
T-SGX: Eradicating Controlled-Channel
Attacks Against Enclave Programs

Ming-Wei Shih Sangho Lee Taesoo Kim Marcus Peinado

Georgia Institute of Technology Microsoft Research

2

3

Intel SGX aims to secure users’ code and data in the cloud

4

Controlled-channel attack [Oakland 2015] raises concerns

• An accurate side-channel attack that extracts the SGX-protected data

• Compromise the security guarantees of SGX

SGX CPU

OS

5

How the attack works (1/3)

• Intel SGX protects enclaves against an untrusted OS

• SGX still relies on the OS for resource management
(e.g., memory mapping)

SGX CPU

Enclave

6

Page Table
OS

How the attack works (2/3)

• Attacker fully controls the OS

• Page-fault side channel
• Step 1: Unmap a page

• Step 2: Enclave accesses the page

• Step 3: Observe a page fault

SGX CPU

Page C

page fault

Page Table

7

A B C D E

How the attack works (3/3)

• If the program’s memory accesses depend on a secret,
then this secret is being leaked

• Attack steps
• Offline analysis

• Obtain page-fault sequence

• Infer the secret

SGX CPU

Page A

…

Page B

Page D

Page C

page fault

Page Table

8

A B C D E

T-SGX Goals

• Prevent the controlled-channel attack

• The design should be practical
• No hardware modification

• Reasonable performance

• Minimal developer effort (no need for program rewritten)

9

Intel TSX

• CPU extension present in all recent
Intel CPUs (since 2013)

• Supports hardware transactional memory

• Race conditions cause transaction abort

• An abort triggers fallback execution
• Rolls back all changes
• Control transfers to the fallback point

Program

Transaction

XBEGIN

XEND

race condition

abort

Fallback code

10

Idea: Intel TSX also suppresses page faults

• CPU does not deliver page faults to the OS

• Instead, it aborts the transaction and
invokes the fallback code

• OS cannot observe the page fault
inside a transaction

Program

Transaction

XBEGIN

XEND

Page fault

abort

Fallback code

11

The strawman design

• Make the whole enclave
as a transaction

• Enable the self-detection to
page faults inside the enclave

12

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Page fault

Challenges

Enclave Program

Transaction

XBEGIN

XEND

abort

Fallback code

Timer interrupt

…

Cache

Cache full

abort

OS Timer

Single transaction cannot be too large, otherwise it will never complete

13

time constraint

cache constraint

Solution: Break a program into execution blocks

Enclave Program

Fallback code

…

Cache

OS Timer

Execution Time analysis

Execution Block

Cache analysis

time constraint

cache constraint

14

Optimization: merging tiny blocks (1/2)

• Problem: Setting up transaction comes with a fixed cost (~200 cycles)

• If continuous blocks satisfy the cache and time constraints, we merge
them
• Loops

• If-else statement

• Functions

15

Optimization: merging tiny blocks (2/2)

• Example: Loop optimization

16

for (i = 1; i < 1000; i++) {
XBEGIN

…
XEND

}

XBEGIN
for (i = 1; i < 1000; i++) {

…
}
XEND

Requires 1000 transactions Requires only 1 transaction!

Conservative static analysis
• Only optimize when it’s safe

This design still leaks information
Execution Blocks
XBEGIN

XEND

Page fault
Page A

Page B

Page A

Page B

TSX instructions are outside of a transaction

17

Solution: Springboard design
Execution Blocks

Page fault

Springboard page

Springboard page

Fallback code

Page A

Page B

Leak only single-page information!

18

All transactions begin and end on the springboard
• Attacker can only observe page fault on the springboard

Springboard design also prevents advanced attacks

Execution Blocks

Page faultSpringboard page

Fallback code

Page A

Page B

Page A

Page B

By design, the attack is impractical! (See paper for details)

19

, Page fault, Page fault

Counting the number of page faults on springboard
• May still leak information

Implementation: T-SGX

• Based on the LLVM compiler
• Mostly modifying LLVM backend

• 4,100 line of code

• Fully automated program transformation

20

Evaluation

• How general is the T-SGX approach?

• How much overhead does a transformed program have?

21

T-SGX works for general C/C++ programs

• 0 lines of source code change

• Fully-automated compiling
chain

Application Line of Code

Numeric sort 211

String sort 521

Bitfield 225

Fp emulation 1,396

Fourier 235

Assignment 490

Idea 353

Huffman 448

Neural net 746

Lu decomposition 441

Libjpeg 34,763

Hunspell 24,794

FreeType 135,528
22

T-SGX incurs reasonable overhead

• Average 30% memory overhead
• Additional instructions for each execution block

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Benchmark programs

T-SGX

23

T-SGX incurs reasonable overhead

• Average 50% runtime overhead (geometric mean)
• Largely depends on number of loop iterations that repeatedly start a

transaction

0

0.5

1

1.5

2

2.5

T-SGX
24

Consistent runtime overhead on concurrent execution

25

Conclusion

• We proposed and implemented T-SGX, which effectively protects
enclaves against the controlled-channel attack.

• T-SGX
• Requires no hardware modification

• Incurs reasonable runtime overhead and still has potential to improve (e.g.,
using more advanced program analysis or performance profiling)

• Automatically transforms a program without the need for manual effort

26

Q&A

27

