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Abstract
With Tor being a popular anonymity network, many at-
tacks have been proposed to break its anonymity or leak
information of a private communication on Tor. However,
guaranteeing complete privacy in the face of an adver-
sary on Tor is especially difficult because Tor relays are
under complete control of world-wide volunteers. Cur-
rently, one can gain private information, such as circuit
identifiers and hidden service identifiers, by running Tor
relays and can even modify their behaviors with malicious
intent.

This paper presents a practical approach to effectively
enhancing the security and privacy of Tor by utilizing
Intel SGX, a commodity trusted execution environment.
We present a design and implementation of Tor, called
SGX-Tor, that prevents code modification and limits the
information exposed to untrusted parties. We demonstrate
that our approach is practical and effectively reduces the
power of an adversary to a traditional network-level adver-
sary. Finally, SGX-Tor incurs moderate performance over-
head; the end-to-end latency and throughput overheads
for HTTP connections are 3.9% and 11.9%, respectively.

1 Introduction
Tor [35] is a popular anonymity network that provides
anonymity for Internet users, currently serving 1.8 million
users on a daily basis [13]. Tor provides sender anonymity
through multi-hop onion routing/encryption as well as re-
sponder anonymity using “rendezvous points” that allow
the operation of hidden services. It is a volunteer-based
network in which world-wide volunteers donate their com-
putation and network resources to run open-source Tor
software. At the time of this writing, Tor consists of
10,000 relays, with some relay nodes even known to be
run by a variety of law enforcement agencies around the
world [5, 15]. However, it is not without limitations.

Fundamentally, Tor is vulnerable when an attacker con-
trols a large fraction of relays; anonymity (or privacy)
can be broken if all relays in a circuit are compromised

because Tor relays can identify the circuit using its iden-
tifiers. To prevent malicious relays from entering the
system, Tor exercises a careful admission and vetting
process in admitting new relays and actively monitors
their operation. At the same time, to make traffic analysis
more difficult, Tor relies on having a large number of
relays and tries to keep a diverse set of relays spread out
world-wide [33, 34], which helps to decrease the chance
of selecting two or more relays controlled by an adver-
sary. However, having a large network and keeping all
relays “clean” are fundamentally at odds in a volunteer-
based network. This is exemplified by the fact that, by
design, Tor relays are not trusted; in operation they are
carefully admitted and their behaviors are examined by a
centralized entity [27, 35].

Even having control over a relatively small number of
Tor relays still gives significant advantages to attackers.
For example, a malicious adversary can change the be-
havior by running a modified version of Tor, compromise
keys, and/or have access to other internal information,
such as the circuit identifier, header, and hidden service
identifiers. In fact, many low-resource attacks (i.e., at-
tacks that do not require taking control of a large fraction
of the network) heavily rely on adversaries acquiring in-
ternal information or being able to modify the behavior of
Tor relays. These low-resource attacks utilize a combina-
tion of multiple factors, such as being able to demultiplex
circuits, modify the behavior, and access internal data
structures. For example, harvesting hidden service iden-
tifiers [27] requires access to a relay’s internal state, a
sniper attack [43] requires sending false SENDME cells,
and tagging attacks [60] require access to header informa-
tion. Selective packet drop [27, 43] or circuit closure [28],
used by many attacks, also requires being able to demulti-
plex circuits with circuit identifiers.

This paper aims to address the current limitations of Tor
and practically raise the bar for Tor adversaries by using
Intel SGX, a commodity trusted execution environment
(TEE) available on the latest Skylake and Kaby Lake



microarchitectures. We ask ourselves three fundamental
questions: (1) What is the security implication of applying
TEE on Tor? (2) What is its performance overhead? and
(3) Is it deployment viable in the current Tor network?

To this end, we design and implement SGX-Tor, which
runs on real SGX hardware. We show that it can effec-
tively reduce the power of Tor adversaries to that of a
network-level adversary that cannot see the internal state
of Tor components. Specifically, we protect private Tor
operation, such as TLS decryption and circuit demulti-
plexing, from adversaries, so that only the TLS-encrypted
byte stream is exposed to them, unlike the original vanilla
Tor. We further argue that this has far-reaching implica-
tions on the trust model and operation of Tor:

• Trust model: Currently, Tor relays are semi-trusted.
While they are monitored and vetted during admission
and operation, their behaviors are not fully verified. In
fact, many attacks are discovered and reported after
the fact [20, 43, 60, 68]. With SGX-Tor, behaviors are
verified through attestation, and private information is
securely contained without being exposed to untrusted
parties. This simplifies the vetting and monitoring
process, allowing Tor to grow its capacity more eas-
ily. This will provide a stronger foundation for Tor’s
privacy (anonymity).
• Operation and deployment: SGX-Tor has signifi-

cant implications in Tor operation. First, because we
can both prevent and detect code modification and forg-
ing false information, many attacks can be prevented.
Second, because SGX-Tor controls the information
exposed to the external world, it helps operational pri-
vacy. For example, we can ensure that the consensus
document, which lists Tor relays and their states [35],
does not leave the secure container (i.e., enclave). This
effectively turn all relays into bridge relays, a set of re-
lays that not publicly listed [18]. Finally, SGX-Tor can
be easily deployed because it uses commodity CPUs
and can even be incrementally deployed.

In summary, we make the following contributions:

1. We analyze the assumptions and components used
in existing attacks on Tor and discuss how the use of
Intel SGX nullifies them to disable the attacks.

2. We present the first design and implementation of
Tor that run on real SGX hardware.

3. We demonstrate that SGX-Tor limits the power of
Tor adversaries to that of a network-level adversary.

4. We characterize the performance of Tor-SGX
through extensive micro- and macro-benchmarks.

Organization: § 2 provides background on Intel SGX
and Tor. § 3 describes our approach and the attacks SGX-
Tor can defend against. § 4 and § 5 provide the system
design and implementation, which we evaluate in § 6. § 7

discusses remaining issues and concerns. § 8 presents
related work, and § 9 concludes our work.

2 Background
This section provides key features of Intel SGX and an
overview of the Tor anonymity network.

Intel SGX: Intel SGX provides isolated execution by
putting and executing the code and data of an application
inside a secure container called an enclave. It protects
sensitive code/data from other applications and privileged
system software such as the operating system (OS), hyper-
visor, and firmware. The memory content of the enclave
is stored inside a specialized memory region called En-
clave Page Cache (EPC). The EPC region of memory is
encrypted within the Memory Encryption Engine (MEE)
of the CPU and is hardware access controlled to prevent
snooping or tampering with the enclave page content.

Intel SGX instructions consist of privileged instruc-
tions and user-level instructions. Privileged instructions
are used for loading application code, data, and stack into
an enclave. When the enclave is loaded with appropriate
memory content, the processor generates the identity of
the enclave (i.e., SHA-256 digest of enclave pages) and
verifies the integrity of the program by checking the iden-
tity that contained a signed certificate (EINIT token) of
the program. If the verification succeeds, the CPU enters
the enclave mode and the program within the enclave
starts to execute from a specified entry point. User-level
instructions are used after the program loads.

SGX also provides remote attestation and sealing func-
tions. Remote attestation allows us to verify whether
the target program is executed inside an enclave without
any modification on a remote SGX platform [24]. Fi-
nally, sealing allows us to store enclave data securely
in a non-volatile memory by encrypting the content us-
ing a SEAL KEY, provisioned by SGX CPU [24]. Unseal
restores the content back into the enclave. Intel white
papers [39, 40, 53] describe the specifications in detail.

Tor network: The Tor network is a low-latency
anonymity network based on onion routing [35]. Tor
consists of three components: clients (Tor proxies), di-
rectory servers, and relays. Suppose that Alice uses Tor
proxy to communicate with Bob through the Tor network.
By default, Alice’s proxy sets up 3-hop (entry, middle,
exit) onion-encrypted circuit to ensure that any single Tor
component cannot identify both Alice and Bob (e.g., entry
relay knows the source is Alice, but does not know who
Alice is talking to). Directory servers are trusted nodes
that provide signed directories, called the consensus doc-
ument. They consist of nine computers run by different
trusted individuals and vote hourly on which relays should
be part of the network. Relays are provided by volunteers
who donate the hosting platform and network bandwidth.



Relays maintain a TLS connection to other relays and
clients and transmit data in a fixed-size unit, called a cell.

Each relay maintains a long-term identity key and a
short-term onion key. The identity key is used to sign
the router descriptor and TLS certificates, and the onion
key is used for the onion routing. The directory server
also uses an identity key for TLS communication and a
signing key for signing the consensus document.

Tor also provides receiver anonymity. It allows Bob to
run a hidden service behind a Tor proxy and serve content
without revealing his address. To publish a service, Bob’s
Tor proxy chooses a relay that will serve as an introduction
point (IP) and builds a circuit to his IP. It then creates
a hidden service descriptor containing its identifier (ID),
IP, and public key and publishes the information in the
Tor network. The descriptor is stored in a distributed
hash table called a hidden service directory. Using the
descriptor obtained from the directory, Alice establishes a
circuit to its IP and specifies a rendezvous point (RP) for
Bob. The IP then relays this information to Bob. Finally,
the RP forwards communication between Alice and Bob.

3 Approach Overview
This section describes our assumptions and threat model,
presents high-level benefits of applying SGX to Tor, and
analyzes how SGX-Tor prevents many attacks.

3.1 Scope
In this paper, we focus on attacks and information leakage
that target Tor components. Because Tor is a volunteer-
based network, an attacker can easily add malicious relays
and/or compromise existing relays. Subversion of direc-
tory authorities seriously damages the Tor network, which
needs to be protected more carefully. We also consider
attacks and information leakage that require colluding re-
lays. Obtaining control over Tor nodes is relatively easier
than manipulating the underlying network [66] or having
wide network visibility [29, 44, 56]. We follow Tor’s
standard attack model [35] and do not address attacks that
leverage plain text communication between client and
server and network-level adversaries (e.g., traffic analysis
and correlation attacks [44]).
Threat model: We take a look at how Tor’s security
model can be improved with SGX. Instead of trusting the
application and the system software that hosts Tor relays,
SGX-Tor users only trust the underlying SGX hardware.
We assume an adversary who may modify or extract in-
formation from Tor relays. Following the threat model
of SGX, we also assume an adversary can compromise
hardware components such as memory and I/O devices
except for the CPU package itself [53]. In addition, any
software components, including the privileged software
(e.g., operating system, hypervisor, and BIOS), can be
inspected and controlled by an attacker [53]. DoS attacks

are outside the scope of this paper since malicious system
software or hardware can simply deny the service (e.g.,
halt or reboot). Also, side channel attacks, such as cache
timing attacks on SGX, are also outside the scope. Both
assumptions are consistent with the threat model of Intel
SGX [53] and prior work on SGX [26, 61]. Finally, soft-
ware techniques for defending against attacks that exploit
bugs [62, 64] (e.g., buffer overflow) in in-enclave Tor
software is out-of-scope.

3.2 SGX-Tor Approach and its Benefits
Main approach: First, our approach is to enclose all
private operation and security-sensitive information in-
side the enclave to make sure that it is not exposed to
untrusted parties. We make sure that private or potentially
security-sensitive information, such as identity keys and
Tor protocol headers, does not leave the enclave by design,
relying on the security guarantees of the SGX hardware.
This ensures that volunteers do not gain extra information,
such as being able to demultiplex circuits, by running a
Tor node other than being able to direct encrypted Tor
traffic.

Second, we prevent modification of Tor components
by relying on remote attestation. When Tor relays are ini-
tialized, their integrity is verified by the directory servers.
Thus, directory servers ensure that relays are unmodified.
Directory servers also perform mutual attestation. We
also extend this to attest SGX-enabled Tor proxies (run by
client or hidden server) for stronger security properties.
Unless otherwise noted, we primarily consider a network
in which all Tor relays and directory servers are SGX-
enabled. We explicitly consider incremental deployment
in §4.2. In the following, we summarize the key benefits
of the SGX-Tor design and its security implications.
Improved trust model: Currently, Tor relays are semi-
trusted in practice. Some potentially malicious behaviors
are monitored by the directory server, and others are pre-
vented by design. However, this does not prevent all
malicious behaviors. The fundamental problem is that
it is very difficult to explicitly spell out what users must
trust in practice. This, in turn, introduces difficulties to the
security analysis of Tor. By providing a clear trust model
by leveraging the properties of SGX, SGX-Tor allows us
to reason about the security properties more easily.
Defense against low resource attacks: To demultiplex
circuits, low resource attacks often require node manip-
ulation and internal information that is obtained by run-
ning Tor relays. Examples include inflating node band-
width [27], sending false signals [43], injecting a signal us-
ing cell headers [21, 27], and packet spinning attack [58].
SGX-Tor prevents modifications to the code and thus
disables these attacks (see §3.3).
Leakage prevention of sensitive information: Direc-
tory servers and Tor relays use private keys for sign-



ing, generating certificates, and communicating each
other through TLS. Directory servers are under constant
threats [32]. If directory authorities are subverted, attack-
ers can manipulate the consensus document to admit or
to direct more traffic to malicious relays. Multiple direc-
tory authorities have been compromised in practice [32].
This caused all Tor relays to update their software (e.g.,
directory server information and keys). Relays also con-
tain important information, such as identity keys, circuit
identifiers, logs, and hidden service identifiers. By design,
SGX-Tor ensures that data structures contained inside
the enclave are not accessible to untrusted components,
including the system software.
Operational privacy: The consensus document dis-
tributed by the director servers lists Tor relays. How-
ever, keeping the information public has consequences.
It is misused by ISPs and attackers to block Tor [11],
to infer whether the relay is being used as a guard or
exit [28, 57], and to infer whether Tor is being used [56].
The information also has been used in hidden server loca-
tion attacks [27, 57]. As a counter-measure, Tor maintains
bridge relays. Currently, users can obtain a small num-
ber of bridge addresses manually. When all Tor nodes,
including Tor proxies, are SGX-enabled, one can keep the
list of all relays private by sending the consensus docu-
ment securely between the directory and user enclaves to
enhance the privacy of the Tor network.

3.3 Attacks Thwarted by SGX-Tor
Attacks on Tor typically use a combination of multiple
attack vectors. To demonstrate the benefit of SGX-Tor,
we analyze existing attacks on Tor and provide a security
analysis for SGX-Tor. First, we show attacks that require
node modification and how SGX-Tor defeats them.

A bandwidth inflation [25, 27, 57] attack exploits the
fact that clients choose Tor relays proportional to the
bandwidth advertised in the consensus. This provides
malicious relays an incentive to artificially inflate their
bandwidths to attract more clients [27]. Bandwidth infla-
tion has been one of the key enablers in low resource at-
tacks [25]. When a relay is first introduced in the network,
it reports its bandwidth to the directory servers, allowing
the relay to falsely report its bandwidth. To prevent the
relays from cheating, directory servers scan for the re-
lay’s bandwidth. However, the bandwidth probing incurs
pure overhead. It can also be evaded by throttling other
streams to make scanners misjudge [27] the bandwidth of
relays. Leveraging this, Biryukov et al. [27] inflated the
bandwidth report more than 10 times. SGX-Tor simplifies
bandwidth reports because of the enhanced trust model.
A relay just needs to report the sum of bandwidth that it
uses to serve Tor traffic. Because it can be trusted, we do
not need an external bandwidth scanner. Note SGX-Tor
also defeats replay attacks that might be mounted by an

untrusted OS (e.g., duplicate messages) by generating a
nonce and keeping it within the enclave during the TLS
connection between the relay and directory server.

Controlling hidden service directories [27]: Tor relays
that have an HSDir flag set serve as hidden service di-
rectories by forming a distributed hash table to which
hidden services publish their descriptors. To use a hidden
service, clients must fetch the hidden service descriptor
that contains the descriptor ID, the list of introduction
points, and the hidden service’s public key. Biryukov et
al. [27] demonstrated an attack in which the attacker can
control access to any hidden services. First, malicious
relays become hidden service directories for the target
hidden services. This amounts to generating a public key
that falls into an interval in which the hidden service de-
scriptor ID belongs. After this, malicious hidden service
directories can see the requests for the target hidden ser-
vice descriptors, which they can drop to deny the service.
SGX-Tor prevents this because 1) untrusted components
in the relay do not see the descriptor; and 2) relay behav-
iors cannot be altered.

A tagging attack is a type of traffic confirmation attack
that changes the characteristics of a circuit at one end
(e.g., exit relay) for it to be recognized by the other (e.g,
entry guard). This is used to effectively de-anonymize
communication between two parties. These attacks re-
quire modification of relays. For example, a cell counting
attack [27, 50], replay attack [60], and relay early traffic
confirmation attack [21] send more command cells, du-
plicate existing cells, or adjust how many cells are sent
over the network at a time to create a distinct pattern.
SGX-Tor prevents them because these attacks require
relay modification. Note that tagging has been used to
de-anonymize hidden services. Biryukov et. al. [27] mod-
ified the rendezvous point to send 50 PADDING followed
by a DESTROY cell. Clients use the rendezvous point and
the attacker can reliably determine if the hidden service
uses its relay as the entry by counting the number of cells.
If a pattern is found, the previous node to the entry is
marked as the hidden service.

Consensus manipulation in directory server: By tak-
ing over directory servers, attackers can manipulate the
consensus by accessing the memory content of directory
servers. This allows them to admit malicious relays, cast
a tie-breaking vote, or steal keys [35]. Especially, the ad-
mission of malicious relays is very dangerous; it increases
the possibility of various low-resource attacks using mali-
cious Tor relays. During the vetting process, the directory
authority creates a “status vote,” which contains the in-
formation of relays such as its liveness and bandwidth
information. The authorities then collect the voting re-
sult and generate a consensus document. If more than
half of the authorities are manipulated, they can publish
the consensus document that contains many malicious



relays [35]. SGX-Tor not only prevents attackers from
accessing the content by placing the information inside
the enclave, but also detects modified directory servers.

Second, some attacks do not require node modifica-
tion, but break the privacy by leveraging a relay’s internal
information. SGX-Tor prevents this by limiting the infor-
mation available to the attackers.

Collection of hidden service descriptors [27, 51]: This
attack collects all hidden service descriptors by deploying
a large number of relays that serve as hidden service
directories (HSDir). Obtaining service descriptors is easy
because one can just dump the relay’s memory content.
It is shown that with careful placement of HSDirs in
the distributed hash table, 1,200 relays is are enough
to harvest the entire list [27], which is used to launch
other attacks, such as opportunistically de-anonymizing
hidden services. The use of SGX-Tor prevents this, as
all potentially security-sensitive information, including
the hidden service descriptor, is stored only inside the
enclave.

Demultiplexing and finger-printing: Tor multiplexes
multiple circuits in a single TLS connection and multi-
ple streams (e.g., TCP flows) in a single circuit. Many
attacks rely on being able to identify circuits and streams.
For example, cell counting attacks [27, 50] and circuit
and website finger-printing attacks [47] take advantage
of the relay’s ability to identify and count the number
of cells in a circuit. Traffic and timing analysis used by
Overlier et. al. [57] leverages circuit-level information
to strengthen the attack. In a vanilla Tor circuit, demul-
tiplexing is trivial because each relay decrypts the TLS
connection. In contrast, SGX-Tor hides circuit-level infor-
mation, including identifiers, from the rest of the world.
Note that this means running Tor relay does not give any
more information than being a network-level adversary
that observes traffic. This makes traffic/finger-printing
analysis attacks much more difficult because now an ad-
versary must rely on an additional layer of inference (e.g.,
timing analysis) for circuit demultiplexing. This forces ad-
versaries to take more time and resources to successfully
mount an attack and increase the false positive rates for
finger-print attacks, especially in a heavily multiplexed en-
vironment [17, 22, 34, 59]. Thus, it enhances the privacy
of Tor users.

Bad apple attack [48]: Making circuit identification
non-trivial also raises the bar for the bad apple attack. In
Tor, multiple TCP streams from a user share the same
circuit because it improves efficiency and anonymity [35].
However, this means that even if one TCP stream’s source
address is revealed, the source address of all TCP streams
within a circuit is revealed. The attack takes advantage
of this and uses “insecure” applications to de-anonymize
secure applications within the same circuit [48]. With
SGX-Tor, the attack is not as straightforward because an

SGX-enabled exit node that observes many TCP streams
cannot easily associate the streams with their circuit. Even
when the node is observing all packets, circuit associa-
tion is difficult on a highly multiplexed exit node (e.g.,
even if the predecessor is the same for two packets, they
may belong to different circuits). A more involved traffic
analysis and long running TCP sessions may be required.

Finally, clients (Tor proxies) have also been used to
launch attacks. We discuss how SGX-Tor can protect Tor
against existing attacks with SGX-enabled Tor proxies.

A sniper attack [43] is a destructive denial-of-service
attack that disables Tor relays by making them to use an
arbitrarily large amount of memory [43]. A malicious
client sends a SENDME signal through the circuit without
reading any data from it. SENDME causes the exit relay
to send more data, which exhausts memory at the entry,
eventually causing it to be terminated by the OS. This
attack requires Tor proxy (client) modification, which can
be prevented when the proxy uses SGX. When using
SGX-enabled proxies, directory servers or entry guards
can verify their integrity. When there is a mix of non-SGX
and SGX clients, an effective counter-measure would
be to kill circuits [19]. when an entry guard is short
of memory, but it can deprioritize circuits to the SGX-
enabled proxies when looking for victims because they
can be trusted.

Malicious circuit creation: Congestion [37] and traf-
fic analysis attacks [54, 55] use throughput information
as a side channel to break the anonymity of Tor (e.g.,
de-anonymize relays offering a hidden service, identify
guards or relays used by a flow). These attacks commonly
modify clients to create 1-hop circuits or circuits with a
loop to inject measurement traffic to target relays. An
SGX-enabled Tor proxy can prevent this by enforcing a
minimum hop for circuits (e.g., 3) and disallowing loops
when a proxy creates a circuit. Without creating a loop,
throughput finger-printing is made much more difficult,
less accurate, and more expensive.

Hiding consensus document: As explained in §3.2,
SGX-enabled clients and directory servers can keep the
list of relays private by enclosing the consensus informa-
tion inside the enclave to enhance operational privacy.

4 Design
SGX-Tor ensures, by design, the confidentiality of
security-sensitive data structures and the integrity of Tor
nodes. In addition to the direct benefits of applying SGX,
SGX-Tor is designed to achieve the following goals:
Trustworthy interface between the enclave and the
privilege software: Although Tor must rely on system
software (e.g., system calls) for operation, the interface
between the enclave and operating system (OS) must not
be trusted. A malicious or curious operating system (or
even firmware) can compromise applications running on
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Figure 1: The architecture of SGX-Tor. Gray-colored boxes indicate modified or newly added components
from the original Tor. The address space of the Tor application is divided into: enclave memory and application
memory. The enclave communicates only with untrusted software through a well-defined interface.

a secure enclave by carefully manipulating interface be-
tween them (e.g., return values in system calls [30]). To
reduce such an attack surface, we define a narrow inter-
face between the untrusted and trusted components of
SGX-Tor, making the interface favorable to verification
or formal proof [26]. For example, SGX-Tor relies on
minimal system support for networking, threading, and
memory allocation and performs sanity-checking for in-
put/output arguments inside the enclave when requesting
services to untrusted system software.
Reducing performance overhead: Utilizing SGX
causes inevitable performance degradation for two main
reasons: 1) context switches occurring when entering
and leaving the enclave mode require TLB flushes and
memory operations for saving/restoring registers, and 2)
memory accesses (not cache accesses) require additional
encryption or decryption by a Memory Encryption Engine
(MEE). In addition, the small EPC region (e.g., 128 MB
in Intel Skylake [6]) can limit the active working set and
thus requires further management of enclave memory that
incurs additional performance overhead. Since SGX-Tor
protects all security-sensitive data structures and opera-
tions within the enclave, large data structures (e.g., list of
router descriptors whose size is 10 MB) easily deplete the
EPC capacity, in which case the kernel evicts EPC pages
through SGX paging instructions (e.g., EWB and ELD-
B/U) [53], leading to performance degradation. To reduce
the overhead, we minimize copying already encrypted
data to EPC, such as encrypted packets, and explicitly
stage out from EPC large data structures that are used
infrequently while ensuring their confidentiality with seal-
ing (see §5).
Deployability and Compatibility: We make practical
recommendations to achieve compatibility with existing
Tor. Our design facilitates incremental deployment of
SGX-enabled Tor components. Note that some features
such as remote attestation must have SGX-enabled di-
rectory servers, and some properties are only achieved

when all components are SGX-enabled. In this paper,
we discuss potential issues and benefits of incremental
deployment of the SGX-enabled Tor ecosystem.

4.1 SGX-Tor: Architecture
Figure 1 shows the overall architecture of SGX-Tor,
shared by all components. The memory region is divided
into two parts: the hardware-protected enclave memory
region and the unprotected application memory region.
Tor-enclave, staged inside an enclave, contains the core
components, such as directory authorities, onion routers,
and client proxy, which are protected. The untrusted
components in the application memory implement an in-
terface to system calls and non-private operations, such
as command line and configuration file parsing.

Tor-enclave also contains essential libraries for Tor ap-
plications. The SSL library handles TLS communication
and the cryptographic operations (e.g., key creation) re-
quired for onion routing. The remote attestation module
provides APIs to verify the integrity of other Tor pro-
grams running on the remote side. The sealing module is
used when sensitive information such as private keys and
consensus documents must be stored as a file for persis-
tence. SGX-Tor uses the sealing API to encrypt private
keys and consensus documents with the seal key provided
by the SGX hardware. The enclosed file is only decrypted
within the enclave through the unsealing API.

The unprotected application code provides support for
Tor-enclave without handling any private information. It
handles public data, such as RSA public keys, published
certificates, and router finger-prints. Note that key pairs
and certificates are generated in Tor-enclave. The SGX
runtime library provides an interface to create or destroy
an enclave. The untrusted part and the Tor-enclave run
as a single process, communicating through a narrow
and well-defined interface. A function that enters the
enclave is called an ECALL, and a function that leaves the
enclave is called an OCALL as defined in the Intel SGX



SDK [6]. Table 4 (in Appendix A) lists major E/OCALL
interfaces. We use ECALLs to bootstrap Tor-enclave,
while OCALLs are used to request services to the system
software. The OCALL wrapper of SGX-Tor passes the
request (e.g., send() system call) and arguments from
the enclave (e.g., buffer and its length) to the system
software and sends the results back to the enclave. Tor-
enclave relies on the following system services:
• Network I/O (socket creation, send/recv packets)
• Threading and signal management for event handling
• Error handling
• Memory mapping for file I/O

Note, we rely on the I/O and resource allocation ser-
vices provided by the system software. In addition to
providing the narrow interface, we harden the interface;
because the OCALL interface and its wrapper are untrusted,
we validate the parameters and return a value of OCALL.
For example, we perform sanity-checking for parameters
of the OCALL interface to defend against attacks (e.g.,
buffer overflow) from the untrusted code/data by utilizing
the Intel SGX SDK. For every system call used by Tor,
we leverage this feature to validate the pointer variables
provided by the untrusted OS by putting additional argu-
ments (if needed) that specify the size of the input/output
buffer 1.

4.2 SGX-Tor Components and Features
Figure 2 (a) describes the Tor components for providing
sender anonymity and (b) illustrates the scenario for a
hidden service (i.e., responder anonymity). SGX-Tor ap-
plies SGX to every component, including client proxy,
directory authorities, onion routers, and hidden services.
This section describes how each component is changed
in SGX-Tor. We first present the design of four com-
mon features shared by all components, followed by the
individual Tor components shown in Figure 2.
Initialization (common): All Tor components ex-
cept client proxy create key pairs, a certificate, and the
finger-print at initialization. For this, Tor provides a
tor-gencert tool that creates RSA keys and certifi-
cate for directory authorities and Tor relays. Directory
servers create private keys for signing and verifying votes
and consensus documents. A Tor relay creates an onion
key to encrypt and decrypt the payload for onion routing.
Both directory and relay have an identity key pair to sign
TLS certificates and consensus document/router descrip-
tor. The original Tor saves the key pairs as a file, which
can be leaked once the privilege software is compromised.

1For example, ocall sgx select(), an OCALL for
select(int nfds, ..., struct timeval *timeout) has
an additional parameter “int tv size” to specify the buffer size of
“timeout” (See Appendix). The value is filled in inside the enclave
and the sanity-checking routine provided by the SDK inspects the
input/output buffer within the enclave.
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Figure 2: Overview of SGX-Tor in action. The remote
attestation verifies the integrity of each other.

SGX-Tor protects the cryptographic operations and seals
private keys before storing them in a file.
TLS communication (common): When Tor forwards
packets between relays within a circuit, it uses TLS to
encrypt the application-level Tor protocol, such as cir-
cuit ID, command, cell length, and payload. Currently,
this information is visible to relays and system software
that hosts the relays. Thus, security-sensitive information,
including session key and related operations for establish-
ing TLS connection (e.g., handshaking, encryption, and
decryption), must be protected from the untrusted soft-
ware. In SGX-Tor, the TLS communication is executed
within the enclave, leaving the payload of the Tor protocol
protected. The system software only handles the network
I/O of packets that are encrypted within the enclave.
Sealing of private information (common): When a Tor
application terminates, it stores the cached consensus doc-
uments and private/public key pairs to a second storage
space for later use. To securely perform such an oper-
ation, SGX-Tor utilizes the sealing function. When the
Tor-enclave must store private information in a file, it
encrypts the data using a seal key provided by SGX hard-
ware. The stored data can be loaded and decrypted when
the same program requests an unseal within an enclave.
Based on the sealing/unsealing interface in the SGX SDK,
we develop a high-level API to store the important data
of the directory authorities and client proxies. The sealed
data is never leaked, unless the CPU package is compro-
mised.
Supporting incremental deployment (common): So
far, we explained the system, assuming that all parts



are SGX-enabled. However, we also support interop-
erability; e.g., it is possible to establish a circuit with
an entry-guard that runs SGX-Tor while the middle and
exit relays run the original Tor. We add configuration
options in the Tor configuration file (torrc) to enable
remote attestation. The EnableRemoteAttest op-
tion is set by directory authorities to indicate whether it
supports remote attestation. It also has RelaySGXOnly
and ClientSGXOnly options to only admit relays and
clients that pass attestation. The relays and clients can
set the RemoteAttestServer option to request at-
testation to the directory. For the SGX-Tor client proxy,
we add an option to get the list of validated relays from
the SGX-enabled directory server. Without these options,
SGX-Tor behaves like an ordinary Tor without attestation.

Directory authority: The directory authority manages
a list of Tor relays from which the client proxy selects
relays. The consensus document, containing the states
of Tor relays, is generated by directory servers through
voting that occurs every hour. The voting result (i.e.,
consensus document) is signed by the directory authority
to ensure authenticity and integrity. SGX-Tor creates
a consensus document and performs voting inside the
enclave. For example, data structures for keeping the
relay’s bandwidth information (networkstatus t),
voter list, and voting results are securely contained inside
the enclave.

Onion router (relay): Tor relays perform encryption/de-
cryption of the cell content. Relays periodically rotate the
private onion keys used for onion routing. SGX-Tor en-
closes such operations inside the enclave so that security-
sensitive information, such as circuit identifiers, cannot
be manipulated by an attacker. Because TLS commu-
nication is also performed inside the enclave, untrusted
components cannot observe Tor commands, unlike in the
original Tor. Finally, bandwidth measurement, stored in
the routerinfo t data structure, is done securely by
calculating the sum of bandwidth inside the enclave so
that it cannot be inflated or falsely reported.

Client proxy: The client’s circuit establishment and key
negotiation process with Tor relays are securely executed
inside the enclave. Also, the consensus document and the
list of relays are enclosed within the enclave, unlike in the
original Tor, where they are transmitted using TCP un-
encrypted. We modified it to use TLS inside the enclave
so that keys and consensus documents are not exposed to
untrusted components. We also disallow clients creating
a loop in a circuit. For hidden services, SGX-Tor securely
manages relevant data structures, such as the hidden ser-
vice descriptor, address of rendezvous point, and circuit
identifier for hidden services to prevent any unintended
information leakage.
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Figure 3: Remote attestation procedure. QUOTE con-
tains the hash of the target enclave in the client.

4.3 Remote Attestation
SGX-Tor uses remote attestation to detect and remove
modified nodes from the network. Currently, the same
Tor binary serves as the directory authority, Tor relay, and
client proxy. Only their configurations are different. This
means that every Tor component has the same measure-
ment.

Figure 3 shows the attestation procedure between a
client in which an enclave program runs and a remote
server that is verifying its integrity. Intel provides Intel
Attestation Server (IAS) [41], whose role is similar to a
certificate authority, to aid the process; it provisions to
the remote server a public key used to authenticate the
attestation report. It also issues an endorsement certificate
for each SGX processor’s attestation key to ensure that the
key is stored within the tamper-resistant SGX CPU [31].
During the remote attestation, the remote server checks
the QUOTE data structure that contains the hash value
(code/data pages) to verify the integrity of the client. The
remote server then signs the QUOTE using the Enhanced
Privacy ID (EPID) group key and forwards it to the IAS.
The IAS verifies the signature and QUOTE and sends the
attestation report to the remote server. Here, the EPID
group key provides anonymity and also supports unlinka-
bility [41]. Finally, the server verifies the report signature
and sends the attestation status to the client.

We use remote attestation for a) integrity verification of
relays during onion router (or relay) admission, b) mutual
attestation between authorities, and c) sending the list
of relays to the trustworthy client. SGX-Tor provides
high-level APIs for each remote attestation cases.
Integrity verification of relays (Dir-to-Relay): When
a relay contacts directory authorities to register itself in
the Tor network, it requests remote attestation (taking the
client role in Figure 3) to the directory authorities (server
role). The directory server admits only “clean” relays and
filters out suspicious ones that run modified Tor programs.
Non-SGX relays will also fail to pass the attestation.
Mutual attestation of directories (Dir-to-Dir): The di-
rectory authorities mutually perform remote attestation to
detect modified servers. A modified directory might try



Component Lines of code (LoC) % Changed

Tor application 138,919 lines of C/C++ 2.5% (3,508)
EDL 157 lines of code 100% (157)
OCALL wrapper 3,836 lines of C++ 100% (3,836)
Attestation/Sealing 568 lines of C/C++ 100% (568)

OpenSSL 147,076 lines of C 1.0% (1,509)
libevent 21,318 lines of C 7.0% (1,500)
zlibc 8,122 lines of C -

Scripts 262 lines of python -
Total 321,470 lines of code 3.4% (11,078)

Table 1: Lines of code for SGX-Tor software.

to admit specific Tor relays (possibly malicious), launch
tie-breaking attacks to interrupt consensus establishment,
or refuse to admit benign relays [35]. However, because
malicious directory servers will fail to pass the attesta-
tion with SGX-Tor, it helps the Tor community to take
action quickly (e.g., by launching a new reliable author-
ity). When the codes related to the relay admission
policy or algorithm of the directory server are patched,
a new measurement can be distributed to check its va-
lidity through remote attestation. Note that the existing
admission control mechanisms for Tor relays can still be
used.
Trustworthy client (Client-to-Dir): To detect modified
client proxies, the directory authority attests clients and
transmits only the consensus document when they pass
attestation. This filters out modified clients that might per-
form an abnormal circuit establishment such as creating a
loop [37, 54, 55] and also keeps the consensus document
confidential. Therefore, only benign SGX-enabled Tor
clients obtain the consensus document, which contains
the list of relays verified by directory authorities. In sum-
mary, if all relays and clients are SGX-enabled, we can
1) keep the list of relays private and 2) block malicious
clients.

5 Implementation
We developed SGX-Tor for Windows by using the SGX
SDK provided by Intel [6]. In total, it consists of 321K
lines of code and approximately 11K lines of code are
modified for SGX-Tor, as broken down in detail in Table 1.
As part of this effort, we ported OpenSSL-1.1.0 [8], zlib-
1.2.8 [16], and libevent-2.0.22 [7] inside the enclave. Note
that the porting effort is non-trivial; for one example,
OpenSSL libraries store the generated keys to files, but
to securely export them to non-enclave code, we have
to carefully modify them to perform sealing operations
instead of using naive file I/Os. Furthermore, because
enclave programs cannot directly issue system calls, we
implemented shims for necessary system calls with an
OCALL interface. However, to minimize the TCB size, we
ported only required glibc functions, such as sscanf()
and htons(), instead of embedding the entire library.

As a result, our TCB becomes dramatically reduced com-
pared to other SGX systems such as Graphene [67] or
Haven [26] (more than 200 MB) that implements a whole
library OS to support SGX applications; SGX-Tor re-
sults in 3.8 times smaller TCB compared to Graphene
(320 K vs. 1,228 K LoC). The source code is available at
https://github.com/kaist-ina/SGX-Tor.

Managing enclave memory: To work with the lim-
ited EPC memory, SGX-Tor seals and stores large data
structures outside of the enclave. If required, it explic-
itly loads and unseals the encrypted data into the enclave.
For example, cached-descriptors that contain the
information of reachable relays (e.g., finger-print, certifi-
cate, and measured bandwidth), are around 10 MB for
each, which is too big to always keep inside the enclave.
Unlike the original Tor, which uses memory-mapped I/Os
to access these data, SGX-Tor loads and unseals them
into the EPC only when it has to update the list of relays,
which essentially trades extra computation for more us-
able EPC memory. Similarly, certain system calls such as
recv() are implemented to save the enclave memory;
they get a pointer pointing to the data (e.g., encrypted
packets) outside the enclave instead of copying them to
the enclave memory.

Sealing and unsealing API: We implemented sealing
and unsealing API to substitute file I/O operations for pri-
vate keys. SGX-Tor uses C++ STL map to store generated
private keys in the enclave memory. The key of the map
is the name of the private key, and the value of the map
is a structure that contains the contents and length of a
private key. When SGX-Tor needs to read a generated
key, it finds the key contents by the key name through
the map. The application side of SGX-Tor can request
the private keys using sealing API to store it in the file
system. SGX-Tor uses sealing before sending the keys
outside the enclave. In reverse, the application side of
SGX-Tor also can request to load the sealed private keys
using unsealing API. SGX-Tor decrypts sealed key by
unsealing it and stores it in the map. These sealing and
unsealing mechanisms are easily usable because they are
implemented as macros.

Securely obtaining entropy and time: The vanilla
OpenSSL obtains entropy from the untrusted under-
lying system through system calls, like getpid()
and time(), that make the enclave code vulnera-
ble to Iago attacks [30, 42]; for example, a manipu-
lated time clock can compromise the logic for certi-
fication checking (e.g., expiration or revocation). To
prevent such attacks, we obtain entropy directly from
the trustworthy sources: randomness from the rdrand
instruction (via sgx read rand) and time clocks
from the trusted platform service enclave (PSE) (via
sgx get trusted time) [6][pp. 88-92, 171-172].

https://github.com/kaist-ina/SGX-Tor


Data structure Tor Network-level SGX-Tor
adversary (Component)

TCP/IP header V V V
TLS encrypted V V Vbytestream
Cell V N N (R)
Circuit ID V N N (R)
Voting result V N N (D)
Consensus document V N N (D/R/C)
Hidden service V N N (H)descriptor
List of relays V N N (C)
Private keys V N N (D/R/C)

Table 2: Information visible to adversaries who run
SGX-Tor and original Tor and network-level adver-
saries. “V” denotes visible; “N” denotes non-visible.
Component “D” denotes a directory authority, “R”
relay, “C” client, and “H” hidden service directory.

6 Evaluation
We evaluate SGX-Tor by answering three questions:
• What types of Tor attacks can be mitigated?
• What is the performance overhead of running SGX-

Tor? How much does each component of SGX-Tor
contribute to the performance degradation?
• How compatible is SGX-Tor with the current Tor net-

work? How easy is SGX-Tor adopted?
Experimental setting: We set up two evaluation envi-
ronments for SGX-Tor: 1) by admitting SGX-Tor onion
router in the real Tor network and 2) by constructing
a private Tor network where all components, including
directories and client proxies, run SGX-Tor. We used
nine SGX machines (Intel Core i7-6700 3.4GHz and Intel
Xeon CPU E3-1240 3.5GHz). The private Tor network
consists of a client proxy, five relays, and three directory
servers. Note that directory servers also work as relays.
We extend the work of Chutney [23] to configure and
orchestrate our private SGX-Tor network.

6.1 Security Analysis
Table 2 summarizes security- and privacy-sensitive data
structures that are available to three types of adversaries:
1) an adversary who controls relays running original Tor,
2) an adversary who controls the platform running SGX-
Tor, 3) and a network-level adversary. V marks the visi-
ble information to an adversary, whereas N denotes non-
visible ones. An adversary who controls the vanilla Tor
can access a great deal of sensitive information, attracting
more adversaries to run malicious Tor relays. In con-
trast, an attacker who even controls the platform running
SGX-Tor cannot gain any information other than observ-
ing the traffic, just like a network-level adversary. This
indicates that the power of Tor adversaries is reduced to
that of network-level adversaries with SGX-Tor. Among
the attacks in §3.3, we choose three well-known classes
of attacks considering their reproducibility and severity.

We replicate these attacks (and their key attack vectors)
in a lab environment and evaluate if SGX-Tor correctly
mitigates them.

Bandwidth inflation: To demonstrate this attack, we
modify the Tor code to advertise inflated bandwidth of a
relay to directory servers. The directory server performs
bandwidth scanning to check whether a relay actually
serves the bandwidth advertised by itself [10]. During
the scanning, the directory server creates a 2-hop circuit,
including the target relay, and downloads the file from
particular hosts to estimate the bandwidth of the relays.
If a malicious relay is selected as non-exit, it can directly
see which connection is originated from the directory
server [27]. By throttling other traffic, the compromised
relay inflates the measured bandwidth and gets a fast
flag, which is given to a high bandwidth relay indicating
that they are suitable for high-bandwidth circuits, in the
consensus document [25, 27, 57]. However, with SGX-
Tor, modifying the Tor code is not fundamentally possible
due to the measurement mismatch during the attestation.

Circuit demultiplexing: Being able to decrypt cell Tor
headers and demultiplex circuits and streams in relays
is a common attack vector exploited in cell counting at-
tacks [27, 50], traffic analysis [57], website finger-printing
attacks [47], bad apple attacks [48], replay attacks [60],
relay early attacks [21], and controlling access to hidden
services [27]. With a modified relay, we were able to
dump Tor commands, circuit IDs, and stream IDs; count
cells per stream [27, 50]; duplicate cells [60]; and even
selectively drop particular circuits and streams [28]. How-
ever, with SGX-Tor, the modified relay failed to be admit-
ted due to attestation failure. With the attested SGX-Tor
relay, it is not possible to dump the EPC memory outside
the enclave unless the code inside the enclave is compro-
mised due to an exploitable bug (e.g., buffer overflow).
Even inferring the cell boundary was not trivial, let alone
observing decrypted cell headers.

Malicious circuit creation: By modifying the original
Tor code, we successfully establish a 3-hop loop circuit.
Creating a loop can be an attack vector for traffic
analysis [54, 55] and congestion attack [37] with a long
loop. In SGX-Tor, it is not possible to introduce loops
because the directory authority can verify the integrity of
the client proxies. Therefore, the modified Tor client fails
to manipulate a circuit as it intended.

6.2 Performance Evaluation
End-to-end performance: To quantify the effect on per-
formance in a wide-area network, we configure a private
Tor network that consists of an entry guard and exit relay
located in East Asia and the U.S. East, respectively. For
SGX-Tor, every Tor component, including client proxy,
except the destination server runs SGX, except for mid-
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Type Time-to- Throughput (Mbps)
fisrt-byte (ms) 10 MB 50 MB

Original (baseline) 2.05 658 716
SGX-Tor (overhead) 2.19 (6.8%) 589 (8.8%) 651 (11%)

Table 3: Overhead of TLS communication.

dle relays. To diversify the middle relay locations, we
use Amazon EC2 [2] U.S. East, U.S. West, and Europe
instances. Figure 4 shows the CDF of throughput while
downloading a file (10 MB) via a HTTP/HTTPS server.
The results are based on the average of 50 runs. SGX-Tor
exhibits 11.9% lower throughput (3.11 Mbps) for HTTP
and 14.1% (2.95 Mbps) lower throughput for HTTPS. Fig-
ure 5 shows the CDF of time-to-first-byte (latency) for
HTTP transfer. SGX-Tor (525ms) only gives 3.9% addi-
tional delays compared to the original Tor (505ms). We
also evaluate the web latency when a client connects to a
website through Tor. Figure 6 shows the distribution of
the web page loading time for Alexa Top 50 websites [1].
We measure the time from the initiation of a request until
an onload event is delivered in the Firefox browser. Simi-
lar to time-to-first-byte, SGX-Tor gives 7.4% additional
latency on average. We note that our SGX SDK allows
compilation only in debug mode, since it requires an ap-
proved developer key provided by Intel to run an enclave
in release mode. Thus, we used debug mode for all Tor
performance measurements.
Hidden service: To quantify the overhead of running a
hidden service with an SGX-Tor proxy, we run one on
the real Tor network. At the client side, we use a Tor
browser [12] that automatically picks a rendezvous point.
For each measurement, we relaunch a Tor browser to es-
tablish a new circuit. We perform 100 measurements that
transfer a 10 MB file from an HTTP file server running as
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Figure 10: Overhead of onion encryption.

a hidden service. Figure 7 shows the distribution of the
throughput for SGX-Tor and the original Tor. The hidden
service using SGX-Tor gives only a 3.3% performance
degradation from 1.35 to 1.30 Mbps on average. We see
a smaller gap because the performance is more network
bottlenecked as packets from/to a hidden service traverse
two 3-hop circuits and only the hidden service uses SGX.

Overhead of TLS and onion encryption: To quantify
the overhead in a more CPU-bound setting, we create
a private Tor network in which all components are con-
nected locally at 1Gbps through a single switch. We
measure the overhead of SGX-Tor starting from a single
TLS connection without any onion routing and increase
the number of onion hops from one to three. Table 3
shows the time-to-first-byte and throughput of TLS com-
munication without onion routing. The result shows that
SGX-Tor has 9.99% (716 to 651 Mbps) of performance
degradation and has 6.39% additional latency (2.05 to
2.19 ms). Figure 10 shows the time-to-first-byte and
throughput by increasing the number of onion hops for
downloading a 10 MB file from the HTTP server. As
the hop is increased, SGX-Tor has 17.7%, 18.3%, and
18.4% additional latency and the performance is degraded
by 25.6%, 21.1%, 22.7%, respectively. Figure 8 shows
the end-to-end client performance in the private Tor net-
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Figure 11: Compatibility test of SGX-Tor and original Tor while running as a middle relay. Both Tor relays
started at the same time and acquire “Fast” and “Stable” flags during the evaluation [3].

work. The vanilla Tor achieves 106 Mbps for HTTP and
101 Mbps for HTTPS transfers, while SGX-Tor gives
85 Mbps and 77 Mbps respectively, resulting in a through-
put degradation of 24.7% and 31.2%, respectively (for
10 MB).
Remote attestation: We quantify the latency and com-
putation overhead of remote attestation. To emulate a
Tor network running in a wide area setting, we introduce
latency between the SGX-Tor directory and relays in our
private Tor network to mimic that of the real network.
The round-trip time between East Asia (where most of
our SGX servers are) and nine directory authorities in
Tor falls between 144ms (longclaw [3] in the U.S.) and
313ms (maatuska [3] in Sweden). The round-trip time
between our directory and IAS was 310ms. We execute
30 runs for each directory while introducing the latency
of a real Tor network. Figure 9 shows the CDF of the
remote attestation latency when the directory authority
verifies Tor relays. The average attestation latency of the
entire process in Figure 3 is 3.71s.

SGX-Tor relays and clients request the remote attes-
tation to the directory server once during bootstrapping.
This means that this is a one-time bootstrapping cost and
is relatively short compared to the client bootstrapping
time, which takes 22.9s on average on a broadband link to
download a list of relays [49]. We quantify the computa-
tional cost of remote attestation for the directory authority
for verifying client proxies. For attestation, directory
servers calculate the AES-CMAC of group ID for check-
ing EPID group and ECDSA signature generation for
QUOTE verification. On our i7 machine, the computation
takes 37.3ms in total if the QUOTE verification succeeds,
as annotated in Figure 3. When it fails, it takes 35.5ms.
On a peak day, Tor has about 1.85 million users [13]. To
quantify the amount of computation required, we perform
AES-CMAC and ECDSA signature generation in a tight
loop and measure the throughput. It gives 27.8 operations
per second per core. Thus, with nine directory servers,
assuming each has eight cores, the total computation time
for remote attestation of 1.85 million daily clients will
be about 15.4 minutes. We believe this is a moderate
resource requirement for the directory authority.
Overhead of key generation: Finally, we measure the
overhead of in-enclave key generation for two RSA key

pairs: identity key (3072-bit) and signing key (2048-bit)
for the directory authority. SGX-Tor takes 12% longer
than the vanilla Tor (2.90 vs. 2.59 ms), including the time
for sealing keys and unsealing for key recovery.

6.3 Compatibility and Deployability
We demonstrate the compatibility of SGX-Tor by admit-
ting a long-running SGX-Tor relay into the existing Tor
network as a middle relay. For comparison, we also run
a vanilla Tor side-by-side. We compare both relays in
terms of (a) network I/O bandwidth per second, (b) prob-
ability to be selected as a middle relay, and (c) advertised
bandwidth obtained from a published consensus docu-
ment from CollectTor [4]. The bandwidth statistics are
averaged over a 30-minute window. Figure 11 shows the
result obtained for two weeks. In total, SGX-Tor served
10.5 GB of traffic. Both relays obtained fast and stable
flag on the same day. The average advertised bandwidth
of SGX-Tor relay is 119 KB/s. We see that SGX-Tor is
compatible with the existing Tor network, and for all met-
rics SGX-Tor shows a similar tendency with the vanilla
Tor.

7 Discussion
Deployment issues: The simplest way to deploy SGX-
Tor in the existing Tor ecosystem incrementally is to use
cloud platforms. Tor already provides default VM im-
ages to run bridges on Amazon EC2 cloud [13]. When
SGX becomes available on cloud platforms, we envision
a similar deployment scenario for SGX-Tor. As a recent
patch provides support for SGX virtualization [9], we
believe that deployment of SGX-Tor using cloud platform
is feasible. Note that incremental deployment involves in
security tradeoffs, as not all properties can be achieved as
discussed in §4. As a future work, we would like to quan-
tify the security tradeoffs and ways to mitigate attacks in
the presence of partial deployment.
Limitation: Although SGX-Tor can mitigate many at-
tacks against Tor components, attacks assuming network-
level adversaries [44] and Sybil attacks [36] are still effec-
tive, as we mentioned in the §3.1. Additionally, SGX-Tor
cannot validate the correctness of the enclave code it-
self. SGX-Tor can be compromised if the code contains
software vulnerabilities and is subject to controlled side-
channel attacks [69]. We believe these attacks can be



mitigated by combining work from recent studies: e.g.,
by checking whether an enclave code leaks secrets [65];
by protecting against side-channel attacks [62, 64]; or by
leveraging software fault isolation [38, 62]).

8 Related Work

Software for trusted execution environments: Various
TEEs such as TPM, ARM TrustZone, and AMD SVM
have been used for guaranteeing the security of applica-
tions in mobile and PC environments. Since the traditional
trusted computing technologies (e.g., hypervisor-based
approach with TPM) rely on the chain of trust, it makes
the size of TCB larger. Flicker [52] proposed an approach
that executes only a small piece of code inside the trusted
container, where it extremely reduces the TCB. Neverthe-
less, it suffers from performance limitations. Intel SGX
removes this challenge by offering native performance
and multi-threading. In addition, the cloud computing
and hosting service providers, where Tor relays are often
hosted [14], is predominantly x86-based.

Applications for Intel SGX: Haven [26] pioneered
adopting Intel SGX in the cloud environment with an un-
modified application. VC3 [61] proposed data analytics
combined with Intel SGX in the cloud. Moat [65] studied
the verification of application source code to determine
whether the program actually does not leak private data
on top of Intel SGX. Kim et al. [46] explores how to lever-
age SGX to enhance the security and privacy of network
applications. These studies are early studies of SGX that
rely on SGX emulators [42]. S-NFV [63] applies SGX
to NFV to isolate its state from the NFV infrastructure
and platform and presents preliminary performance eval-
uations on real SGX hardware. In contrast, we show how
SGX can improve the trust model and operation of Tor
and SGX-Tor run on real SGX hardware.

Attacks and security analysis on Tor: §3 discussed
many attacks on Tor. SGX-Tor prevents modification
of Tor binaries and limits attackers’ ability; attackers can
still launch attacks within the network outside Tor nodes.
For example, attackers can still mount traffic analysis at-
tacks or website finger-printing attacks. While Tor does
not try to protect against traffic confirmation attacks [35],
it aims to protect against general traffic analysis attacks.
In particular, large-scale traffic correlation [29] and web-
site finger-printing [45] attacks are believed to be very
difficult in practice [22, 45] because those attacks require
achieving an arbitrarily low false positive rate as the num-
ber of users becomes larger. Security analysis of Tor on
a realistic workload is an ongoing research [34] area. In
this work, we show how we can thwart known attacks
against the Tor ecosystem by using a commodity trusted
execution environment, Intel SGX.

9 Conclusion
Due to the wide adoption of the x86 architecture, In-
tel Software Guard Extensions (SGX) potentially has a
tremendous impact on providing security and privacy
for network applications. This paper explores new op-
portunities to enhance the security and privacy of a Tor
anonymity network. Applying SGX to Tor has several
benefits. First, we show that deploying SGX on Tor can
defend against known attacks that manipulate Tor com-
ponents. Second, it limits the information obtained by
running or compromising Tor components, reducing the
power of adversaries to network-level adversaries, who
can only launch attacks external to the Tor components.
Finally, this brings changes to the trust model of Tor,
which potentially simplifies Tor operation and deploy-
ment. Our extensive evaluation of the SGX-Tor shows
that SGX-enabled Tor components incur small perfor-
mance degradation and supports incremental deployment
on the existing Tor network, demonstrating its viability.
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Appendix A

Type Category API Description

ECALL TOR void sgx start tor(int argc, char **argv, ...) Start SGX-Tor process in enclave
ECALL TOR void sgx start gencert(char *tor cert, ...) Create authority keys and certificate
ECALL TOR void sgx start fingerprint(char *fingerprint, ...) Create finger-print
ECALL TOR void sgx start remote attestation server(int port, ...) Start remote attestation server
ECALL TOR sgx status t sgx init ra(int b pse, ...) Create remote attestation context
ECALL TOR sgx status t sgx close ra(sgx ra context t context) Release remote attestation context
ECALL TOR sgx status t sgx verify att result mac(sgx ra context t context, ...) Verify the MAC in attestation result

OCALL NET int ocall sgx socket(int af, int type, int protocol) Create socket descriptor
OCALL NET int ocall sgx bind(int s, const struct sockaddr *addr, ...) Bind socket
OCALL NET int ocall sgx listen(int s, int backlog) Make socket in listening state
OCALL NET int ocall sgx accept(int s, struct sockaddr *addr, ...) Accept incoming connection
OCALL NET int ocall sgx send(int s, char *buf, int len, int flags) Receive data from given socket
OCALL NET int ocall sgx recv(int s, char *buf, int len, int flags) Send data through given socket

OCALL NET int ocall sgx select(int nfds, void *rfd, ..., Examining the status of socket
struct timeval *timeout, int tv size) descriptor

OCALL THREAD unsigned long long ocall sgx beginthread(void *args, ...) Create thread with given argument
OCALL THREAD unsigned long ocall sgx TlsAlloc(void) Allocates a thread local storage index
OCALL ERROR int ocall sgx GetLastError(void) Get the error code of calling thread
OCALL ERROR void ocall sgx SetLastError(int e) Set the error code of calling thread
OCALL MEM int ocall sgx CreateFileMapping(int hFile, ...) Create file mapping object
OCALL MEM void * ocall sgx MapViewOfFile(int hFileMappingObject, ...) Mapping address space for a file

Table 4: Interface between the Tor enclave and the privilege software. SGX-Tor uses seven ECALLS to boot-
strap the Tor-enclave and aid remote attestation. It uses a total of 57 OCALLs in four categories. We list
representative OCALLs in each category.
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