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ABSTRACT
Network Function Virtualization (NFV) applications are stateful.
For example, a Content Distribution Network (CDN) caches web
contents from remote servers and serves them to clients. Similarly,
an Intrusion Detection System (IDS) and an Intrusion Prevention
System (IPS) have both per-flow and multi-flow (shared) states to
properly react to intrusions. On today’s NFV infrastructures, secu-
rity vulnerabilities many allow attackers to steal and manipulate the
internal states of NFV applications that share a physical resource.
In this paper, we propose a new protection scheme, S-NFV that in-
corporates Intel Software Guard Extensions (Intel SGX) to securely
isolate the states of NFV applications.

Categories and Subject Descriptors
•Security and privacy → Security in hardware; Virtualization
and security; Network security; •Networks → Middle boxes /
network appliances;

Keywords
Middlebox; NFV; VNF; Intel SGX

1. INTRODUCTION
Network Function Virtualization (NFV) is a way to package net-

work functions (NFs) traditionally performed by specialized phys-
ical appliances into virtual machines that can run on any physical
server. The datacenter NFV infrastructure provides the necessary
capabilities—computational resources and network paths—to es-
tablish the environment in which the virtualized network functions
(VNFs) can execute. Many network functions (NFs) tend to create
and maintain internal states to enable complex, intricate cross-packet
and cross-flow analysis. Such a rich packet processing becomes an
essential component in modern NFs that implements a wide range
of applications, such as Content Distribution Network (CDN), In-
trusion Detection System (IDS), and Intrusion Prevention System
(IPS).

In general, NF states encompass private per-flow states (e.g.,
used for correctly tracking per-flow packets), shared multi-flow
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states (e.g., used for accounting for or managing packets from a
single end-point), and function-wide global states (e.g., like cached
data in CDNs). These NF states contain end-user data, such as IP
address, end-user host details, cached user content, etc. For instance,
CDNs [9] cache objects from origin servers based on client requests.
Cached objects are user data, such as profile pictures, which should
be protected from malicious access. Moreoever, this protection
is a top priority for CDNs, running as VNFs, in datacenter NFV
infrastructure.

The ETSI security specification [5] for NFV points out the risks
with datacenter NFV infrastructure such as hypervisor introspection,
where the NFV confidentiality and integrity are not guarded. This
is because hypervisor introspection can enable the ability to view,
inject, and/or modify operational state information associated with
NFV through direct or indirect methods. Instead of guarding the
entire guest OS state, we focus on the end-user states maintained in
VNFs and the code accessing these states. Our goal is to provide
confidentiality and integrity to the end-user states maintained in the
VNFs.

In this paper, we take a first step toward solving this problem
by using a yet-to-be commodity security scheme, called Intel SGX.
Intel SGX allows a processor to instantiate a secure region of address
space known as enclave; it then protects execution of the code within
the enclave, even from malicious privileged code or hardware attacks
such as memory probes. Haven [7] shows the benefits of Intel SGX
for running existing server applications in the cloud with adequate
level of trust and security.

Our solution, S-NFV, provides a secure framework for NFV ap-
plications. S-NFV provides an interface to move the VNF states and
state processing code inside the enclave. Since VNF’s functionality
is tightly coupled with their states, the framework needs to provide
a model to only allow relevant states (which need protection) to be
moved to the enclave. Also, for the framework to provide the right
abstraction for the different types of states (per-flow, shared, and
global), the challenge lies in understanding the state usage model
in various NFV applications. Along with securing VNF states, we
also propose secured administrator access to configure rules used by
these states and to view logs generated by these state processing. We
use OpenSGX [10] to demonstrate securing Snort [11] application’s
per-flow state. Also, we peform the preliminary evaluation using a
SGX-equipped machine.

2. OVERVIEW

2.1 Network Functions and Their States
To understand the protection that a solution like S-NFV must

provide, we first analyze the state requirements associated with
typical NFs. For this, we hand-picked five representative NFV ap-
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Function Description Per-Flow State Shared/Multi-Flow State Global/All-Flows State
NAT64 NAT64 function performs in-

line address translation from
IPv6 to IPv4 address and
vice-versa

Struct: nat64_binding
Desc: NAT IP binding
Size: 38 Bytes

None None

Snort Snort is an Intrusion Detec-
tion/Prevention System.

Struct: TagNode
Desc: Track packets per flow
Size: 51 Bytes

Struct: TagNode
Desc: Track packets per host
Size: 51 Bytes

Blacklisted IPs, URI, Files
etc

PCEF Policy Control and Enforce-
ment Function (PCEF) is a
telecom node used to provide
policy and charging function-
ality by performing DPI.

Struct: NA
Desc: Per flow charging
Size: NA

Struct: NA
Desc: Per mobile subscriber
charging - multiple flows
from the subscriber
Size: NA

None

HAProxy HAProxy can be configured
as a HTTP proxy and Load-
balancer for servers.

Struct: session, connection
Desc: Each session repre-
sents 2 connection states
Size: session-208 Bytes,
connection-148 Bytes

None Struct Server - contains
server information to load
balance

Squid Squid is a Web caching proxy
with global states.

None None Web Object - shared by multi-
ple flows and different VNFs

Table 1: The internal state of NFV applications can be securely protected by S-NFV through SGX.

plications, including packet processing, IDS and CDN (see Table 1).
We observe that these network functions vastly differ in the state
access behavior with respect to their per-flow, shared and global
state requirements, as categorized in Table 1.

1. NAT64 [2] contains only per-flow states that bind an IPv4
address to another IPv6 address. The binding is created when
the first packet for the flow is processed by NAT64 and persists
for the lifetime of that flow. Any malicious modification to
the NAT state, in the middle of packet processing, will disrupt
the flow from the server or client side.

2. Snort [11] can be configured as an online Intrusion Prevention
System (IPS). In this mode, Snort maintains the per-flow state
to prevent malicious packets by inspecting incoming and
outgoing traffic. A malicious access to the Snort state may
allow untrusted parties to read end-user details like an IP
address.

3. Policy Control and Enforcement Function (PCEF) is a telecom-
munication node that maintains users’ accounting states, com-
prising per-flow bytes and packet count. In our study, we
focus only on the accounting state for subscribers in PCEF.
According to the 3GPP specification [1], the policy for charg-
ing can be based either on volume or time, meaning that the
billing state can be sent to the offline billing function after a
certain time (e.g., data accounted in every 600 seconds) or
after a data limit (e.g., every 10 KB data accounted). Mali-
cious modifications to these states will create incorrect billing
records for the subscribers.

4. HAProxy [3] maintains a per-session state (i.e., two connec-
tion states): one from a client to HAProxy and another from
HAProxy to the backend server. The session state contains
the information for the current HTTP transaction associated
with the connection. Access to the existing HTTP transac-
tion allows intercepting HTTP transaction details. Modifying
the HTTP transaction state results in disrupting the HTTP
transactions.

5. SQUID [4] is a web caching proxy that dynamically caches
web pages based on client requests. The cached content are
the NFV states for SQUID. The size of the cached content
is arbitrary, based on the size of the cached web page. The
cached web pages are similar to CDNs, where malicious
access to the web page results in accessing end-user data like

profile pictures, end-user accounts, etc.
The different states imply that there may be opportunities for con-

trolling and managing fine-grained NFV application state protection.
Based on the NFV application usage of these states, their protection
requirements would also differ. For our initial exploration, we use
Snort as a driving example and analyze the feasibility and costs
associated with protecting Snort states (TagNode) using OpenSGX.

2.2 Intel SGX
Intel SGX provides two main security features, namely, isolation

and remote attestation. In this section, we introduce one of such
features, isolation that S-NFV mainly utilizes to protect NFV ap-
plication states. Then, we give a brief overview of OpenSGX [10],
an open platform for Intel SGX, that S-NFV relies on to implement
and evaluate the design of the proposed idea.

Isolation. SGX protects the confidentiality and integrity of an
enclave’s memory, where NFV applications are loaded and operate
on. Enclave memory management is divided into two parts: address
space allocation and memory commitment. The address space al-
location is a specification of the range of logical addresses that the
enclave may use. This range is called the ELRANGE. No actual
resources are committed to this region. Memory commitment is
the assignment of actual memory resources (as pages) within the
allocated address space. This two-phase technique allows flexibility
for enclaves to control their memory usage and adjust dynamically
without overusing memory resources when enclave needs are low.
Commitment adds physical pages to the enclave. An operating sys-
tem may support separate allocate and commit operations. Further
details of Intel SGX are found in the programming reference [6].

OpenSGX. It is an open platform that provides the hardware
emulation of Intel SGX and an ecosystem such as operating system
interfaces and user library for easy development of enclave programs.
OpenSGX is implemented on top of QEMU’s user-mode emulation
by leveraging its binary translation. It provides a rich development
environment, thereby allowing the research community to easily
emulate a program running inside an enclave, without SGX-enabled
hardware, licenses, and keys [10].

2.3 Threat Model
We assume that NFV applications are deployed by service providers

in an untrusted datacenter environment, where the service providers
do not have any control over the datacenter infrastructure. The
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Figure 1: NFV Applications with SGX Framework
control infrastructure in such environment, i.e., the hypervisor or
services running in privileged mode, is able to arbitrarily view and
modify the NFV application states. As a result, an attacker who
takes control over such environment can maliciously access and
modify end-user states, such as profile pictures in CDN. The worst
impact could be when such malicious access results in reconfigu-
ration of firewall, routing policies and modifying tenant network
address space, etc. In such setting, the memory region protected by
Intel SGX is considered as the only trusted computing base (TCB).
Also, the service providers are able to verify the evidence of a NFV
application running in an SGX-equipped environment. Note, attack-
ers can still launch attacks such as denial-of-service to break NFV
application’s functionality under the protection of SGX, but such
kind of scenarios are out of scope in this work.

3. DESIGN
Given the strong threat model where the host environment is un-

trusted, S-NFV aims to provide a secure system design for NFV
applications that can protect (i.e., isolate) their states from the po-
tentially malicious underlying software stack.

3.1 S-NFV Software Architecture
In the S-NFV architecture, the original NFV application is split

into two parts: S-NFV enclave and host. The S-NFV enclave, which
contains the states and the state processing code, is decoupled from
the original NFV application and protected by the SGX enclave,
while the S-NFV host includes the rest of the processing as shown
in Figure 1. To effectively leverage Intel SGX to ensure the integrity
and confidentiality of states, there are two design requirements
for the S-NFV enclave to guard against possible attacks [8]: 1)
clear isolation against S-NFV and the underlying environment (e.g.,
operating system)—that is, the code and data of S-NFV enclave
should not rely on memory outside the enclave; and 2) safe APIs
to enable only a limited yet necessary set of interactions. S-NFV
enclave also serves as the trusted anchor to support secure the S-
NFV application bootstrap and establish the secure channel between
S-NFV application and the service provider’s trusted management
node.

3.2 S-NFV Enclave Design
To extract a piece of code from the original program as a separated

module and meet the aforementioned requirements are non-trivial.
Here, we present details on the design of the S-NFV enclave in
terms of each requirement.

Clear isolation. An NFV application is usually developed as a
whole, which results in many dependencies among the code and
data. For example, there could be several global variables used in
different pieces of code. A single piece of code inside the enclave
that relies on memory that resides outside the enclave can introduce
additional attack surface and further break the security guarantee
of SGX [12]. Therefore, to provide clear isolation, we need to
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Figure 2: S-NFV Remote Attestation.
carefully examine and decouple the target code (in Intel SGX) from
the original application program.

Safe APIs. Once we can ensure the clear isolation of S-NFV,
the S-NFV enclave APIs are considered as the only attack surfaces
exposed to the host environment. Similar to the concerns in clear
isolation, the APIs also need to be carefully designed such that a
complicated data structure that contains data or code pointers cannot
be directly taken as arguments. Also, since attackers are able to
observe all data to enter or leave the S-NFV enclave, we need to
ensure that state-related data does not enter or leave the enclave in
plain-text. Otherwise, the confidentiality of the states can be easily
broken. Such cryptographic setting is done by the secure channel
establishment explained in the following section.

3.3 Secure Launch
S-NFV applications leverage the SGX remote attestation feature

to allow service providers to configure the S-NFV application and
monitor S-NFV applications remotely. Based on the remote attesta-
tion primitive, as shown in Figure 2, S-NFV can further support:

Secure Bootstrap. During the S-NFV bootstrap, S-NFV enclave
collects both memory states on different stages as well as hardware
states to generate a valid measurement. The measurement is verified
by the service provider through the remote attestation to determined
whether the S-NFV application is correctly booted in the trusted
environment. Also, the S-NFV is securely configured from the
service provider.

Establishing Secure channel. After securely bootstrapping, the
service provider can further establish a secure communication chan-
nel with S-NFV enclave based on remote attestation. One direct way
is to use Diffie-Hellman key exchange, i.e., the key pair is generated
within S-NFV enclave and the public key is sent along with remote
attestation protocol.

The secure channel can guarantee the confidentiality of both
the data sent to or sent from S-NFV enclave against the untrusted
environment. The S-NFV configuration data is sent from the service
provider to S-NFV enclave and the S-NFV application logs are sent
from S-NFV enclave to the service provider.

4. IMPLEMENTATION
We use Snort, a candidate NFV application, as a proof-of-concept

to demonstrate the S-NFV design on top of OpenSGX. In our im-
plementation, we target at protecting the tag state (TagNode), which
helps with packet processing once tag rules are specified in config-
uration. Tag contains the flow identifier (Src IP, Dest IP, Src Port,
Dest Port and Protocol), with metrics like packet count, and logs the
end-user IP address associated with flows.

According to S-NFV, we decouple Snort into Snort enclave (S-
NFV enclave) and Snort host (S-NFV host). Tag operation, such as
tag creation and tag rules querying, is put inside the Snort enclave,
while the remaining part of the original Snort is taken as Snort host.
Isolating tag operation. To meet the isolation requirement in
S-NFV enclave, we manually extract tag operation code from the
original Snort and take out all links (e.g., global variables). To
verify the isolation, we split the Snort host into two parts and run in



Component LoC Changes Total LoC
Snort Enclave 161 6,660
Snort Host (Server) 159 159
Snort Host (Client) 169 36,2330
Total 489 369,149

Table 2: The lines of code for Snort over S-NFV.

separate processes. Similar to a client-server model, the majority of
Snort host code runs in the client process. The server process con-
tains the Snort enclave and takes charge of handling tag operation
requests from the client process. Whenever Snort host intends to
execute a tag operation, the client side sends a request to the server
side through socket. The server process then executes the tag opera-
tion through tag operation API and sends a result back to the client
process. The result shows the server side LoC (Snort host server +
Snort enclave) is only 6k, which is extremely small compared to the
original Snort code base (360k), as shown in Table 2.
API for tag operations. Snort originally provides a set of tag oper-
ation APIs, as shown in Table 3. We examine the arguments used in
each API and modify or remove the potentially risky arguments. For
example, we modify the Packet *, which is a complicated data struc-
ture containing several code and data pointers, in CheckTagList()
to char *, which is a pure buffer containing necessary packet in-
formation. Similarly, OptTreeNode * in SetTags() is replaced with
TagData *. Note, all pointer arguments are passed through mem-
ory copying into enclave instead of passing by address similar to
OpenSGX’s trampoline.

API Modification
void InitTag(void) -
void CleanupTag(void) -
int CheckTagList(
char*, Packet*→ char*
Event*,
void*) void**→ void*

void SetTags(
char*, Packet*→ char*
TagData*, OptTreeNode*→ TagData*
-, RuleTreeNode*→ -
uint16_t)

void TagCacheReset(void) -

Table 3: Tag operation API of Snort Enclave.
5. EVALUATION

To evaluate the S-NFV performance on real hardware, we fur-
ther port the Snort enclave on Windows using SGX SDK 1. We
perform experiments on two main Tag operations, CheckTagList()
and SetTags(), in both with and without SGX scenarios. In each ex-
periment run, the target operation is repeatly executed 10000 times
and the total execution time is measured.

Based on the experiment results shown in Table 4, CheckTagList()
and SetTags() in the SGX-enabled case are 11.39 and 8.79 times
slower than the SGX-disabled case, correspondingly. We observe

1Intel officially releases the Windows version SGX SDK that en-
ables developers to write SGX applications on a SGX-equipped
machine as of December 2015.

Tag Operation SGX-enabled SGX-disabled Overhead
CheckTagList() 13.357 µs 1.172 µs 11.39x
SetTags() 13.426 µs 1.533 µs 8.79x

Table 4: The performace evaluation of Snort Enclave. Each
Tag operation is repeatly executed 10000 times.

that there seems to be a constant time overhead added to SGX-
enabled implementation, which is likely introduced by the memory
encrpytion and decrpytion performed by the memory encryption
engine. Note that the performace overhead of tag operations do not
represent the performace overhead of the whole Snort application,
which depends the freqency of each operation during the whole
Snort execution.

6. CONCLUSION
In this paper, we took a first step toward protecting the internal

states of NFV applications against malicious hosts and buggy ap-
plications. By leveraging Intel SGX’s isolation, we demonstrated
the state protection of Snort’s internal state (TagNode) and its state
processing, by moving them into an enclave. We also perform the
preliminary evaluation on state processing operations using real
SGX hardware. In the future, we will extend this approach to a
wider range of NFV applications, and analyze the impact of our
approach (i.e., performance overheads and security trade-offs) by
quantifying various aspects of the SGX hardware architecture.
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