
FLEXDROID:	Enforcing	In-App	
Privilege	Separa;on	in	Android

Jaebaek	Seo*,	Daehyeok	Kim*,	Donghyun	Cho*,		
Taesoo	Kim†,	Insik	shin*	

	
*	KAIST	

†	Georgia	Ins;tute	of	Technology

1	

3rd-party	libraries	become	popular	in	Android

	
Applica;on	

	
	
	
	
	
	
	
	
	

3rd-party
libraries

Host code

Ad,	Analy;cs,	Game	engine,	Billing,	Social
2	

3rd-party	libraries	become	popular	in	Android

	
Applica;on	

	
	
	
	
	
	
	
	
	

3rd-party
libraries

Host code

Ad,	Analy;cs,	Game	engine,	Billing,	Social

How	can	we	trust	them?

3	

4	

5	

In	NDSS	16	
	

The	Price	of	Free:		Privacy	Leakage	in	Personalized	
Mobile	In-Apps	Ads	

	
What	Mobile	Ads	Know	About	Mobile	Users	

	
Free	for	All!	Assessing	User	Data	Exposure	to	

Adver;sing	Libraries	on	Android	

6	

In	NDSS	16	
	

The	Price	of	Free:		Privacy	Leakage	in	Personalized	
Mobile	In-Apps	Ads	

	
What	Mobile	Ads	Know	About	Mobile	Users	

	
Free	for	All!	Assessing	User	Data	Exposure	to	

Adver;sing	Libraries	on	Android	

Fundamental	problem	
in	Android’s	permission	system

Problem:	Android	Permission	System	

•  The	unit	of	trust	in	Android:	ApplicaDon	

<uses-permission	...LocaDon>

<uses-permission	...Contacts>	

Calendar	

Denied	

App	

Loca;on	

Contacts	

7	

Problem:	Android	Permission	System	

•  Third-party	library:	having	the	same	access	
right	as	the	host	app	

<uses-permission	...LocaDon>

<uses-permission	...Contacts>	

App	
	
	

Loca;on	

Contacts	
3rd-party	lib	

(The	unit	of	trust)	

8	

Problem:	Android	Permission	System	

•  Third-party	library:	having	the	same	access	
right	as	the	host	app	

<uses-permission	...LocaDon>

<uses-permission	...Contacts>	

App	
	
	

Loca;on	

Contacts	
3rd-party	lib	

(The	unit	of	trust)	

A	third-party	library	can	abuse	
the	permissions	of	its	host	app

9	

FLEXDROID

	
	
Goal:	In-app	privilege	separa;on	between	a
host	applica;on	and	its	third-party	libraries	

10	

Overview	of	FLEXDROID

Specifying	the	package	name	and	its	permissions	
in	AndroidManifest.xml	

<uses-permission	...LocaDon>

<uses-permission	...Contacts>	

App	
	
	
	

Loca;on	

Contacts	com.ad.sdk	com.ad.sdk	 Deny	

<flexdroid	android:name=“com.ad.sdk”	>
	<allow	…LocaDon>	

</flexdroid>	 11	

Contributions

1.  Report	poten;al	privacy	threats	of	third-party	
libraries	by	analyzing	100,000	real-world	Android	
apps	

2.  Provide	an	in-app	privilege	separa;on	in	Android	
–  Suppor;ng	JNI,	reflec;on,	and	mul;-threading	

3.  Adopt	a	fault	isola;on	using	ARM	Memory	Domain	
to	sandbox	na;ve	code	in	Android	

12	

Inves;ga;ng	Real-world	Threats

•  Inves;gate	100,000	Android	apps	from	Google	
Play	using	a	sta;c	analysis	

	

	Q1:	How	many	third-party	libraries	use	
	undocumented	permissions?	

	

	Q2:	How	many	of	them	rely	on	dynamic	code	
	execu;on?	

13	

Undocumented	Permissions

Facebook	
(Social)

Flurry	(Analy;cs)

Paypal	(Billing)

InMobi	(Ad)

Chartboost	(Ad)

Required

Op;onal

Undocumented

14	

Undocumented	Permissions

Facebook	
(Social)

Flurry	(Analy;cs)

Paypal	(Billing)

InMobi	(Ad)

Chartboost	(Ad)

Required

Op;onal

Undocumented From	XXXBank:	
Your	One-Time	
Password	is	
34819.	Valid	for	
5	mins.

15	

Analysis	of	Real-World	Apps	

•  Control-flow	and	data	dependency	
– Class	Inheritance	

•  Dynamic	run;me	behavior
–  Java	Na;ve	Interface	(JNI)	
– Run;me	class	loading	
– Reflec;on	

71.5%

17.1%

27.9%

49.6%

16	

Challenges	

•  Control-flow	and	data	dependency	
à	Naïvely	separa;ng	third-party	libraries	from	the	

	host	app		is	not	applicable	

•  Dynamic	run;me	behavior	
à	Sta;cally	or	dynamically	detec;ng	malicious	

	behaviors	introduces	low	accuracy

17	

Threat	Model	

•  Poten;ally	malicious	third-party	libraries	
–  Obfuscated	code	and	logic	

•  Use	of	dynamic	features	
(e.g.,	JNI,	reflec;on,	mul;-threading)	

•  App	developers	specifying	permissions	of	
each	third-party	library	

18	

SYSTEM	DESIGN

19	

Key	Idea	

Adjus;ng	permissions	dynamically	
whenever	an	app	requests	a	resource	

20	

Dynamic	Permission	Adjustment	

Permissions	of	third-party	library	
•  Loca;on

Permissions	of	host	applica;on	
•  Loca;on

•  Contacts	

When	execu;ng	the	host	applicaDon’s	code

App	Permissions

21	

Dynamic	Permission	Adjustment	

Permissions	of	third-party	library	
•  Loca;on

Permissions	of	host	applica;on	
•  Loca;on

•  Contacts	

When	execu;ng	the	3rd-party	lib’s	code

App	Permissions

22	

Iden;fica;on	of	Executed	Code	

1.  Iden;fy	the	principal	using	stack	inspec;on
2.  Apply	the	stack	inspec;on	to	Android
3.  Protect	the	integrity	of	call	stack	informa;on	

against	asacks	via:	
–  JNI	
– Reflec;on	
– Mul;-threading	

23	

Stack	Inspec;on	in	Security	Context

Process	of	determining	the	permissions	allowed	
to	the	current	thread	according	to	principals	
shown	in	the	call	stack

P	 Call	stack	
ê	 A	 com.A.func;onA	

B	 com.B.func;onB	
C	 com.C.func;onC	

Perm	=	Perm(A)	
∩	Perm(B)	
∩	Perm(C)

24	

Inter-process	Stack	Inspec;on

Internet

Dalvik

App

Kernel	Space		

User	Space	

SD	Card File	Sysm

Dalvik

Loca;on
Manager

Permission Checker

Dalvik

PM

Permission Checker

25	

Inter-process	Stack	Inspec;on

Internet

Dalvik

App

Kernel	Space		

User	Space	

SD	Card File	Sysm

Dalvik

Loca;on
Manager

Permission Checker

Dalvik

PM

Stack	Transmission	Channel	

Stack	
Tracer

26	

Poten;al	Asack	Surface

Dalvik

App

Kernel	Space		

User	Space	

Dalvik

Loca;on
Manager

Dalvik

PM

Stack	Transmission	Channel	

Stack	
Tracer

JNI

Reflection
Multi-threading

27	

Poten;al	Asack	Surface

•  Compromising	stack	tracer	

•  Manipula;ng	Dalvik	call	stack	

•  Hijacking	the	control	data	
e.g.,	code	injec;on	on	Dalvik	
func;ons,	manipula;ng	code	
pointers	

JNI

JNI, Reflection,
Multi-threading

JNI

28	

Protec;ng	Integrity	of	Call	Stack

•  JNI	Sandbox	

•  Defense	mechanism	against	asacks	via	
reflec;on	

•  Defense	mechanism	against	asacks	via	
mul;-threading

•  JNI	Sandbox		

•  Defense	mechanism	against	asacks	via	
reflec;on	

•  Defense	mechanism	against	asacks	via	
mul;-threading

29	

JNI	Sandbox

•  Inspired	by	ARMlock	(CCS’14),	
applying	Fault	Isola5on	
using	ARM	Memory	Domain	to	Android

•  Key	Idea	
– Regard	JNI	code	of	3rd-party	libraries	as	poten;ally	
malicious	code	

– Run	JNI	in	an	isolated	and	restricted	memory	
domain	

30	

Fault	Isola;on	
using	ARM	Memory	Domain

App address space

Java domain

31	

libc.so	
libdvm.so	
Heap	
Stack	

Thread	Local	Storage	(TLS)	
…	

JNI domain

Fault	Isola;on	
using	ARM	Memory	Domain

App address space

Java domain

libc.so	
libdvm.so	
Heap	
Stack	

Thread	Local	Storage	(TLS)	
…	

32	

JNI domain

Fault	Isola;on	
using	ARM	Memory	Domain

App address space

Java domain

FLEXDROID allows Dalvik VM
to access both memory domains

Dalvik	VM	

33	

JNI domain

Fault	Isola;on	
using	ARM	Memory	Domain

App address space

Java domain

by setting Domain Access Control
Register of each thread

JNI	code	

34	

JNI domain

Fault	Isola;on	
using	ARM	Memory	Domain

App address space

Java domain

JNI	code	Domain	
Fault	

35	

Memory	and	Shared	Libraries	for	JNI

App address space

Java domain

JNI domain

libc.so	
Heap	
Stack	
TLS	
…	

Stay	in	Java	domain!!	

36	

Memory	and	Shared	Libraries	for	JNI

•  Shared	libraries	(e.g.,	libc.so),	heap,	stack	and	
TLS	are	in	Java	domain	
–  JNI	cannot	access	them	

	
à	FLEXDROID	provides	JNI	with	independent	
	shared	libraries,	heap,	stack	and	TLS

37	

Defense	against	Reflec;on
•  Problem:	A	third-party	library	can	dynamically	
generate	a	class	with	the	package	name	of	its	host	
applica;on	

38	

Defense	against	Reflec;on
•  Problem:	A	third-party	library	can	dynamically	
generate	a	class	with	the	package	name	of	its	host	
applica;on	

P	 Call	stack	

ê H	 com.host.C.runCallback	

L	 com.host.B.malFunc	

package com.malicious.lib
class A

 method launch_attack

 generateClass(“com.host.B”)

 generateClass(“com.host.B”, “malFunction”)

 loadClass(“com.host.B”)

 com.host.C.setCallback(new com.host.B())
 end method

end class

39	

Defense	against	Reflec;on
•  Problem:	A	third-party	library	can	dynamically	
generate	a	class	with	the	package	name	of	its	host	
applica;on	

P	 Call	stack	

ê H	 com.host.C.runCallback	

L	 com.host.B.malFunc	

package com.malicious.lib
class A

 method launch_attack

 generateClass(“com.host.B”)

 generateClass(“com.host.B”, “malFunction”)

 loadClass(“com.host.B”)

 com.host.C.setCallback(new com.host.B())
 end method

end class

com.malicious.lib	

FLEXDROID	maintains	
the	informa;on	of	class	loader 40	

Implementa;on	

•  Android	4.4.4	Kitkat	/	Linux	3.4.0	

41	

#	of	Files	 InserDon	(LoC)	 DeleDon	(LoC)	

Kernel	 28	 1831	 25	
Android	Framework	 46	 1466	 77	
Dalvik	VM	 24	 6081	 22	
Bionic	 23	 2827	 70	
Others	 12	 95	 24	
Total	 133	 12300	 218	

EVALUATION

42	

Overview

•  How	effec;ve	is	FLEXDROID’s	policy	to	restrict	
third-party	libraries?	

•  How	easy	is	it	to	adopt	FLEXDROID’s	policy	to	
exis;ng	Android	apps?	

•  How	much	performance	overhead	does	
FLEXDROID	impose	when	adopted?

43	

Blocking	Permissions	with	FLEXDROID

•  Choosing	8	third-party	libraries	from	
real-world	apps	

•  Repackaging	their	host	applica;ons	with	
FLEXDROID	policy	
– No	permission	given	to	third-party	libraries	

	
à	Denying	all	accesses	to	resources	
	from	third-party	libraries

44	

Blocking	Permissions	with	FLEXDROID

•  Choosing	8	third-party	libraries	from	
real-world	apps	

•  Repackaging	their	host	applica;ons	with	
FLEXDROID	policy	
– No	permission	given	to	third-party	libraries	

	
à	Denying	all	accesses	to	resources	
	from	third-party	libraries

FLEXDROID	can	block	
permission	abuses	of	3rd-party	libs	

45	

Blocking	Permissions	with	FLEXDROID

•  By	modifying	only	AndroidManifest.xml	

à	Easy	to	adopt	FLEXDROID’s	policy	

<flexdroid	
android:name=“com.ebay.redlasersdk”>	
<!--	no	permission	-->
</flexdroid>	

46	

Backward	Compa;bility

•  Run	32	popular	apps	from	Google	Play	without	any	
modifica;on	in	FLEXDROID	

•  Check	to	see	if	each	of	them	crashes	during	the	
execu;on	

à	27	of	32	apps	run	as	normal	
Other	apps	crashed	due	to	JNI	sandbox	

à	FLEXDROID	has	a	high	backward	compa;bility	

47	

Performance	Evalua;on	

•  Environment	sexng	
– Nexus	5	
– Turning	on	all	cores	with	maximum	CPU	frequency	

•  Micro-benchmark	
•  Macro-benchmark	

– K-9	email	app	

48	

Micro-benchmark	Result	

Main	factors	of	performance	overheads	

1.  Inter-process	stack	inspec;on	

2.  Sandbox	switch	
(i.e.,	switch	to	JNI	domain	/	Java	domain)	

à	438	~	594	μs	

à	89	μs	

49	

Macro-benchmark	Result	

In	the	experiment	using	K-9	email	app	

1.  Launching	the	app	

2.  Send	an	email	
à	1.55	%	

à	1.13	%	

50	

Macro-benchmark	Result	

In	the	experiment	using	K-9	email	app	

1.  Launching	the	app	

2.  Send	an	email	
à	1.55	%	

à	1.13	%	

FLEXDROID	incurs	reasonable	
performance	overheads	

51	

Conclusion

•  Problem:	Privacy	threats	from	3rd-party	libraries	
•  FLEXDROID:	Extension	of	Android	permission	system	

–  Suppor;ng	in-app	privilege	separa;on	
–  Resistant	against	asacks	via	JNI,	reflec;on	
and	mul;-threading	

–  Showing	reasonable	performance	overheads	

52	

Thank	you!	

53	

BACKUP	SLIDE	

54	

Backward	Compa;bility	Issues

•  5	crashed	apps	
– Waze	Social	GPS	Map	&	Travel	
– Uber	
– Adobe	Acrobat	Reader	
– Facebook	
– UC	Browser

Pthread	/	TLS	
mmap()	

Many	JNI	libraries	
(29	and	20,	respec;vely)	
à	too	complicated	to	manually	

	analyze	them	

free()	

55	

Previous	Works	

•  AdRisk	(Wisec’	12)	
–  Report	private	threats	from	ad	libraries	

•  AdSplit	(Usenix	Sec’	12)	/	AdDroid	(AsiaCCS’	12)	
–  Separate	an	ad	library	from	its	host	app	

•  Na;veGuard	(WiSec’	14)	
–  Separate	a	library	wrisen	in	na;ve	code	from	its	host	app	

•  Compac	(CODASPY’	14)	
–  Suggest	an	idea	similar	to	inter-process	stack	inspec;on	

56	

