
This paper is included in the Proceedings of the
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the
2016 USENIX Annual Technical Conference
(USENIX ATC ’16) is sponsored by USENIX.

Understanding Manycore Scalability
of File Systems

Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak Kang,
and Taesoo Kim, Georgia Institute of Technology

https://www.usenix.org/conference/atc16/technical-sessions/presentation/min

USENIX Association 	 2016 USENIX Annual Technical Conference  71

Understanding Manycore Scalability of File Systems
Changwoo Min Sanidhya Kashyap Steffen Maass Woonhak Kang Taesoo Kim

Georgia Institute of Technology

Abstract
We analyze the manycore scalability of five widely-
deployed file systems, namely, ext4, XFS, btrfs, F2FS,
and tmpfs, by using our open source benchmark suite,
FXMARK. FXMARK implements 19 microbenchmarks
to stress specific components of each file system and
includes three application benchmarks to measure the
macroscopic scalability behavior. We observe that file
systems are hidden scalability bottlenecks in many I/O-
intensive applications even when there is no apparent
contention at the application level. We found 25 scal-
ability bottlenecks in file systems, many of which are
unexpected or counterintuitive. We draw a set of observa-
tions on file system scalability behavior and unveil several
core aspects of file system design that systems researchers
must address.

1 Introduction
Parallelizing I/O operations is a key technique to im-
prove the I/O performance of applications [46]. Today,
nearly all applications implement concurrent I/O opera-
tions, ranging from mobile [52] to desktop [46], relational
databases [10], and NoSQL databases [6, 43]. There are
even system-wide movements to support concurrent I/O
efficiently for applications. For example, commercial
UNIX systems such as HP-UX, AIX, and Solaris ex-
tended the POSIX interface [48, 50, 68], and open source
OSes like Linux added new system calls to perform asyn-
chronous I/O operations [17].

Two recent technology trends indicate that paralleliz-
ing I/O operations will be more prevalent and pivotal
in achieving high, scalable performance for applications.
First, storage devices have become significantly faster.
For instance, a single NVMe device can handle 1 mil-
lion IOPS [14, 72, 86], which roughly translates to us-
ing 3.5 processor cores to fully drive a single NVMe de-
vice [51]. Second, the number of CPU cores continues to
increase [19, 62] and large, high-performance databases
have started to embrace manycore in their core opera-
tions [9, 11, 44, 49, 53, 90]. These trends seem to promise
an implicit scaling of applications already employing con-
current I/O operations.

In this paper, we first question the practice of concur-
rent I/O and understand the manycore scalability1 behav-
ior, that we often take for granted. In fact, this is the
right moment to thoroughly evaluate the manycore scala-
bility of file systems, as many applications have started

1We sometimes mention manycore scalability as scalability for short.

hitting this wall. Moreover, most of the critical design
decisions are “typical of an 80’s era file system” [37]. Re-
cent studies on manycore scalability of OS typically use
memory file systems, e.g., tmpfs, to circumvent the effect
of I/O operations [16, 20–22, 32–34]. So, there has been
no in-depth analysis on the manycore scalability of file
systems. In most cases, when I/O performance becomes a
scalability bottleneck without saturating disk bandwidth,
it is not clear if it is due to file systems, its usage of file
systems, or other I/O subsystems.

Of course, it is difficult to have the complete picture of
file system scalability. Nevertheless, in an attempt to shed
some light on it, we present an extensive study of many-
core scalability on file systems. To evaluate the scalability
aspects, we design and implement the FXMARK bench-
mark suite, comprising 19 microbenchmarks stressing
each building block of a file system, and three application
benchmarks representing popular I/O-intensive tasks (i.e.,
mail server, NoSQL key/value store, and file server). We
analyze five popular file systems in Linux, namely, ext4,
XFS, btrfs, F2FS, and tmpfs, on three storage mediums:
RAMDISK, SSD, and HDD.

Our analysis revealed unanticipated scalability be-
havior that should be considered while designing I/O-
intensive applications. For example, all operations on a
directory are sequential regardless of read or write; a file
cannot be concurrently updated even if there is no overlap
in each update. Moreover, we should revisit the core de-
sign of file systems for manycore scalability. For example,
the consistency mechanisms like journaling (ext4), copy-
on-write (btrfs), and log-structured writing (F2FS) are
not scalable. We believe that FXMARK is effective in two
ways. It can identify the manycore scalability problems
in existing file systems and further guide and evaluate the
new design of a scalable file system in the future.

In summary, we make the following contributions:
• We design an open source benchmark

suite, FXMARK, to evaluate the manycore
scalability of file systems. The FXMARK

benchmark suite is publicly available at
https://github.com/sslab-gatech/fxmark.

• We evaluate five widely-used Linux file systems on
an 80-core machine with FXMARK. We also analyze
how the design of each file system and the VFS layer
affect their scalability behavior.

• We summarize our insights from the identified scala-
bility bottlenecks to design a new scalable file system
for the future.

The rest of this paper is organized as follows: §2 pro-

1

72  2016 USENIX Annual Technical Conference	 USENIX Association

0k
2k
4k
6k
8k

10k
12k
14k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

(a) Varying file systems

0k

2k

4k

6k

8k

10k

12k

btrfs ext4 ext4NJ F2FS XFS

(b) Varying storage medium (80-core)

0

20

40

60

80

100

btrfs ext4 ext4NJ F2FS tmpfs XFS

C
PU

ut
ili

za
tio

n
(%

)

(c) CPU utilization (80-core)

btrfs
ext4

ext4NJ
F2FS

tmpfs
XFS

RAMDISK
SSD
HDD

usr sys idle

Figure 1: Exim throughput (i.e., delivering messages) on six file systems (i.e., btrfs, ext4, F2FS, tmpfs, XFS, and ext4 without
journaling, ext4NJ) and three storage mediums (i.e., RAMDISK, SSD, HDD at 80-core). We found that the manycore scalability of Exim
depends a lot on the file systems (e.g., ext4 is 54× faster than btrfs at 80-core), but does not depend much on storage mediums
(e.g., marginal performance difference of ext4 on RAMDISK and HDD). To avoid known scalability bottlenecks in Exim, we modified
Exim as in the previous study [21] and configured it to disable per-message fsync() call.

vides the motivation for our work with a case study; §3
provides an overview of FXMARK, and §4 describes our
evaluation strategies; §5 and §6 show analysis results; §7
summarizes our findings and §8 discusses implications
for OS and file system designers; §9 compares our work
with previous work; Finally, §10 provides the conclusion.

2 Case Study
In this section, we show how non-scalable file systems
can break the scalability of embarrassingly parallel (i.e.,
ideally parallelizable) I/O-intensive applications in un-
expected ways. The Exim [8] email server is one such
application that is designed to scale perfectly, at least from
an application’s perspective. For example, Exim delivers
messages to appropriate mail boxes in parallel and per-
forms each delivery independently. In fact, the message
delivery heavily utilizes I/O operations. It consists of a
series of operations ranging from creating, renaming, and
deleting small files in the spool directories to appending
the message body to the per-user mail file. Unfortunately,
Exim fails to scale over 10, 20, or 40-core, at most, among
the popular file systems in Linux as shown in Figure 1.
File systems kill application scalability. Figure 1(a)
shows the throughput of Exim with six different file sys-
tems on RAMDISK. Surprisingly, the scalability and per-
formance of Exim are significantly dependent on the file
system. The performance gap between the best file sys-
tem, tmpfs, and the worst, btrfs, is 54× at 80-core. ext4
and tmpfs scale linearly up to 40-core; then the Linux
kernel becomes the bottleneck. However, Exim on F2FS
is hardly scalable; it is 21× slower than ext4 at 80-core.
Faster storage mediums do not guarantee scalability.
With a reasonably large memory, the page cache will
absorb most read and write operations, and most write op-
erations can be performed in the background. In this case,
the in-memory structures in the file systems determine the
scalability, rather than the storage medium. Figure 1(b)
shows that all file systems, except XFS, show a marginal
performance difference among RAMDISK, SSD, and HDD at
80-core. In this case, performance with XFS is largely
affected by the storage medium since XFS mostly waits

for flushing journal data to disk due to its heavy metadata
update operations.
Fine-grained locks often impede scalability. We may
assume that the worst performing file system, btrfs, will
be mostly in idle state, since it is waiting for events from
the storage. On the contrary, Figure 1(c) shows that 67%
of CPU time is spent in the kernel mode for btrfs. In par-
ticular, btrfs spends 47% of CPU time on synchroniza-
tion to update its root node. In a common path without any
contention, btrfs executes at least 10 atomic instructions
to acquire a single B-tree node lock (btrfs_tree_lock())
and it must acquire locks of all interim nodes from a leaf
to the root. If multiple readers or writers are contending to
lock a node, each thread retries this process. Under heavy
contention, it is typical to retry a few hundreds times to
lock a single node. These frequent, concurrent accesses
to synchronization objects result in a performance col-
lapse after 4-core, as there is no upper bound on atomic
instructions for updating the root node.
Subtle contentions matter. Figure 1(a) shows another
anomaly with ext4NJ (i.e., ext4 with no journaling) per-
forming 44% slower than ext4 itself. We found that two
independent locks (i.e., a spinlock for journaling and a
mutex for directory update) interleave in an unintended
fashion. Upon create(), ext4 first hits the journal spin-
lock (start_this_handle()) for metadata consistency
and then hits the parent directory mutex (path_openat())
to add a new inode to its parent directory. In ext4, the
serialization coordinated by the journal spinlock incurs
little contention while attempting to hold the directory
mutex. On the contrary, the contending directory mutex in
ext4NJ results in expensive side-effects, such as sleeping
on a waiting queue after a short period of opportunistic
spinning.
Speculating scalability is precarious. The Exim case
study shows that it is difficult for application developers
or even file systems developers to speculate on the scal-
ability of file system implementations. To identify such
scalability problems in file systems, our community needs
a proper benchmark suite to constantly evaluate and guide
the design of file systems for scalability.

2

USENIX Association 	 2016 USENIX Annual Technical Conference  73

Type Mode Operation Sharing Level
LOW MEDIUM HIGH

DATA

READ BLOCK READ ✓ ✓ ✓

WRITE

OVERWRITE ✓ ✓ -
APPEND ✓ - -
TRUNCATE ✓ - -
SYNC ✓ - -

META
READ PATH NAME READ ✓ ✓ ✓

DIRECTORY LIST ✓ ✓ -

WRITE
CREATE ✓ ✓ -
UNLINK ✓ ✓ -
RENAME ✓ ✓ -

Table 1: Coverage of the FXMARK microbenchmarks. FXMARK

consists of 19 microbenchmarks that we categorize based on
four criteria: data types, modes, operations, and sharing levels
that are accordingly represented in each column on the table.

3 FXMARK Benchmark Suite
There are 19 microbenchmarks in FXMARK that are de-
signed for systematically identifying scalability bottle-
necks, and three well-known I/O-intensive application
benchmarks to reason about the scalability bottlenecks in
I/O-intensive applications.

3.1 Microbenchmarks
Exploring and identifying scalability bottlenecks system-
atically is difficult. The previous studies [21, 22, 32–34]
on manycore scalability show that most applications are
usually stuck with a few bottlenecks, and resolving them
reveals the next level of bottlenecks.

To identify scalability problems in file system im-
plementations, we designed microbenchmarks stressing
seven different components of file systems: (1) path name
resolution, (2) page cache for buffered I/O, (3) inode man-
agement, (4) disk block management, (5) file offset to
disk block mapping, (6) directory management, and (7)
consistency guarantee mechanism.

Table 1 illustrates the way FXMARK categorizes each
of these 19 microbenchmarks with varying stressed data
types (i.e., file data or file system metadata), a related
file system operation (e.g., open(), create(), unlink(),
etc.), and its contention level (i.e., low, medium and high).

A higher contending level means the microbenchmark
shares a larger amount of common code with the increas-
ing number of cores, marked as sharing level for clarity.

For reading data blocks, FXMARK provides three bench-
marks based on the sharing level: (1) reading a data block
in the private file of a benchmark process (low), (2) read-
ing a private data block in the shared file among bench-
mark processes (medium), and (3) reading the same data
block in the shared file (high). As a convention, we de-
note each microbenchmark with four letters representing
type, mode, etc. For instance, we denote three previous
examples with DRBL (i.e., Data, Read, Block read, and
Low), DRBM, and DRBH, respectively. Table 2 shows a de-
tailed description of each benchmark, including its core

operation and expected contention.
To measure the scalability behavior, each benchmark

runs its file system-related operations as a separate pro-
cess pinned to a core; for example, each benchmark runs
up to 80 physical cores to measure the scalability charac-
teristics. Note that we use processes instead of threads, to
avoid a few known scalability bottlenecks (e.g., allocating
file descriptors and virtual memory management) in the
Linux kernel [21, 33]. FXMARK modifies the CPU count
using CPU hotplug mechanism [76] in Linux. To mini-
mize the effect of NUMA, CPU cores are assigned on a
per socket basis; for example, in the case of 10 cores per
socket, the first 10 CPU cores are assigned from the first
CPU socket and the second 10 CPU cores are assigned
from the second CPU socket. To remove interference
between runs, FXMARK formats a testing file system and
drops all memory caches (i.e., page, inode, and dentry
caches) before each run.

3.2 Application Benchmarks
Although a microbenchmark can precisely pinpoint scala-
bility bottlenecks in file system components, scalability
problems in applications might be relevant to only some
of the bottlenecks. In this regard, we chose three appli-
cation scenarios representing widely-used I/O-intensive
tasks: mail server, NoSQL database, and file server.
Mail server. Exim is expected to linearly scale with the
number of cores, at least from the application’s perspec-
tive. But as Figure 1 shows, Exim does not scale well
even after removing known scalability bottlenecks [21].
To further mitigate scalability bottlenecks caused by the
Linux kernel’s process management, we removed one of
the two process invocations during the message transfer
in Exim.
NoSQL database. RocksDB is a NoSQL database and
storage engine based on log-structured merge-trees (LSM-
trees) [43, 73]. It maintains each level of the LSM-tree as
a set of files and performs multi-threaded compaction for
performance, which will eventually determine the write
performance. We use db_bench to benchmark RocksDB
using the overwriteworkload with disabled compression,
which overwrites randomly generated key/value-pairs.
File server. To emulate file-server I/O-activity, we use
the DBENCH tool [5]. The workload performs a sequence
of create, delete, append, read, write, and attribute-change
operations, with a specified number of clients processing
the workload in parallel.

4 Diagnosis Methodology
4.1 Target File Systems
We chose four widely-used, disk-based file systems and
one memory-based file system: ext4, XFS, btrfs, F2FS,
and tmpfs.

3

74  2016 USENIX Annual Technical Conference	 USENIX Association

T M Name Operation Description Expected Contention
D

A
TA

R
E

A
D DRBL pread("$ID/data",b,4K,0) Read a block in a private file None

DRBM pread("share",b,4K,$ID*4K) Read a private block in a shared file Shared file accesses
DRBH pread("share",b,4K,0) Read a shared block in a shared file Shared block accesses

W
R

IT
E

DWOL pwrite("$ID/data",b,4K,0) Overwrite a block in a private file None
DWOM pwrite("share",b,4K,$ID*4K) Overwrite a private block in a shared file Updating inode attributes (e.g., m_time)

DWAL append("$ID/data",b,4K) Append a block in a private file Disk block allocations

DWTL truncate("$ID/data",4K) Truncate a private file to a block Disk block frees

DWSL pwrite("$ID/data",b,4K,0) Synchronously overwrite a private file Consistency mechanism (e.g., journaling)
fsync("$ID/data")

M
E

TA R
E

A
D

MRPL close(open("$ID/0/0/0/0")) Open a private file in five-depth directory Path name look-ups
MRPM close(open("$R/$R/$R/$R/$R")) Open an arbitrary file in five-depth directory Path name look-ups
MRPH close(open("0/0/0/0/0")) Open the same file in five-depth directory Path name look-ups

MRDL readdir("$ID/") Enumerate a private directory None
MRDM readdir("share/") Enumerate a shared directory Shared directory accesses

W
R

IT
E

MWCL create("$ID/$N") Create an empty file in a private directory Inode allocations
MWCM create("share/$ID.$N") Create an empty file in a shared directory Inode allocations and insertions

MWUL unlink("$ID/$N") Unlink an empty file in a private directory Inode frees
MWUM unlink("share/$ID.$N") Unlink an empty file in a shared directory Inode frees and deletions

MWRL rename("$ID/$N","$ID/$N.2") Rename a private file in a private directory None
MWRM rename("$ID/$N","share/$ID.$N") Move a private file to a shared directory Insertions to the shared directory

NOTE. $ID: a unique ID of a test process b: a pointer to a memory buffer $R: a random integer between 0 and 7 $N: a test iteration count

Table 2: Microbenchmarks in FXMARK. Each benchmark is identified by four letters based on type (marked as T), mode (marked as
M), operation, and sharing level, as described in Table 1. Each microbenchmark is designed to stress specific building blocks of
modern file systems (e.g., journaling and dcache) to evaluate their scalability on manycore systems.

Ext4 is arguably the most popular, mature Linux file sys-
tem. It inherits well-proven features (e.g., bitmap-based
management of inodes and blocks) from Fast File System
(FFS) [69]. It also implements modern features such as
extent-based mapping, block group, delayed allocation
of disk blocks, a hash tree representing a directory, and
journaling for consistency guarantee [27, 42, 67]. For
journaling, ext4 implements write-ahead logging (as part
of JBD2). We use ext4 with journaling in ordered mode
and without it, marked as ext4 and ext4NJ, to see its effect
on file system scalability.
XFS is designed to support very large file systems with
higher capacity and better performance [85]. XFS incor-
porates B+ trees in its core: inode management, free disk
block management, block mapping, directory, etc [83].
However, using B+ trees incurs huge bulk writes due to
tree balancing; XFS mitigates this by implementing de-
layed logging to minimize the amount of journal writes:
(1) logically log the operations rather than tracking physi-
cal changes to the pages and (2) re-log the same log buffer
multiple times before committing [30, 31].
Btrfs is a copy-on-write (CoW) file system that repre-
sents everything, including file data and file system meta-
data, in CoW optimized B-trees [77]. Since the root node
of such B-trees can uniquely represent the state of the
entire file system [78], btrfs can easily support a strong
consistency model, called version consistency [29].
F2FS is a flash-optimized file system [23, 60, 63]. It fol-
lows the design of a log-structured file system (LFS) [80]
that generates a large sequential write stream [55, 70].
Unlike LFS, it avoids the wandering tree problem [15] by

updating some of its metadata structures in-place.

Tmpfs is a memory-based file system that works without
a backing storage [79]. It is implemented as a simple
wrapper for most functions in the VFS layer. Therefore,
its scalability behavior should be an ideal upper bound
of the Linux file systems’ performance that implements
extra features on top of VFS.

4.2 Experimental Setup
We performed all of the experiments on our 80-core ma-
chine (8-socket, 10-core Intel Xeon E7-8870) equipped
with 512 GB DDR3 DRAM. For storage, the machine has
both a 1 TB SSD (540 MB/s for reads and 520 MB/s for
writes) and a 7200 RPM HDD with a maximum transfer
speed of 160 MB/s. We test with Linux kernel version
4.2-rc8. We mount file systems with the noatime option
to avoid metadata update for read operations. RAMDISK is
created using tmpfs.

4.3 Performance Profiling
While running each benchmark, FXMARK collects the
CPU utilization for sys, user, idle, and iowait to see a
microscopic view of a file system reaction to stressing its
components. For example, a high idle time implies that
the operation in a microbenchmark impedes the scalabil-
ity behavior (e.g., waiting on locks); a high iowait time
implies that a storage device is a scalability bottleneck.
For further analysis, we use perf [7] to profile the entire
system and to dynamically probe a few interesting func-
tions (e.g., mutex_lock(), schedule(), etc.) that likely
induce such idle time during file system operations.

4

USENIX Association 	 2016 USENIX Annual Technical Conference  75

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) DRBL

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80
#core

(b) DRBM

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80
#core

(c) DRBH

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 2: Performance of reading a data block in three settings; reading a block in a private file (DRBL), reading a private block in a
shared file (DRBM), and reading a shared block in a shared file (DRBH). All file systems scale linearly in DRBL. XFS fails to scale in DRBM
because of the per-inode read/write semaphore. In DRBH, all file systems show their peak performance around 10-core because of
contending per-page reference counters in VFS (§5.1.1).

5 Microbenchmark Analysis
In this section, we first describe the analysis results of
each microbenchmark in buffered I/O mode starting from
simple operations on file data (§5.1) and going to more
complicated file system metadata operations (§5.2). Then,
we analyze the results of file data operation in direct I/O
mode (§5.3). Lastly, we analyze how the performance of
the storage medium affects scalability (§5.4).

5.1 Operation on File Data
5.1.1 Block Read

We start from the simplest case: each test process reads
a block in its respective private file (DRBL). As Figure 2
shows, all test file systems scale nearly linearly.

However, when each test process reads a private block
in the shared file (DRBM), we observe that XFS’s perfor-
mance collapses near 10-core. Unlike other file systems,
it spends 40% of execution and idle time at per-inode
read/write semaphores (fs/xfs/xfs_file.c:329) when
running on 80 cores. XFS relies heavily on per-inode
read/write semaphores to orchestrate readers and writers
in a fine-grained manner [85]. However, the performance
degradation does not come from unnecessary waiting in
the semaphores. At every read(), XFS acquires and re-
leases a read/write semaphore of a file being accessed in
shared mode (down_read() and up_read()). A read/write
semaphore internally maintains a reader counter, such
that every operation in shared mode updates the reader
counter atomically. Therefore, concurrent read operations
on a shared file in XFS actually perform atomic operations
on a shared reader counter. This explains the performance
degradation after 10 cores. In fact, at XFS’s peak perfor-
mance, the cycles per instruction (CPI) is 20 at 10-core,
but increases to 100 at 20-core due to increased cache line
contention on updating a shared reader counter.

For reading the same block (DRBH), all file systems
show a performance collapse after 10-core. Also, the
performance at 80-core is 13.34× (for tmpfs) lower than
that on a single core. We found that more than 50% of
the time is being spent on reference counter operations
for the page cache. The per-page reference counting is

0
20
40
60
80

100
120
140
160

0 10 20 30 40 50 60 70 80
M

op
s/

se
c

#core

(a) DWOL

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30 40 50 60 70 80
#core

(b) DWOM

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 3: Performance of overwriting a data block in a private
file (DWOL) and overwriting a private block in a shared file (DWOM).
In DWOL, although they do not seem to have explicit contention,
btrfs, ext4 and F2FS fail to scale due to their consistency mech-
anisms. Note that XFS is an exception among journaling file
systems (see §5.1.2). In DWOM, all file systems fail to scale re-
gardless of consistency mechanisms.

used for concurrency control of a page in a per-inode page
cache. The per-page reference counter is also updated
using atomic operations so that all test processes contend
to update the same cache line. In the case of ext4, the
CPI is 14.3 at 4-core but increases to 100 at 20-core due
to increased cache-coherence delays.

5.1.2 Block Overwrite

At first glance, overwriting a block in a private file (DWOL)
should be an ideal, scalable operation; only the private file
block and inode features such as last modified time need
to be updated. However, as shown in Figure 3, ext4, F2FS,
and btrfs fail to scale. In ext4, starting and stopping
journaling transactions (e.g., jbd2_journal_start()) in
JBD2 impedes its scalability. In particular, acquiring a
read lock (journal->j_state_lock) and atomically in-
creasing a counter value (t_handle_count) take 17.2%
and 9.4% of CPU time, respectively. Unlike ext4, XFS
scales well due to delayed logging [30, 31], which uses
logical logging and re-logging to minimize the amount of
journal write. In F2FS, write operations eventually trig-
ger segment cleaning (or garbage collection) to reclaim
invalid blocks. Segment cleaning freezes all file system
operations for checkpointing of the file system status by
holding the exclusive lock of a file system-wide read/write
semaphore (sbi->cp_rwsem). btrfs is a CoW-based file
system that never overwrites a physical block. It allo-

5

76  2016 USENIX Annual Technical Conference	 USENIX Association

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) DWAL

0
0.5

1
1.5

2
2.5

3
3.5

4

0 10 20 30 40 50 60 70 80
#core

(b) DWTL

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 4: Performance of growing files (DWAL) and shrinking
files (DWTL). None of the tested file systems scales.

cates a new block for every write operation so that its disk
block allocation (i.e., updating its extent tree) becomes
the sequential bottleneck.

When every test process overwrites each private
block in the shared file (DWOM), none of the file sys-
tems scale. The common bottleneck is an inode mutex
(inode->i_mutex). The root cause of this sequential bot-
tleneck stems from file system-specific implementations,
not VFS. None of the tested file systems are implementing
a range-based locking mechanism, which is common in
parallel file systems [81]. In fact, this is a serious limita-
tion in scaling I/O-intensive applications like DBMS. The
common practice of running multiple I/O threads is not
effective when applications are accessing a shared file,
regardless of the underlying file systems. Furthermore, it
may incur a priority inversion between I/O and latency-
sensitive client threads [24, 25], potentially disrupting the
application’s scalability behavior.

5.1.3 File Growing and Shrinking

For file growing and shirking, all disk-based file sys-
tems fail to scale after 10-core (DWAL in Figure 4). In
F2FS, allocating or freeing disk blocks entails updat-
ing two data structures: SIT (segment information ta-
ble) tracking block validity, and NAT (node address
table) tracking inode and block mapping tables. Con-
tention in updating SIT and NAT limits F2FS’s scalabil-
ity. When allocating blocks, checking disk free-space
and updating the NAT consumes 78% of the execution
time because of lock contentions (nmı->nat_tree_lock).
Similarly, there is another lock contention for free-
ing blocks to invalidate free blocks. This exhausts
82% of the execution time (sit_i->sentry_lock). In
btrfs, when growing a file, the sequential bottleneck
is checking and reserving free space (data_info->lock
and delalloc_block_rsv->lock). When shrinking a file,
btrfs suffers from updating an extent tree, which keeps
track of the reference count of disk blocks: A change in
reference counts requires updates all the way up to the
root node.

In ext4 and XFS, the delayed allocation technique,
which defers block allocation until writeback to reduce
fragmentation of a file, is also effective in improving
manycore scalability by reducing the number of block

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) DWSL

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 10 20 30 40 50 60 70 80
#core

(b) DWSL (without tmpfs)

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 5: Performance of synchronous overwrites of a private
file (DWSL). Only tmpfs ignoring fsync() scales.

allocation operations. Because of this, the scalability bot-
tleneck of ext4 and XFS is not the block allocation but
rather their journaling mechanisms. About 76–96% of the
execution time was spent on journaling. ext4 spends most
of its execution time on manipulating JBD2 shared data
structures (e.g., journal_j_flags) protected by spinlocks
and atomic instructions. XFS spends most of its execution
time waiting on flushing its log buffers. Upon truncat-
ing files, these file systems face the same performance
bottleneck.

In tmpfs, checking the capacity limit
(__vm_enough_memory()) becomes a scalability problem.
As the used space approaches the capacity limit (at
50-core in this case), the checking takes a slow path
for precise comparison of the remaining disk space.
Tracking the used space by using a per-CPU counter
scales up to 50-core, but fails to scale for more cores
because of a contending spinlock in a per-CPU counter
on the slow path to get a true value. When freeing
blocks, updating per-cgroup page usage information
using atomic decrements causes a performance collapse
after 10-core.

5.1.4 File Sync Operation

When using fsync(), a file system synchronously flushes
dirty pages of a file and disk caches. In this regard, all
file systems can scale up to the limitation of the stor-
age medium. Although we use memory as a storage
backend, none of the file systems scale, except tmpfs,
which ignores fsync() operations. Notice that fsync()
on btrfs is significantly slower than other file systems
(see Figure 5). Similar to §5.1.2, btrfs propagates a
block update to its root node so a large number of meta-
data pages need to be written2. All file systems (ex-
cept for tmpfs and btrfs) start to degrade after 10-core.
That is due to locks protecting flush operations (e.g.,
journal->j_state_lock), which start contending after
roughly 10-core.

2 To minimize fsync() latency, btrfs maintains a special log-tree to
defer checkpointing the entire file system until the log is full. In the case
of fsync()-heavy workloads, like DWSL, the log quickly becomes full;
therefore, checkpointing or updating the root node becomes a sequential
bottleneck.

6

USENIX Association 	 2016 USENIX Annual Technical Conference  77

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) MRPL

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50 60 70 80
#core

(b) MRPM

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80
#core

(c) MRPH

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 6: Performance of resolving path names; a private file path (MRPL), an arbitrary path in a shared directory (MRPM), and a single,
shared path (MRPH). Surprisingly, resolving a single, common path name is the slowest operation (MRPH).

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) MRDL

0
1
2
3
4
5
6
7
8

0 10 20 30 40 50 60 70 80
#core

(b) MRDM

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 7: Performance of reading file entries in a private (MRDL)
and a shared directory (MRDM). btrfs fails to scale in MRDL and
none of the file systems scales in MRDM.

5.2 Operation on File System Metadata
5.2.1 Path Name Resolution

The Linux kernel maintains a directory cache, or dcache,
which caches dentry structures. Only when a dcache
miss happens, the kernel calls the underlying file system
to fill up the dcache. Since dcache hits are dominant
in our microbenchmark, MRPL, MRPM, and MRPH stress the
dcache operations implemented in the VFS layer. Thus
there is little performance difference among file systems,
as shown in Figure 6. Our experiment shows that (1)
dcache is scalable up to 10-core if multiple processes
attempt to resolve the occasionally shared path names
(MRPM), and (2) contention on a shared path is so seri-
ous that resolving a single common path in applications
becomes a scalability bottleneck. In MRPM and MRPH, a
lockref in a dentry (i.e., dentry->d_lockref), which
combines a spinlock and a reference count into a single
locking primitive for better scalability [38], becomes a
scalability bottleneck. Specifically, the CPI of ext4 in
MRPH increases from 14.2 at 10-core to 20 at 20-core due
to increased cache-coherence delays.

5.2.2 Directory Read

When listing a private directory (i.e., MRDL in Figure 7),
all file systems scale linearly, except for btrfs. Ironically,
the performance bottleneck of btrfs is the fine-grained
locking. To read a file system buffer (i.e., extent_buffer)
storing directory entries, btrfs first acquires read locks
from a leaf, containing the buffer, to the root node of
its B-tree (btrfs_set_lock_blocking_rw()); moreover,
to acquire a read lock of a file system buffer, btrfs per-

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

(a) MWCL

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

(b) MWCM

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(c) MWUL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80
#core

(d) MWUM

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 8: Performance of creating and deleting files in a private
directory (i.e., MWCL and MWUL) and a shared directory (i.e., MWCM
and MWUM).

forms two read/write spinlock operations and six atomic
operations for reference counting. Because such exces-
sive synchronization operations increase cache-coherence
delays, CPI in btrfs is 20.4× higher than that of ext4
at 80-core (20 and 0.98, respectively). XFS shows better
scalability than btrfs even though its directory is repre-
sented as a B+-tree due to coarser-grained locking, i.e.,
per-directory locking.

Unexpectedly, listing the shared directory (i.e., MRDM
in Figure 7) is not scalable in any of the file systems; the
VFS holds an inode mutex before calling a file system-
specific directory iteration function (iterate_dir()).

5.2.3 File Creation and Deletion

File creation and deletion performance are critical to the
performance of email servers and file servers, which fre-
quently create and delete small files. However, none of
the file systems scale, as shown in Figure 8.

In tmpfs, a scalability bottleneck is adding and delet-
ing a new inode in an inode list in a super block (i.e.,
sb->s_inodes). An inode list in a super block is pro-
tected by a system-wide (not file system-wide) spinlock
(i.e., inode_sb_list_lock), so the spinlock becomes a
performance bottleneck and incurs a performance col-

7

78  2016 USENIX Annual Technical Conference	 USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(a) MWRL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60 70 80
#core

(b) MWRM

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 9: Performance of renaming files in a private directory
(MWRL) and shared directory (MWRM). None of file systems scale.

lapse after 10-core. In fact, CPI at 10-core increases from
20 to 50 at 20-core due to shared cache line contention on
the spinlock.

In ext4, inode allocation is a per-block group operation,
so the maximum level of concurrency is the number of
block groups (256 in our evaluation). But ext4’s policy
to preserve spatial locality (e.g., putting files under the
same directory to the same block group) limits the max-
imum concurrency. Upon file deletion, ext4 first puts a
deleted inode onto an orphan inode list in a super block
(i.e., sbi->s_orphan), which is protected by a per-file-
system spinlock. This list ensures that inodes and related
resources (e.g., disk blocks) are freed even if the kernel
crashes in the middle of the delete. Adding an inode to
an orphan list is a sequential bottleneck.

Like ext4, XFS also maintains inodes per-block group
(or allocation group). But, unlike ext4, a B+-tree is used
to track which inode numbers are allocated and freed.
Inode allocation and free incurs changes in the B+-tree
and such changes need to be logged for consistency. So,
journaling overhead waiting for flushing log buffers is the
major source of bottlenecks (90% of time).

In btrfs, files and inodes are stored in the file system B-
tree. Therefore, file creation and deletion incur changes in
the file system B-tree, and such changes eventually need
to be propagated to the root node. Similar to other write
operations, updating the root node is again a sequential
bottleneck. In fact, between 40% and 60% of execution
time is spent contending to update the root node.

In F2FS, performance characteristics of file creation and
deletion are similar to those of appending and truncating
data blocks in §5.1.3. The reason for this, in the case of
deletion, is the contention in updating the SIT (segment
info table), which keeps track of blocks in active use. In
fact, up to 85% of execution time is spent on contending
for updating the SIT. During create, contention within
the NAT (node address table) is the main reason for the
performance collapse.

When creating and deleting files in a shared directory,
additional contention updating the shared directory is
noticeable (see MWCM and MWUM in Figure 8). Like MRDM,
Linux VFS holds a per-directory mutex while creating and
deleting files.

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

(a) DRBL:O_DIRECT

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

(b) DRBM:O_DIRECT

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80

M
op

s/
se

c

#core

(c) DWOL:O_DIRECT

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80
#core

(d) DWOM:O_DIRECT

btrfs
ext4
ext4NJ
F2FS
XFS

Figure 10: Performance of file data operations in a direct I/O
mode on a single RAMDISK. Performance of all tested file sys-
tems are saturated or declining after 10-core, at which a single
RAMDISK becomes a bottleneck. For write operations, btrfs suf-
fers from its heavy b-tree operations the same as in the buffered
mode. For DWOM:O_DIRECT, only XFS scales because it holds a
shared lock for an inode while the others hold an inode mutex
(inode->i_mutex).

5.2.4 File Rename

As Figure 9 shows, rename is a system-wide sequential
operation regardless of the sharing level. In VFS, mul-
tiple readers optimistically access the dcache through
rename_lock, concurrently with multiple writers, and
then later, each reader checks if the sequence number
is the same as the one at the beginning of the operation. If
sequence numbers do not match (i.e., there were changes
in dentries), the reader simply retries the operation. There-
fore, a rename operation needs to hold a write lock (i.e.,
write_seqlock() on rename_lock), which turns out to
be the bottleneck in our benchmark. In MWRL, on average,
84.7% of execution time is spent waiting to acquire the
rename_lock. This scalability bottleneck is a serious limi-
tation for applications that concurrently perform renaming
of multiple files, like Exim.

5.3 Scalability in a Direct I/O Mode
Performance in direct I/O mode is critical for many I/O-
intensive applications. To understand the scalability be-
havior, we ran microbenchmarks on file data operations
from §5.1 in direct I/O mode (O_DIRECT).

When each test process reads a block in its respective
private file (DRBL:O_DIRECT), there is no apparent con-
tention at file system so the storage device (i.e., a single
RAMDISK) becomes the bottleneck. When more than 10
cores are used (i.e., more than two sockets are involved in
our experimental setup), performance gradually degrades
due to the NUMA effect. When reading a private block

8

USENIX Association 	 2016 USENIX Annual Technical Conference  79

0.0

0.2

0.4

0.6

0.8

1.0

1.2

bt
rf
s

ex
t4
ex
t4
NJ

F2
FS
XF
S

R
el

at
iv

e
Pe

rf
or

m
an

ce
DWSL

bt
rf
s

ex
t4
ex
t4
NJ

F2
FS
XF
S

DWAL

bt
rf
s

ex
t4
ex
t4
NJ

F2
FS
XF
S

DRBL

bt
rf
s

ex
t4
ex
t4
NJ

F2
FS
XF
S

DWOM

HDD SSD

Figure 11: Relative performance of SSD and HDD to RAMDISK at
80-core. For buffered reads (e.g., DRBL) and contending opera-
tions (e.g., DWOM), the performance of the storage medium is not
the dominant factor of applications’ I/O performance.

of the shared file (DRBM:O_DIRECT), XFS shows around 20-
50% higher performance than the other file systems. The
performance difference comes from the different locking
mechanism of the shared file for writing. As discussed in
§5.1.2, the file systems should lock the shared file before
reading the disk blocks as the dirty pages of a file should
be consistently written to that shared file. While writing
dirty pages of a file in a direct I/O mode, XFS holds the
shared lock of a file but others holds the inode mutex
(inode->i_mutex). Thus, read operations of the other file
systems are serialized by the inode mutex.

For write operations, btrfs suffers from its heavy b-
tree operations regardless of the contention level. When
writing private files (DWOL:O_DIRECT), the storage device
is the bottleneck as same as DRBL:O_DIRECT. When writ-
ing a private block of the shared file (DWOM:O_DIRECT),
only XFS scales up to 10-core. File systems other than XFS
serialize concurrent write operations by holding the inode
mutex. In contrast, since XFS holds the shared lock while
writing disk blocks, write operations for the shared file
can be concurrently issued.

The scalability bottleneck in accessing the shared file
is a serious limitation for applications such as database
systems and virtual machines, where large files (e.g.,
database table or virtual disk) are accessed in a direct
I/O mode by multiple I/O threads.

5.4 Impact of Storage Medium

To understand how the performance of the storage
medium affects the scalability behavior, we ran FXMARK

on SSD and HDD, and compared their performance at 80-
core in Figure 11. For synchronous write operations (e.g.,
DWSL) or operations incurring frequent page cache misses
(e.g., DWAL), the bandwidth of the storage medium is a
dominant factor. However, for buffered reads (e.g., DRBL)
or contending operations (e.g., DWOM), the impact of the
storage medium is not dominant. With larger memory
devices, faster storage mediums (e.g., NVMe), and in-
creasing core counts in modern computers, it is important
to understand, measure, and thus improve the scalability
behavior of file systems.

6 Application Benchmarks Analysis
In this section, we explain the scalability behavior of three
applications on various file systems backed by memory.
Exim. After removing the scalability bottleneck in
Exim (see §3.2), it linearly scales up to 80-core (tmpfs
in Figure 12(a)). With the optimized Exim, ext4 scales
the most, followed by ext4NJ, but it is still 10× slower
than tmpfs. Since Exim creates and deletes small files
in partitioned spool directories, performance bottlenecks
in each file system are equivalent to both MWCL and MWUL
(see §5.2.3).
RocksDB. As Figure 12(b) illustrates, RocksDB scales
fairly well for all file systems up to 10 cores but either
flattens out or collapses after that. The main bottleneck
can be found in RocksDB itself, synchronizing compactor
threads among each other. Since multiple compactor
threads concurrently write new merged files to disk, the
behavior and performance bottleneck in each file system
is analogous to DWAL (see §5.1.2).
DBENCH. Figure 12(c) illustrates the DBENCH results,
which do not scale linearly with increasing core count for
any of the file systems. This happens because DBENCH
reads, writes, and deletes a large number of files in a
shared directory. This is similar to our microbenchmarks
MWCM and MWUM (§5.1.3). tmpfs suffers for two reasons:
look-ups and insertions in the page cache and reference
counting for the dentry of the directory.

7 Summary of Benchmarks
We found 25 scalability bottlenecks in five widely-used
file systems, as summarized in Figure 13 and Table 3.
Some of the bottlenecks (e.g., inode list lock) are also
found in recent literature [21, 56, 57]. In our opinion, this
is the most important first step to scale file systems. We
draw the following observations, to which I/O-intensive
application developers must pay close attention.
High locality can cause performance collapse. Main-
taining high locality is believed to be the golden rule to
improve performance in I/O-intensive applications be-
cause it increases the cache hit ratio. But when the cache
hit is dominant, the scalability of cache hits does matter.
We found such performance collapses in the page cache
and dentry cache in Linux file systems. [§5.1.1, §5.2.1]
Renaming is system-wide sequential. rename() is
commonly used in many applications for transactional
updates [46, 71, 75]. However, we found that rename()
operations are completely serialized at a system level in
Linux for consistent updates of the dentry cache. [§5.2.4]
Even read operations on a directory are sequential.
All operations (e.g., readdir(), create(), and unlink())
on a shared directory are serialized through a per-directory
mutex (inode->i_mutex) in Linux. [§5.2.2, §5.2.3,
§5.2.4]

9

80  2016 USENIX Annual Technical Conference	 USENIX Association

0k
10k
20k
30k
40k
50k
60k
70k
80k
90k

100k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

op
s/

se
c

#core

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50 60 70 80

G
B

/s
ec

#core

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

(a) Exim (b) RocksDB (c) DBENCH

Figure 12: Performance of three applications—an email sever (Exim), a NoSQL key/value store (RocksDB), and a file server
(DBENCH)—on various file systems backed by memory.

FS Bottleneck Sync. object Scope Operation

VFS

Rename lock rename_lock System rename()
inode list lock inode_sb_list_lock System File creation and deletion
Directory access lock inode->i_mutex Directory All directory operations
Page reference counter page->_count Page Page cache access
dentry lockref [38] dentry->d_lockref dentry Path name resolution

btrfs
Acquiring a write lock for a B-tree node btrfs_tree_lock() File system All write operations
Acquiring a read lock for a B-tree node btrfs_set_lock_blocking_rw() File system All read operations
Checking data free space data_info->lock File system File append
Reserving data blocks delalloc_block_rsv->lock File system File append
File write lock inode->i_mutex File File write

ext4

Acquiring a read lock for a journal journal->j_state_lock Journal Heavy metadata update operations
Atomic increment of a transaction counter t_handle_count Journal Heavy metadata update operations
Orphan inode list sbi->s_orphan File system File deletion
Block group lock bgl->locks Block group File creation and deletion
File write lock inode->i_mutex File File write

F2FS

Single-threaded writing sbi->cp_rwsem File system File write
SIT (segment information table) sit_i->sentry_lock File system File write
NAT (node address table) nmı->nat_tree_lock File system File creation, deletion, and write
File write lock inode->i_mutex File File write

tmpfs
Cgroup page reference counter counter->count cgroup File truncate
Capacity limit check (per-CPU counter) sbinfo->used_blocks File system File write near disk full
File write lock inode->i_mutex File File write

XFS
Journal writing log->l_icloglock File system Heavy metadata update operations
Acquiring a read lock of XFS inode ip->i_iolock File File read
File write lock inode->i_mutex File File write

Table 3: The identified scalability bottlenecks in tested file systems with FXMARK.

A file cannot be concurrently updated. All of the
tested file systems hold an exclusive lock for a file
(inode->i_mutex) during a write operation. This is a
critical bottleneck for high-performance database systems
allocating a large file but not maintaining the page cache
by themselves (e.g., PostgreSQL). Even in the case of us-
ing direct I/O operations, this is the critical bottleneck for
both read and write operations as we discussed in §5.3. To
the best of our knowledge, the only way to concurrently
update a file in Linux is to update it on a XFS partition with
O_DIRECT mode, because XFS holds a shared lock of a file
for all IO operations in direct I/O mode [26]. [§5.1.2]

Metadata changes are not scalable. For example, cre-
ating, deleting, growing, and shrinking a file are not scal-
able in Linux. The key reason is that existing consistency
mechanisms (i.e., journaling in ext4 and XFS, copy-on-
write in btrfs, and log-structured writing in F2FS) are
not designed with manycore scalability in mind. [§5.1.3,
§5.2.3]

Overwriting could be as expensive as appending.
Many I/O-optimized applications such as MySQL and
PostgreSQL pre-allocate file blocks of heavily updated

files (e.g., log files) and overwrite them instead of grow-
ing files dynamically to reduce the overhead of changing
its metadata [64, 71, 84]. But in non-in-place update
file systems such as btrfs and F2FS, overwrite is written
in a new place; it involves freeing and allocating disk
blocks, updating the inode block map, etc. and thus is as
expensive as append operations. [§5.1.2]

Scalability is not portable. Some file systems have
peculiar scalability characteristics for some operations;
a single file read of multiple threads is not scalable in
XFS due to the scalability limitation of Linux’s read/write
semaphore; in F2FS, a checkpointing operation caused by
segment cleaning freezes entire file system operations so
scalability will be seriously hampered under write-heavy
workloads with low free space; enumerating directories
in btrfs is not scalable because of too frequent atomic
operations. The scalability of an I/O-intensive application
is very file system-specific. [§5.1.1, §5.1.2, §5.2.2]

Non-scalability often means wasting CPU cycles. In
file systems, concurrent operations are coordinated mainly
by locks. Because of spinning of spinlock and optimistic
spinning of blocking locks, non-scalable file systems tend

10

USENIX Association 	 2016 USENIX Annual Technical Conference  81

MWRM

MWRL

MWUM

MWUL

MWCM

MWCL

MRDM

MRDL

MRPH

MRPM

MRPL

DWSL

DWTL

DWAL

DWOM

DWOL

DRBH

DRBM

DRBL

btrfs ext4 ext4NJ F2FS tmpfs XFS

80 80 80 80 80 80
80 80 80 80 80 10
4 4 10 4 2 10
10 10 80 10 80 80
1 1 2 1 1 2
10 10 80 10 50 30
2 10 10 10 10 10
30 10 10 10 80 10
80 80 80 80 80 80
20 20 20 30 20 20
10 10 10 10 10 10
4 80 80 80 80 80
80 1 1 1 2 80
4 10 10 4 10 4
4 2 2 10 4 2
2 20 60 4 20 10
4 40 20 4 30 4
1 10 10 10 10 10
30 80 2 80 2 60

0.01

0.1

1

10

100

Sp
ee

d
up

at
80

-c
or

e

Figure 13: Summary of manycore scalability of tested file sys-
tems. The color represents the relative speed over a single-core
performance of a file system with a specific microbenchmark.
The number in a cell denotes the core count at peak performance.

to consume more CPU cycles to alleviate the contention.
In our benchmarks, about 30-90% of CPU cycles are
consumed for synchronization. [§5.1.3, §5.2.2]

8 Discussion
The next question is whether traditional file system de-
signs can be used and implemented in a scalable way. It
is difficult to answer conclusively. At a high level, the
root causes of the scalability problems of file systems
are not different from those of OS scalability in previ-
ous studies [21, 22, 32–34]: shared cache line contention,
reference counting, coarse-grained locking, etc. But the
devil is in the details; some are difficult to fix with known
techniques and lead us to revisit the core design of file
systems.
Consistency mechanisms need to be scalable. All
three consistency mechanisms, journaling (ext4 and XFS),
log-structured writing (F2FS), and copy-on-write (btrfs),
are scalability bottlenecks. We think these are caused
by their inherent designs so that our community needs
to revisit consistency mechanisms from a scalability per-
spective.

In journaling file systems, committing a journal trans-
action guarantees a filesystem-wide consistency. To this
end, ext4, for example, maintains a single running journal
transaction, so accessing the journal transaction becomes
a scalability bottleneck. Scalable journaling is still an un-
explored area in the context of file systems, though there
are some studies in the database field [54, 66, 90, 91].

In the case when copy-on-write techniques are com-
bined with self-balancing index structures (e.g., B-tree)
like btrfs, such file systems are very fragile to scalability;
a leaf node update triggers updates of all interim nodes to
the root so that write locks of all nodes should be acquired.

Moreover, two independent updates should contend for
acquiring locks of common ancestors. Besides locking
overhead, this could result in a deadlock if two updates
should be coordinated by other locks. We suspect this is
the reason why btrfs uses the retry-based locking proto-
col to acquire a node lock (btrfs_tree_lock()). Paral-
lelizing a CoW file system by extending the current B-tree
scheme (e.g., LSM tree) or using non-self-balancing index
structures (e.g., radix tree or hash table) is worth further
research.

To our best knowledge, all log-structured file systems,
including F2FS, NILFS2 [3], and UBIFS [4], adopt single-
threaded writing. By nature, log-structured file systems
are designed to create a large sequential write stream,
while metadata updates should be issued after writing
file data for consistency guarantee. Multi-headed log-
structured writing schemes are an unexplored area in the
context of file systems, while some techniques are pro-
posed at the storage device level [28, 58].

Spatial locality still needs to be considered. One po-
tential solution to parallelizing file systems is partitioning.
To see its feasibility, we modified Exim and RocksDB
to run on multiple file system partitions for spool direc-
tories and database files, respectively. We set up 60 file
system partitions, the maximum allowed on a disk, to
spread files in 60 ways. Our results on RAMDISK and HDD
show its potential and limitations at the same time. We
see a significant performance improvement on RAMDISK
(Figure 14). It confirms that the reduced contentions in
a file system can improve the scalability. However, the
RocksDB results on HDD also show its limitation (Fig-
ure 15). In all file systems except for F2FS, the partitioned
case performs worse, as partitioning ruins spatial locality.
But F2FS performs equally well in both cases; because
the log-structured writing scheme of F2FS always issues
bulk sequential write for file data, the impact of partition-
ing is negligible. The above example shows the unique
challenges in designing scalable file systems. Optimizing
for storage devices based on their performance character-
istics and achieving consistency guarantees in a scalable
fashion will be critical in file systems.

File system-specific locking schemes in VFS. The scal-
able performance of locking strategies, such as granular-
ity and types of lock, is dependent on data organization
and management. The current locking schemes enforced
in VFS will become obsolete as storage devices and file
systems change. For example, the inode mutex for di-
rectory accesses, currently enforced by the VFS, should
be flexible enough for each file system to choose proper,
finer-grained locking.

Reference counting still does matter. We found scala-
bility problems in the reference counters of various file
system objects (e.g., page, dentry, and XFS inode struc-

11

82  2016 USENIX Annual Technical Conference	 USENIX Association

0k
10k
20k
30k
40k
50k
60k
70k
80k
90k

100k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

(a) Exim

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

op
s/

se
c

#core

(b) RocksDB

btrfs
ext4
ext4NJ
F2FS
tmpfs
XFS

Figure 14: Performance of Exim and RocksDB after dividing
each file system to 60 partitions on RAMDISK.

0

100

200

300

400

500

0 5 10 15 20

op
s/

se
c

#core

(a) Not partitioned

0

100

200

300

400

500

0 5 10 15 20
#core

(b) Partitioned

btrfs
ext4
ext4NJ
F2FS
XFS

Figure 15: Performance of RocksDB with and without parti-
tioning HDD. For clarity, results up to 20-core are presented
because the performance of all file systems is saturated after
that. Except for F2FS, all other file systems fail to scale after par-
titioning and perform around 50% of the original performance.
The impact of partitioning in F2FS is negligible because the
log-structured writing in F2FS always generates large sequential
write for file data.

tures). Many previous studies proposed scalable reference
counting mechanisms, including clustered object [61],
SNIZ [40], sloppy counter [21], Refcache [33], and Linux
per-CPU counter [39], but we identified that they are not
adequate for file system objects for two reasons. First,
their space overhead is proportional to the number of cores
since they speed up by separating cache lines per-core.
Such space overhead is especially problematic to file sys-
tem objects, which are many in number and small in size
(typically a few tens or hundreds of bytes). For example,
in our 80-core machine, the space required for per-core
counters per page is 5× larger than the page structure
itself (320 bytes vs. 64 bytes). Second, getting the true
value is not scalable but immediate. Recall that we found
the reader counter problem at the R/W semaphore used
in the XFS inode (§5.1.1). If getting the number of reader
is not immediate, writers waiting for readers can starve.

9 Related Work
Benchmarking file systems. Due to the complexity of
file systems and interactions among multiple factors (e.g.,
page cache, on-disk fragmentation, and device character-
istics), file system benchmarks have been criticized for
decades [12, 87–89]. Popular file system benchmarks,
such as FIO [1] and iozone [2], mostly focus on measur-
ing bandwidth and IOPS of file system operations varying
I/O patterns. In contrast, recently developed benchmarks
focus on a specific system (e.g., smartphones [59]) or

a particular component in file systems (e.g., block allo-
cation [47]). Along this line, FXMARK focuses only on
manycore scalability of file systems.
Scaling operating systems. To improve the scalabil-
ity of OS, researchers have been optimizing existing
OSes [20–22, 32, 33] or have been building new OSes
based on new design principles [16, 34]. However, pre-
vious studies used memory-based file systems to opt out
of the effect of I/O operations. In Arrakis [74], since
file system service is a part of applications, its manycore
scalability solely depends on each application.
Scaling file systems. The Linux kernel community has
made a steady effort to improve the scalability of the file
system by mostly reducing lock contentions [35, 36, 65].
Hare [45] is a scalable file system for non-cache-coherent
systems. But it does not provide durability and crash
consistency, which were significant performance bottle-
necks in our evaluation. ScaleFS [41] extends a scalable
in-memory file system to support consistency by using
operation log on an on-disk file system. SpanFS [57]
adopts partitioning techniques to reduce lock contentions.
But how partitioning affects performance in a physical
storage medium such as SSD and HDD is not explored.
Optimizing the storage stack for fast storage. As
storage devices become dramatically faster, there are re-
search efforts to make storage stacks more scalable. Many
researchers made efforts to reduce the overhead and la-
tency of interrupt handling in the storage device driver
layer [13, 82, 92, 93]. At the block layer, Bjørling et
al. [18] address the scalability of the Linux block layer
and propose a new Linux block layer, which maintains a
per-core request queue.

10 Conclusion
We performed a comprehensive analysis of the many-
core scalability of five widely-deployed file systems using
our FXMARK benchmark suite. We observed many unex-
pected scalability behaviors of file systems. Some of them
lead us to revisit the core design of traditional file systems;
in addition to well-known scalability techniques, scalable
consistency guarantee mechanisms and optimizing for
storage devices based on their performance characteris-
tics will be critical. We believe that our analysis results
and insights can be a starting point toward designing scal-
able file systems for manycore systems.

11 Acknowledgment
We thank the anonymous reviewers, and our shepherd,
Angela Demke Brown, for their helpful feedback. This
research was supported by the NSF award DGE-1500084,
ONR under grant N000141512162, DARPA Transparent
Computing program under contract No. DARPA-15-15-
TC-FP-006, ETRI MSIP/IITP[B0101-15-0644], and NRF
BSRP/MOE[2015R1A6A3A03019983].

12

USENIX Association 	 2016 USENIX Annual Technical Conference  83

References
[1] Flexible I/O Tester. https://github.com/axboe/fio.

[2] IOzone Filesystem Benchmark. http://www.iozone.org/.

[3] NILFS – Continuous Snapshotting Filesystem. http://nilfs.
sourceforge.net/en/.

[4] UBIFS – UBI File-System. http://www.linux-mtd.
infradead.org/doc/ubifs.html.

[5] DBENCH, 2008. https://dbench.samba.org/.

[6] MongoDB, 2009. https://www.mongodb.org/.

[7] perf: Linux profiling with performance counters , 2014. https:
//perf.wiki.kernel.org/index.php/Main_Page.

[8] Exim Internet Mailer, 2015. http://www.exim.org/.

[9] SAP HANA, 2015. http://hana.sap.com/abouthana.
html/.

[10] MariaDB, 2015. https://mariadb.org/.

[11] VoltDB, 2015. https://voltdb.com/.

[12] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Generating Realistic Impressions for File-system Benchmarking.
Trans. Storage, 5(4):16:1–16:30, Dec. 2009.

[13] I. Ahmad, A. Gulati, and A. Mashtizadeh. vIC: Interrupt coa-
lescing for virtual machine storage device IO. In Proceedings of
the 2011 ATC Annual Technical Conference (ATC), Portland, OR,
June 2011.

[14] P. Alcorn. Samsung Releases New 12 Gb/s SAS, M.2, AIC
And 2.5" NVMe SSDs: 1 Million IOPS, Up To 15.63 TB,
2013. http://www.tomsitpro.com/articles/samsung-
sm953-pm1725-pm1633-pm1633a,1-2805.html.

[15] Artem B. Bityutskiy. JFFS3 design issues. http://linux-mtd.
infradead.org/tech/JFFS3design.pdf.

[16] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel:
A New OS Architecture for Scalable Multicore Systems. In Pro-
ceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, Dec. 2008.

[17] S. Bhattacharya, S. Pratt, B. Pulavarty, and J. Morgan. Asyn-
chronous I/O support in Linux 2.5. In Proceedings of the Linux
Symposium, Ottawa, Canada, June 2003.

[18] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux Block
IO: Introducing Multi-queue SSD Access on Multi-core Systems.
In Proceedings of the 6th International Systems and Storage Con-
ference (SYSTOR), June 2013.

[19] S. Borkar. Thousand Core Chips: A Technology Perspective. In
Proceedings of the 44th Annual Design Automation Conference
(DAC), June 2007.

[20] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: An Operating System for Many Cores. In
Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, Dec. 2008.

[21] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th Sympo-
sium on Operating Systems Design and Implementation (OSDI),
Vancouver, Canada, Oct. 2010.

[22] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
Non-scalable locks are dangerous. In Proceedings of the Linux
Symposium, Ottawa, Canada, July 2012.

[23] N. Brown. An f2fs teardown, 2010. https://lwn.net/
Articles/518988/.

[24] M. Callaghan. Bug #55004: async fuzzy checkpoint constraint
isn’t really async, 2010. http://bugs.mysql.com/bug.php?

id=55004.

[25] M. Callaghan. InnoDB fuzzy checkpoints, 2010. https:
//www.facebook.com/notes/mysqlfacebook/innodb-
fuzzy-checkpoints/408059000932.

[26] M. Callaghan. XFS, ext and per-inode mutexes, 2011.
https://www.facebook.com/notes/mysql-at-facebook/
xfs-ext-and-per-inode-mutexes/10150210901610933.

[27] M. Cao, J. R. Santos, and A. Dilger. Ext4 block and inode allocator
improvements. In Proceedings of the Linux Symposium, 2008.

[28] M.-L. Chiang, P. C. Lee, and R.-C. Chang. Using data clustering
to improve cleaning performance for flash memory. Software-
Practice & Experience, 29(3):267–290, 1999.

[29] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Consistency Without Ordering. In Proceedings
of the 10th Usenix Conference on File and Storage Technologies
(FAST), San Jose, California, USA, Feb. 2012.

[30] D. Chinner. XFS Delayed Logging Design, 2010. http:
//git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/tree/Documentation/filesystems/xfs-
delayed-logging-design.txt.

[31] D. Chinner. Improving Metadata Performance By Reduc-
ing Journal Overhead, 2010. http://xfs.org/index.
php/Improving_Metadata_Performance_By_Reducing_
Journal_Overhead.

[32] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable
Address Spaces Using RCU Balanced Trees. In Proceedings
of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
London, UK, Mar. 2012.

[33] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM:
Scalable Address Spaces for Multithreaded Applications. In Pro-
ceedings of the ACM EuroSys Conference, Prague, Czech Repub-
lic, Apr. 2013.

[34] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler. The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP),
Farmington, PA, Nov. 2013.

[35] J. Corbet. JLS: Increasing VFS scalability, 2009. https://lwn.
net/Articles/360199/.

[36] J. Corbet. Dcache scalability and RCU-walk, 2010. https:
//lwn.net/Articles/419811/.

[37] J. Corbet. XFS: the filesystem of the future?, 2012. https:
//lwn.net/Articles/476263/.

[38] J. Corbet. Introducing lockrefs, 2013. https://lwn.net/
Articles/565734/.

[39] J. Corbet. Per-CPU reference counts, 2013. https://lwn.net/
Articles/557478/.

[40] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable
NonZero Indicators. In Proceedings of the 26th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Port-
land, OR, Aug. 2007.

[41] R. Eqbal. ScaleFS: A Multicore-Scalable File System. Master’s
thesis, Massachusetts Institute of Technology, 2014.

[42] Ext4 Wiki. Ext4 Disk Layout. https://ext4.wiki.kernel.
org/index.php/Ext4_Disk_Layout.

[43] Facebook. RocksDB, 2013. http://rocksdb.org/.

[44] M. J. Foley. Microsoft SQL Server 2014 released to manufac-
turing, 2014. http://www.zdnet.com/article/microsoft-
sql-server-2014-released-to-manufacturing/.

[45] C. Gruenwald III, F. Sironi, M. F. Kaashoek, and N. Zeldovich.

13

84  2016 USENIX Annual Technical Conference	 USENIX Association

Hare: a file system for non-cache-coherent multicores. In Pro-
ceedings of the ACM EuroSys Conference, Bordeaux, France, Apr.
2015.

[46] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. A File is Not a File: Understanding the I/O
Behavior of Apple Desktop Applications. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, Oct. 2011.

[47] J. He, D. Nguyen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Reducing file system tail latencies with Chopper. In
Proceedings of the 13th Usenix Conference on File and Storage
Technologies (FAST), Santa Clara, California, USA, Feb. 2015.

[48] HP. Performance improvements using Concurrent I/O on HP-UX
11i v3 with OnlineJFS 5.0.1 and the HP-UX 11i Logical Volume
Manager, 2015. http://www.filibeto.org/unix/hp-
ux/lib/os/volume-manager/perf-hpux-11.31-cio-
onlinejfs-4AA1-5719ENW.pdf.

[49] Converged System for SAP HANA Scale-out Configurations.
HP, 2015. http://www8.hp.com/h20195/v2/GetPDF.aspx%
2F4AA5-1488ENN.pdf.

[50] IBM. Use concurrent I/O to improve DB2 database perfor-
mance, 2012. http://www.ibm.com/developerworks/data/
library/techarticle/dm-1204concurrent/.

[51] Intel. Performance Benchmarking for PCIe and NVMe
Enterprise Solid-State Drives, 2015. http://www.intel.
com/content/dam/www/public/us/en/documents/white-
papers/performance-pcie-nvme-enterprise-ssds-
white-paper.pdf.

[52] D. Jeong, Y. Lee, and J.-S. Kim. Boosting quasi-asynchronous
I/O for better responsiveness in mobile devices. In Proceedings
of the 13th Usenix Conference on File and Storage Technologies
(FAST), Santa Clara, California, USA, Feb. 2015.

[53] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: A Scalable Storage Manager for the Multicore Era. In
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT
’09, pages 24–35. ACM, 2009.

[54] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ail-
amaki. Aether: A Scalable Approach to Logging. Proc. VLDB
Endow., 3(1-2):681–692, Sept. 2010.

[55] D. H. Kang, C. Min, and Y. I. Eom. An Efficient Buffer Replace-
ment Algorithm for NAND Flash Storage Devices. In Proceedings
of the 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems (MAS-
COTS), Paris, France, Sept. 2014.

[56] J. Kang, B. Zhang, T. Wo, C. Hu, and J. Huai. MultiLanes:
providing virtualized storage for OS-level virtualization on many
cores. In Proceedings of the 12th Usenix Conference on File and
Storage Technologies (FAST), Santa Clara, California, USA, Feb.
2014.

[57] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai.
SpanFS: a scalable file system on fast storage devices. In Proceed-
ings of the 2015 ATC Annual Technical Conference (ATC), Santa
Clara, CA, July 2015.

[58] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The multi-streamed
solid-state drive. In Proceedings of the 6th USENIX conference
on Hot Topics in Storage and File Systems, pages 13–13. USENIX
Association, 2014.

[59] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting Storage for
Smartphones. Trans. Storage, 8(4):14:1–14:25, Dec. 2012.

[60] J. Kim. f2fs: introduce flash-friendly file system , 2012. https:
//lwn.net/Articles/518718/.

[61] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,

J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building a Com-
plete Operating System. In Proceedings of the ACM EuroSys
Conference, Leuven, Belgium, Apr. 2006.

[62] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. C. Kimerling, and A. Agarwal. ATAC: A 1000-core Cache-
coherent Processor with On-chip Optical Network. In Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Vienna, Austria, Sept. 2010.

[63] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new file system
for flash storage. In Proceedings of the 13th Usenix Conference
on File and Storage Technologies (FAST), Santa Clara, California,
USA, Feb. 2015.

[64] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won. WAL-
DIO: Eliminating the Filesystem Journaling in Resolving the Jour-
naling of Journal Anomaly. In Proceedings of the 2015 ATC
Annual Technical Conference (ATC), Santa Clara, CA, July 2015.

[65] W. Long. [PATCH] dcache: Translating dentry into pathname
without taking rename_lock, 2013. https://lkml.org/lkml/
2013/9/4/471.

[66] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Re-
thinking main memory oltp recovery. In Proceedings of the 30th
IEEE International Conference on Data Engineering Workshop,
Chicago, IL, Mar. 2014.

[67] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and
L. Vivier. The new ext4 filesystem: current status and future plans.
In Proceedings of the Linux Symposium, 2007.

[68] R. McDougall. Solaris Internals and Performance FAQ: Di-
rect I/O, 2012. http://www.solarisinternals.com/wiki/
index.php/Direct_I/O.

[69] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast
File System for UNIX. ACM Trans. Comput. Syst., 2(3):181–197,
Aug. 1984. ISSN 0734-2071.

[70] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. SFS: Random
Write Considered Harmful in Solid State Drives. In Proceedings
of the 10th Usenix Conference on File and Storage Technologies
(FAST), San Jose, California, USA, Feb. 2012.

[71] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I. Eom.
Lightweight Application-Level Crash Consistency on Transac-
tional Flash Storage. In Proceedings of the 2015 ATC Annual
Technical Conference (ATC), Santa Clara, CA, July 2015.

[72] T. P. Morgan. Flashtec NVRAM Does 15 Million
IOPS At Sub-Microsecond Latency, 2014. http:
//www.enterprisetech.com/2014/08/06/flashtec-
nvram-15-million-iops-sub-microsecond-latency/.

[73] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–
385, 1996.

[74] S. Peter, J. Li, I. Zhang, D. R. Ports, A. Krishnamurthy, T. Ander-
son, and T. Roscoe. Arrakis: The Operating System is the Control
Plane. In Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Broomfield, Colorado,
Oct. 2014.

[75] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All File Systems
Are Not Created Equal: On the Complexity of Crafting Crash-
Consistent Applications. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI), Broom-
field, Colorado, Oct. 2014.

[76] A. Raj. CPU hotplug Support in Linux(tm) Kernel,
2006. https://www.kernel.org/doc/Documentation/cpu-
hotplug.txt.

[77] O. Rodeh. B-trees, Shadowing, and Clones. Trans. Storage, 3(4):

14

USENIX Association 	 2016 USENIX Annual Technical Conference  85

2:1–2:27, Feb. 2008. ISSN 1553-3077.

[78] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-Tree
Filesystem. Trans. Storage, 9(3):9:1–9:32, Aug. 2013.

[79] C. Rohland. Tmpfs is a file system which keeps all files
in virtual memory, 2001. git.kernel.org/cgit/linux/
kernel/git/torvalds/linux.git/tree/Documentation/
filesystems/tmpfs.txt.

[80] M. Rosenblum and J. K. Ousterhout. The Design and Implementa-
tion of a Log-structured File System. ACM Trans. Comput. Syst.,
10(1):26–52, Feb. 1992. ISSN 0734-2071.

[81] F. B. Schmuck and R. L. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of the
1st Usenix Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002.

[82] D. I. Shin, Y. J. Yu, H. S. Kim, J. W. Choi, D. Y. Jung, and H. Y.
Yeom. Dynamic interval polling and pipelined post i/o processing
for low-latency storage class memory. In Proceedings of the 5th
USENIX conference on Hot Topics in Storage and File Systems,
pages 5–5. USENIX Association, 2013.

[83] Silicon Graphics Inc. XFS Filesystem Structure,
2006. http://xfs.org/docs/xfsdocs-xml-dev/XFS_
Filesystem_Structure/tmp/en-US/html/index.html.

[84] J. Swanhart. An Introduction to InnoDB Internals,
2011. https://www.percona.com/files/percona-
live/justin-innodb-internals.pdf.

[85] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. In Proceedings
of the 1996 ATC Annual Technical Conference (ATC), Jan. 1996.

[86] B. Tallis. Intel Announces SSD DC P3608 Series,
2015. http://www.anandtech.com/show/9646/intel-
announces-ssd-dc-p3608-series.

[87] D. Tang and M. Seltzer. Lies, damned lies, and file system bench-
marks. Technical report, Technical Report TR-34-94, Harvard
University, 1994.

[88] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking
file system benchmarking: It* is* rocket science. HotOS XIII,
2011.

[89] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. A Nine Year
Study of File System and Storage Benchmarking. Trans. Storage,
4(2):5:1–5:56, May 2008.

[90] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
Transactions in Multicore In-memory Databases. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP), Farmington, PA, Nov. 2013.

[91] T. Wang and R. Johnson. Scalable Logging Through Emerging
Non-volatile Memory. Proc. VLDB Endow., 7(10):865–876, June
2014.

[92] J. Yang, D. B. Minturn, and F. Hady. When poll is better than
interrupt. In Proceedings of the 10th Usenix Conference on File
and Storage Technologies (FAST), San Jose, California, USA, Feb.
2012.

[93] Y. J. Yu, D. I. Shin, W. Shin, N. Y. Song, H. Eom, and H. Y. Yeom.
Exploiting peak device throughput from random access workload.
In Proceedings of the 4th USENIX conference on Hot Topics in
Storage and File Systems. USENIX Association, 2012.

15

