea
– Applicable when clock is contentious

● No skew consideration
● Thread ID-based timestamp comparison has its 

limitation
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Conclusion

● Ordo is a scalable timestamping primitive
– Relies on invariant hardware clocks

● Exposes time-based API to the user
● Applied Ordo to fve concurrent algorithms
● Improves the scalability of algorithms by at 

most 39.7x across architectures
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Ofset between clocks
● Clocks are not synchronized

– 8th socket in Xeon and 2nd socket in ARM
– Results remain consistent even after reboots and 

measuring after a period of time
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Sensitivity of ORDO_BOUNDARY
● Varying ORDO_BOUNDARY from 1/8x – 8x
● Cycles increases from 32.2–18K on Xeon machine
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Physical timestamping: Oplog
● Improves Exim performance by 1.9x at 240 cores
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Scaling database concurrency control
● Improves OCC and MVCC by 4.1–39.7x for read-only (YCSB)
● OCCOrdo 1.24x faster than Tictoc and Silo (TPC-C) 
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Cannot use clock synchronization 
protocols

● No information on minimum bounds on 
message delivery between/among clocks

● Protocols introduce various errors
● Can lead to mis-synchronized clocks

– Larger or smaller than the actual physical ofset

Lead to incorrect implementation of
concurrent algorithms
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