T-SGX: Eradicating Controlled-Channel

Attacks Against Enclave Programs
Ming-Wei Shih Sangho Lee Taesoo Kim Marcus Peinado

Georgia Institute of Technology Microsoft Research

The cloud is growing 7 times faster than the
rest of IT

The latest IDC forecast says public cloud spending will grow almost 25% this year,
topping $122 billion. And the growth keeps up through 2020.

Network World O 0 @ @ @ 0 9

62 Percent of Companies Store Sensitive Customer
Data in the Public Cloud

And almost 40 percent of cloud services are commissioned without the involvement of IT, a recent
survey found.

By Jeff Goldman | Posted February 21, 2017 share 6+ BY EJ I3 &

NEWS

IT leaders say it's hard to keep the cloud safe

Shadow IT causing cloud trouble by illicitly working behind the scenes

By Sharon Gaudin | Follow
@ Senior Writer, Computerworld | 0 0 @ @ @ 0

Intel SGX aims to secure users’ code and data in the cloud

Controlled-channel attack [Oakland 2015] raises concerns

* An accurate side-channel attack that extracts the SGX-protected data
 Compromise the security guarantees of SGX

How the attack works (1/3)

* Intel SGX protects enclaves against an untrusted OS

* SGX still relies on the OS for resource management Enclave

(e.g., memory mapping)

OS

Page Table

—

SGX CPU

How the attack works (2/3)

 Attacker fully controls the OS

* Page-fault side channel
* Step 1: Unmap a page
» Step 2: Enclave accesses the page
» Step 3: Observe a page fault

Page C

Page Table

How the attack works (3/3)

* If the program’s memory accesses depend on a secret,
then this secret is being leaked

e Attack steps
* Offline analysis
* Obtain page-fault sequence
* Infer the secret Page Table

T-SGX Goals

* Prevent the controlled-channel attack

* The design should be practical
* No hardware modification
* Reasonable performance
* Minimal developer effort (no need for program rewritten)

Intel TSX

Program

* CPU extension present in all recent _
Intel CPUs (since 2013) race condition <

AN
A
AN
AN

e Supports hardware transactional memory

abort

 Race conditions cause transaction abort

* An abort triggers fallback execution
* Rolls back all changes
* Control transfers to the fallback point

10

|dea: Intel TSX also suppresses page faults

Program

* CPU does not deliver page faults to the OS

Z

e

Page fault

N

* Instead, it aborts the transaction and
invokes the fallback code

* OS cannot observe the page fault abort
inside a transaction

11

The strawman design

* Make the whole enclave
as a transaction

* Enable the self-detection to
page faults inside the enclave

Page fault

abort

Enclave Program

12

Challenges

[Single transaction cannot be too large, otherwise it will never complete]

OS Timer Enclave Program

time constraint

|
|
i Timer interrupt<
|
|

N

‘t Cache full

=]

abort

f abort

Cache

(LD

cache constraint

Solution: Break a program into execution blocks

[Execution Time analysis]

- Cache anal sis]
05 Ilmer Enclave Program [y
: T Cache
time constraint ! —
o -
‘ ~]
o
| Fllbsckoode | ’

Optimization: merging tiny blocks (1/2)

* Problem: Setting up transaction comes with a fixed cost (~200 cycles)

* If continuous blocks satisfy the cache and time constraints, we merge
them
* Loops
* If-else statement
* Functions

Optimization: merging tiny blocks (2/2)
* Example: Loop optimization

for (i = 1; 1 < 1000; i++) {

XBEGIN
XBEGIN for (i = 1; i < 1000; i++) {
XEND § }

} |

XEND

[Requires 1000 transactions]

[Requires only 1 transaction!]

Conservative static analysis
* Only optimize when it’s safe

This design still leaks information

Execution Blocks

T SBECTN [TSX instructions are outside of a transaction]
|XEND |
Page A v
- " Fage fault /Page A \
1
_ Page B
T ~~~~~~~~ 4
- ~~~~~~~~~~~~~ i
Page B
1 -

17

Solution: Springboard design

B Execution Blocks All transactions begin and end on the springboard
* Attacker can only observe page fault on the springboard
Springboard A
pringboard page
Page A
Springboard page
Page fault -
T_ N
Page B
[Leak only single-page information!]

18

Springboard design also prevents advanced attacks

Execution Blocks

Page A

Page B

Counting the number of page faults on springboard
* May still leak information

Springboard page Page fault, Page fault, Page fault

Page A

Page B

[By design, the attack is impractical! (See paper for details)]

19

Implementation: T-SGX

* Based on the LLVM compiler
* Mostly modifying LLVM backend
* 4,100 line of code
e Fully automated program transformation

Evaluation

* How general is the T-SGX approach?
* How much overhead does a transformed program have?

T-SGX works for general C/C++ programs

* 0 lines of source code change

* Fully-automated compiling
chain

Application

Numeric sort
String sort
Bitfield

Fp emulation
Fourier
Assignment
ldea
Huffman
Neural net
Lu decomposition
Libjpeg
Hunspell

FreeType

Line of Code

211
521
225
1,396
235
490
353
448
746
441
34,763
24,794
135,528

22

T-SGX incurs reasonable overhead

* Average 30% memory overhead

e Additional instructions for each execution block
Benchmark programs

1.4
1.35
S T T T Bttt
1.25
1.2
1.15
1.1
1.05
1
(\&o‘& '(\Q:o(\' g {&e}b &%&\o(\ o \)(\e* < é\eﬁ"\' \be?’ & (0'2? @(\é}' Q},o@Q -@Q@% Q&Qé\) ééQe
eo@z s <<Qé° & © NN N < <

23
B T-SGX

T-SGX incurs reasonable overhead

* Average 50% runtime overhead (geometric mean)
* Largely depends on number of loop iterations that repeatedly start a

transaction
2.5
2
1.5
1
0.5 I
0
& & NS & & NS > N & Q % N o
[e) o) .2 o) N\ < ¢ g () Q
< & & &S & ¥oE e W &
< & N O e & N R < > O &
i = & 2 < ¥ o N <¢
S R v A

H T-SGX

24

Consistent runtime overhead on concurrent execution

S m£ - U RS SRR SRS S S
) 8{} -------- % __ X, ﬂﬂﬂﬂﬂﬂ !
R e e e s s M
1) — A H - St
as = SR G, SRR R
E 4{}6 - :l :l I+ ﬁ 1
=
©
P4 _
% 20
~ 0 | | | | | | |
1 2 3 4 5 6 7 8
Number of Instances
numeric sort —— assignment
string Sort ==>¢=-- idea -- @ - -
bitfield ---3--- huffman — A
fp emulation] neural net - A

fourier lu decomposition —s—

Conclusion

* We proposed and implemented T-SGX, which effectively protects
enclaves against the controlled-channel attack.

* T-SGX
* Requires no hardware modification

* Incurs reasonable runtime overhead and still has potential to improve (e.g.,
using more advanced program analysis or performance profiling)

e Automatically transforms a program without the need for manual effort

Q&A

