
UniSan:
Proactive	Kernel	Memory	Initialization	to	

Eliminate	Data	Leakages	

Kangjie Lu,	Chengyu Song,	Taesoo Kim,	Wenke Lee

School	of	Computer	Science,
Georgia	Tech

Any	Problem	Here?
/*	File:	drivers/usb/core/devio.c*/
/*	define	data	structure	“usbdevfs_connectinfo”	*/
struct usbdevfs_connectinfo {
unsigned int devnum;
unsigned char slow;

};

/*	create	and	initialize	object	“ci”
struct usbdevfs_connectinfo ci	=	{
.devnum=	ps->dev->devnum,
.slow	=	ps->dev->speed	==	USB_SPEED_LOW

};
/*	copy	“ci”	to	user	space	*/
copy_to_user(arg,	&ci,	sizeof(ci));

3-byte	padding

Information	leak!

Security	Mechanisms	in	OS	Kernels
kASLR:		Randomizing	the	address	of	code/data

– Preventing	code-reuse	and	privilege	escalation	
attacks

StackGuard:	Inserting	random	canary	in	stack
– Preventing	stack	corruption-based	attacks

Code/data

Memory

Code/data

Memory

Code/data

Memory

1st boot 2nd boot 3rd boot

?

n boot…	

Random	canary

The	Assumption	of	Effectiveness

Assumption:		No	information	leak

Randomized	address

Memory

A	single	information	leak	renders	these	
security	mechanisms	ineffective!

kASLR

StackGuard

Infoleak in	the	OS	(Linux)	Kernel

According	to	the	CVE	database

0

20

40

60

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

#	of	reported	Infoleak	bugs	in	the	Linux	kernel	Number

These	security	mechanisms	are	often	bypassed	in	reality
Sensitive	data	(e.g.,	cryptographic	keys)	can	also	be	leaked.

Our	research	aims	to	eliminate	
information	leaks	in	OS	kernels

Causes	of	Infoleaks
• Uninitialized	data	read:		Reading	data	before	
initialization,	which	may	contain	uncleared
sensitive	data

• Out-of-bound	read:		Reading	across	object	
boundaries

• Use-after-free:		Using	freed	pointer/size	that	can	
be	attacker	controlled

• Others:		Missing	permission	check,	race	condition

Causes	of	Infoleaks (cont.)
Infoleak Causes	in	the	Linux	Kernel	(since	2013)

Uninitialized	data	read

Out-of-bound	 and	use-
after-free	read

Others	(e.g.,	logic	error)

OOB	and	UAF	
read	(29.1%)

Others	
(13.6%)

Uninitialized	data	
read	(57.3%)

Our	focus

Similarly,	Chen	et	al.	[APSys’11]	showed	76%	infoleaks (Jan.	2010	-
Mar.	2011)	are	caused	by	uninitialized	data	reads	

Memory	safety

Model	checking,	etc.

From	Uninitialized	Data	Read	to	Leak
1. Deallocated	memory	is	not	cleared	by	default.
2. Allocated	memory	is	not	initialized	by	default.
3. Reading	the	uninitialized	memory	->	leak.

sensitive

User	A	allocates	
object	A	and	

writes	“sensitive”	
in	to	it

Memory

Object	A

User	A	deallocates
object	A;	

“sensitive”	is	not
cleared

User	B	allocates
object	B	without
Initialization;
“sensitive”	kept

User	B	reads	
Object	B;
“sensitive”	
leaked!

1 2 3 4

sensitive sensitive

Object	B Object	B

sensitive

Memory Memory

Troublemaker:		Developer

Missing	element	initialization:	Blame	the	
developer.	J

Difficult	to	avoid,	e.g.,	
–Data	structure	definition	and	object	
initialization	may	be	implemented	by	different	
developers

Troublemaker:		Compiler
Data	structure	padding:		A	fundamental	
feature	improving	CPU	efficiency

/*	both	fields	(5	bytes)	are	initialized	*/
struct usbdevfs_connectinfo ci	=	{
.devnum =	ps->dev->devnum,
.slow	=	ps->dev->speed	 ==	

USB_SPEED_LOW
};
/*	leaking	3-byte	uninitialized	padding

sizeof(ci)	=	8 */
copy_to_user(arg,	&ci,	sizeof(ci));

struct usbdevfs_connectinfo {
unsigned int devnum;
unsigned char slow;
/*	3-bytes	padding	*/

};

C	Specifications	(C11)

Chapter	§6.2.6.1/6

“When	a	value	is	stored	in	an	object	of	
structure	or	union	type,	including	in	a	
member	object,	the	bytes	of	the	object	
representation	that	correspond	to	any	
padding	bytes	take	unspecified	values.”

Responses	from	the	Linux	Community

Doubted

Confirmed
Kees Cook:

Willy	Tarreau:

Blamed	GCC

Agreed	
solution

Linus	Torvalds:

Ben	Hutchings:

Detecting/Preventing	Uninitialized	
Data	Leaks

The	-Wuninitialized option	of	compilers?
Simply	initialize	all	allocations?

Our	UniSan approach:	
1) Conservatively	identify	unsafe	allocations	

(i.e.,	with	potential	leaks)	via	static	
program	analysis

2) Instrument	the	code	to	initialize	only	
unsafe	allocations

Detecting	Unsafe	Allocations

Integrating	byte-level	and	flow-,	context-,	and	
field-sensitive	reachability	and	initialization	
analyses

Sources
(i.e.,	

allocations)

Sinks
(e.g.,	

copy_to_user)
Data	flow

Reachability	analysis

Initialization
analysis

Main	Challenges	in	UniSan
• Sink	definition
–General	rules

• Global	call-graph	construction
– Type	analysis	for	indirect	calls

• Byte-level	tracking
–Offset-based	analysis,	“GetElementPtr”

Be	conservative!	
Assume	it	is	unsafe	for	special	cases!

Instrumentation

Zero-initializations	for	unsafe	allocations:
–Stack:	 Assigning	zero	or	using	memset
–Heap:	 Adding	the	__GFP_ZERO	flag	to	
kmalloc

Instrumentations	are	semantic	preserving
–Robust
–Tolerant	of	false	positives

Implementation
• Using	LLVM
–An	analysis	pass	and	an	instrumentation	pass

• Making	kernels	compilable with	LLVM
– Patches	from	the	LLVMLinux project	and	
Kenali [NDSS’16]	

• Optimizing	analysis
–Modeling	basic	functions

How	to	use	UniSan: $	unisan @bitcode.list

Evaluation
Evaluation	goals
–Accuracy	in	identifying	unsafe	allocations
– Effectiveness	in	preventing	uninitialized	data	
leaks
– The	efficiency	of	the	secured	kernels

Platforms
– Latest	mainline	Linux	kernel	for	x86_64
– Latest	Android	kernel	for	AArch64

Evaluation	of	Accuracy

Statistics	of	various	numbers:
–Only	10% of	allocations	are	detected	as	
unsafe.

Arch Module Alloca Malloc Unsafe
Alloca

Unsafe
Malloc

Percent

X86_64 2,152 17,878 2,929 1,493 386 9.0%
AArch64 2,030 15,628 3,023 1,485 451 10.3%

Evaluation	of	Effectiveness

Preventing	known	leaks:
–Selected	43	recent	leaks	with	CVE#
–UniSan	prevented	all	of	them

Detecting	unknown	leaks
–With	manual	verification

Confirmed	New	Infoleaks (Selected)
File Object Leak	

Bytes
Cause CVE

rtnetlink.c map 4 Pad CVE-2016-4486
devio.c ci 3 Pad CVE-2016-4482
af_llc.c info 1 Pad CVE-2016-4485
timer.c tread 8 Pad CVE-2016-4569
timer.c r1 8 Pad CVE-2016-4578
netlink...c link_info 60 Dev. CVE-2016-5243
media-
device.c

u_ent 192 P&D AndroidID-
28616963

more… more… … … more…

Evaluation	of	Efficiency
Runtime	overhead	(geo-mean	%)

Analyses	took	less	3minutes.
Binary	size	increased	<	0.5%.

Category Benchmarks Blind	Mode
(x86_64)

UniSan
(x86_64)

System	
operations

LMBench 4.74% 1.36%

Server	
programs

ApacheBench 0.8% <0.1%

User	
programs

SPEC Bench 1.92% 0.54%

Limitations	and	Future	Work

• Custom	heap	allocators
–Require	annotations	

• Close-sourced	modules
–Not	supported

• Other	uninitialized	uses,	e.g.,	uninitialized	
pointer	dereference

• GCC	support	(in	progress)

Conclusions

• Information	leaks	are	common	in	OS	
kernels.
• Uninitialized	read	is	the	dominant	cause.
• Developers	are	not	always	to	blame—
compilers	may	also	introduce	security	
problems.
• UniSan	eliminates	all	uninitialized	data	
leaks.

Try	UniSan:	
https://github.com/sslab-gatech/unisan

