
S-NFV: Securing NFV states by
using SGX

Ming-Wei Shih Mohan Kumar Taesoo Kim Ada Gavrilovska
Georgia Institute of Technology

Network Function Virtualization (NFV)

IDS Web Caching NFNAT

OS OS OS OS

VM VM VM VM

Hypervisor

Hardware

Virtualized Network Functions (VNFs)

NFV Infrastructure

VNF

Stateful network functions

IDS Web Caching VNFNAT

OS OS OS OS

VM VM VM VM

Hypervisor

Hardware

Virtualized Network Functions (VNFs)

NFV Infrastructure

IP address Policy Cached web StatesIP address Policy Cached Web States

“Introspection Risk for NFV  
Hypervisor introspection, including administrative and
process introspection, presents a risk to
confidentiality, integrity, and availability of the NFV.
Introspection can enable the ability to view, inject,
and/or modify operational state information
associate with NFV…” — ETSI GS NFV-SEC 003

S-NFV: Design Goal
• Threat Model

• Underlying software is untrusted

• How can remote parties gain trust on VNFs?

• How to ensure the security of NFV stats?

NFV Infrastructure

VNF VNF VNF

Service
Provider

Service
Provider

Service
Provider

Customer

Customer

Customer

S-NFV: Design Goal
• New NFV framework

• Integrate with Intel SGX

• Ensure the security of NFV applications’ states

• Allow remote party to verify

• Requires only application-level changes

Intel Software Guard Extensions (Intel SGX)

• Intel CPU extensions

• Code/Data can be kept in a secure container (enclave)

• Dedicated physical memory (Enclave Page Cache, EPC)

• Different memory access semantics are enforced

• Support remote attestation over enclave

• Supported by Intel Skylake CPUs

• SGX-enabled version is released on October 2015

S-NFV Overview

OS OS OS OS

VM VM VM VM

Hypervisor

Hardware

Virtualized Network Functions (VNFs)

S-NFV Framework

IDS Web Caching VNFNAT

EPC

IP address Policy Cached Web States

S-NFV Overview
• Decouple original VNF

• S-NFV Enclave: contains states and related logics

• S-NFV Host: the rest code of VNF

VNF

S-NFV Host

SGX loader

S-NFV Enclave

Enclave

VNF Logics

Data

SECS, TCS, SSA

VNF States

Attestable memory

Dynamically increasing

Host process

S-NFV Overview
• S-NFV Enclave Design

• Clear Isolation

• Separating out states and related operations
from original VNF

• Safe APIs

• Provide interfaces to support host and enclave
interactions without revealing states

Remote Attestation
• Leverage SGX’s remote attestation feature to attest S-NFV enclave

• Secure bootstrap

• Establish secure channel

VNF

S-NFV Host

SGX loader

S-NFV Enclave

Quoting Enclave
(EPID)

Service Provider
Deployment

Request Attestation

Report Attestation

S-NFV Framework

Case Study: Snort
• Snort

• Lightweight network intrusion detection system

• States: IDS policy (TagNode data structure)

• Configured during the bootstrap

• Dynamically create/update and used to check
packet during the runtime

Implementation
• Implement prototype on OpenSGX

• Extract TagNode and Tag Operations from Snort

• Port on SGX-supported machine (no available SDK as the time of
submission)

Snort

S-NFV Host

SGX loader

S-NFV Enclave

Enclave

Tag Operations

Data

SECS, TCS, SSA

TagNode

Attestable memory

Dynamically increasing

Host process

Case Study: Snort
• Result

• Modify 5 Tag operation APIs

• 489 LoC changes to orignal Snort

Evaluation
• Based on Packet Performance Monitor plugin in Snort

• ~20% overhead on packet processing

• ~10% overhead on rule checking

0

35

70

105

140

w/o sgx w/ sgx
0

0.5

1

1.5

2

w/o sgx w/ sgx

avg pkt time (usecs) avg rule time (usecs)

Conclusion
• We take a first step toward protecting network

function’s states by proposing new NFV framework

• Use Snort as a case study

• decoupling an original NFV application to fit S-NFV
model

• preliminary evaluation on real hardware

