Breaking Kernel Address Space
Layout Randomization (KASLR)
with Intel TSX

Yeongjin Jang, Sangho Lee, and Taesoo Kim

Georgia Institute of Technology

Kernel Address Space Layout
Randomization (KASLR)

* A statistical mitigation for memory
corruption exploits

 Randomize address layout per each boot
 Efficient (<5% overhead)

 Attacker should guess where code/data are
located for exploit.

* In Windows, a successful guess rate is 1/8192.

First Boot

USER32
0x7d000000
ntdll

kernel32

0x 76000000

0x73000000

RERRL 0x77000000

0x75000000

ADVAP123

0x73000000

Second Boot

ntdil 0x7d000000

USER32

0x7b000000
RCPRT4

kernel32

0x 79000000
GDI32

0x77000000

ADVAP123

0x75000000
msvc rt

0x73000000

Example: Linux

* To escalate privilege to root through a kernel exploit, attackers want
to call commit_creds(prepare_kernel creds(0)).
// full-nelson.c

static int __attribute__((regparm(3)))
getroot(void * file, void * vma)

{
commit_creds(prepare_kernel_cred(0));
return -1;

¥

// https://blog.plenz.com/2013-02/privilege-escalation-kernel-exploit.html
int privesc(struct sk_buff *skb, struct nlmsghdr *nlh)

{

commit_creds(prepare_kernel_cred(0));

return Q;

Example: Linux

* KASLR changes kernel symbol addresses every boot.

Example: Linux

* KASLR changes kernel symbol addresses every boot.

commit_creds\| prepare_kernel'
15t Boot

~$ | sudo cat /proc/kallsyms | grep
ffffffffaa0a3bdd T
ffffffffaa0a3fco T _cred

Example: Linux

* KASLR changes kernel symbol addresses every boot.

~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

FEFFFFffaada3bdo T N
FEFFFFffaa0a3fco T _cred 1% Boot

~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

FFFFFFFFbdOA3bdD T ~
FFFFFFFFbAOA3FCO T _cred 2" Boot

KASLR Makes Attacks Harder

e KASLR introduces an additional bar to exploits
* Finding an information leak vulnerability

Pr[3 Memory Corruption Vuln]

e Both attackers and defenders aim to detect info leak vulnerabilities.

KASLR Makes Attacks Harder

e KASLR introduces an additional bar to exploits
* Finding an information leak vulnerability

Pr[3 Memory Corruption Vuln]

4

Pr[3 information_leak]| x Pr[3 Memory Corruption Vuln]

e Both attackers and defenders aim to detect info leak vulnerabilities.

s there any other way than info leak?

* Practical Timing Side Channel Attacks Against Kernel Space
ASLR (Hund et al., Oakland 2013)

* A hardware-level side channel attack against KASLR
* No information leak vulnerability in OS is required

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 1 0
Page-M
) L va?j O?ffs) t Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend eve €| Pointer Offset Offset Offset Page Offset
(PML4)
A9 A9 A9 A9 A12
. Page-

Virtual Address Miss Page-Map Directory- Page- 4 Koyte
- Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page

527
— PTE L~
i 52]
Hit 5o+ —*| PDPE |4
| PML4E |4 - | | Physical
> ppe B2 Address
- - > — > — -
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address

CR3

10

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
) L Pa?j"g:: t Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend eve €| Pointer Offset Offset Offset Page Offset
(PML4)
/’9 /'9 /'9 ,’9 /’12
. Page-

Virtual Address Miss Page-Map Directory- Page- 4 Kbyte
- Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page

52
— PTE L~
52
Hit 5o+ —*| PDPE |4
! PML4E 4 - . ixs.cal
L ppe ,/ ress
Mapped address
generate page fault quicker! - - SUNN [S -
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address

CR3

11

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 11 0

Page-Map Pa , , .

) ge-Directory- | Page-Directory Page-Table Physical-
Sign Extend Level-4 Offset | "5 irier Offset Offset Offset Page Offset
(PML4)
A9 A9 A9 X9 A12
. Page-
Virtual Address Miss Page-Map Direclory- Page- e
Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page
Unmapped address .
o > prE |2
Hit takes ~40 cycles o
. —™ PDPE |4
more for page table walk L _] o | [Physica
> Address
Mapped address g
generate page fault quicker! - - e e -
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address

CR3

12

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 11 0

Page-Map Pa , , .

) ge-Directory- | Page-Directory Page-Table Physical-
Sign Extend Level-4 Offset | "5 irier Offset Offset Offset Page Offset
(PML4)
A9 A9 A9 X9 A12
. Page-
Virtual Address Miss Page-Map Direclory- Page- e
Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page
Unmapped address .
~ > prE |2
Hit takes ~40 cycles o
. —™ PDPE |4
more for page table walk <m4£ 2 . [Prvea
> Address
Mapped address g
generate page fault quicker! - - e e -
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Level3

Base Address

CR3

13

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 1 0

Page-Map Pa , , .

) ge-Directory- | Page-Directory Page-Table Physical-
Sign Extend Level-4 Offset | "5 irier Offset Offset Offset Page Offset
(PML4)
A9 A9 A9 X9 A12
. Page-
Virtual Address Miss Page-Map Direclory- Page- e
Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page
Unmapped address o
L pTE |2
Hit takes ~40 cycles / o 7
5o+ —\™ PDPE
more for page table walk e -\l ' Physica
- Z | Address
Mapped address
generate page fault quicker! - - e e -
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Leveld
Base Address CR3

14

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
Page-Map Pa , , .
) ge-Directory- | Page-Directory Page-Table Physical-
Sign Extend Level-4 Offset | "5 irier Offset Offset Offset Page Offset
(PML4)
A9 A9 o A9 X9 A12
. age-
Virtual Address Miss Page-Map Directory- Page- 4 Koyte
Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page
Unmapped address .
~ = PTE ,512
Hit takes ~40 cycles / o
5o+ ™| PDPE _
more for page table walk <pw£ AN N | [peca
Mapped address il /

P
_—

generate page fault quicker!

*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address CR3

15

TLB Timing Side Channel

Virtual Address

63 48 47 3938 30 29 2120 12 11 0

Page-Map Pa , , .

) ge-Directory- | Page-Directory Page-Table Physical-

Sign Extend Level-4 Offset | "5 irier Offset Offset Offset Page Offset |
(PML4) -

A9 A9 o A9 X9 A12

. age-
Virtual Address Miss Page-Map Directory- Page- 4 Koyte
Level-4 Pointer Directory Page Physical
> TLB > Table Table Table Table Page
Unmapped address é
PTE
l Hit takes ~40 cycles B C — A\
more for page table walk < s VAN N | [peca
Mapped address il /

P
_—

generate page fault quicker!

*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address CR3

16

TLB Timing Side Channel

Virtual Address

»

TLB

[

Virtual Address

Mapped address

generate page fault quicker!

63 48 47 3938 30 29 2120 12 11 0
) L Pa?z'g:z t Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend eve €| Pointer Offset Offset Offset Page Offset
(PML4)
A9 A9 A° Ve A12
Page-
M i SS Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
> Table Table Table Table Page
Unmapped address
PTE
takes ~40 cycles / o

k 5o+ ™| PDPE ~— r)

more for page table wal AN Physica
PML4E 2* Address

PDE
—
" - *This is an architectural limit. A glve'n processor
51 12 implementation may support fewer bits.
Page-Map Level-3
Base Address CR3

17

TLB Timing Side Channel

e Result: Fault with TLB hit took less than 4050 cycles
* While TLB miss took more than that...

* Limitation: Too noisy
¢ VVhy???? 4150/

410077 g
m :‘:. ‘:: ' :‘ EE:: .:: .
~ T 3 i
e 3 - Rt x -
Sap50[- === 22 B T
o F—— B St -1
4000 5 ¢ £
3950

0x80000000L 6x90000000L 0xa0000000L 6xb000O0OOL 0xc0000000L 6xd0060000L 0xe0000000L 0xF0000000L
virtual address

TLB Timing Side Channel

e Result: Fault with TLB hit took less than 4050 cycles
* While TLB miss took more than that...

* Limitation: Too noisy
e Why????

- | Unmapped

410055 i g
v ::' ' :‘ :g -':: o
- LIS 2 w
[8) Lea'. aa . - o
4050 : - = = =om s P =
) o= = —_— — L ey Pt -
4000 i i & £
3950
st 0 | | | 1
0x80000000L 0x90000000L 0xa0000000L 6xb00000OOL OxcO000000L 6xd00OOOOOL 0xe0000000L 0xF0000000L

virtual address

TLB Timing Side Channel

Measured Time (~4000 cycles)

User CPU

OS Exception Handling

Timing Side Channel (~40 cycles)

OS Noise (~100 cycles)

Fault Handling Noise
is too much!

. User Execution

. CPU Exception
TLB Side Channel
. OS Execution

OS Handling Noise

20

TLB Timing Side Channel

Measured Time (~4000 cycles)
D —————— e —

=
User CPU | L OS Exception Handling OS Noise

If we can the then the
timing channel will be

> (S Noise (~100 cycles) B Os Execution

Fault Handling Noise . 0S Handling Noise
is too much!

21

A More Practical
Side Channel Attack on KASLR

* The DrK Attack: We present a practical side channel attack on KASLR
* De-randomizing Kernel ASLR (this is where DrK comes from)

* Exploit Intel TSX for eliminate the noise from OS
* Distinguish mapped and unmapped pages
* Distinguish executable and non-executable pages

Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f((status = _xbegin()) == _XBEGIN_STARTED) {

// atomic region
try_atomic_operation();

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();

23

Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();

24

Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

2. Try atomic operation (can fail)

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();

25

Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

2. Try atomic operation (can fail)

_xend();

// atomic region end
Iy
else {

g/ i{ Faki;led’ - 3. If failed, handle failure with abort handler
andle_abort(); (retry, get back to traditional lock, etc.)

26

Transaction Aborts If Exist any of a Conflict

Lnt status = 0; * Condition of Conflict
1f((status = _xbegin()) == _XBEGIN_STARTED) { e Thread races
// atomic region * Cache eviction (L1
try_atomic_operation(); write/L3 read)
* Interrupt
_xend(); * Context Switch (timer)
// atomic region end e Syscalls
}1 ; * Exceptions
eLse * Page Fault

// if failed, . GeneraI-Protection
handle_abort(); * Debugging
} \

Run If Transaction Aborts

27

Transaction Aborts If Exist any of a Conflict

status = 0;

if((status = _xbegin()) == _XBEGIN_STARTED) {

// atomic region
try_atomic_operation();

_xend();

// atomic region end

Iy
else {

// 1f failed,
handle_abort();

N

Run If Transaction Aborts

 Abort Handler of TSX

e Suppress all sync. exceptions
* E.g., page fault

* Do not notify OS
e Just jump into abort_handler()

No Exception delivery to the OS!
(returns quicker, so less noisy
than OS exception handler)

28

Reducing Noise with Intel TSX

Measured Time (~ 4000 cycles)

User CPU OS Exception Handling

. User Execution

. CPU Exception
TLB Side Channel
. OS Execution

OS Handling Noise

29

Reducing Noise with Intel TSX

Measured Time (~ 4000 cycles)

User CPU OS Exception Handling

Measured Time (~ 180 cycles)
D ——
Timing Side Channel (~ 40 cycles) B cPU Exception

. User Execution

]] TLB Side Channel
Not involving OS,

Less noisy!

User CPU

. OS Execution

OS Handling Noise

30

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;

p = (Int)OxFFfffff80000000; // kernel addresss
time_begin = __rdtscp();
1f((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction

*p; // read access
// or,

CCint*HOIp)O; // exec access

¥
else {

// abort handler

time_diff = __rdtscp() - time_begin;
¥

31

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;

p = (Int)oxffffffff80000000; // kernel addresss
time_begin = __rdtscp(); <
1f((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction

*p; // read access
// or,

CCint*HOIp)O; // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin;

1. Timestamp at the beginning

32

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;
status = 0;

*n = (IO 80000000; // kernel addresss
time_begin = __rdtscp(); -«
1f((status = _xbegin == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCntC*)(Ip)(); // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin;

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)

33

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;
*P = (*)@“%%%%%%%£8®@®@@@@; /7 kernel addresss
time_begin = __rdtscp(); <
—— if((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCnt*)O)p)(); // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin; <«

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)

3. Measure timing at abort handler

34

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;
*n = (IO 80000000; // kernel addresss
time_begin = __rdtscp(); <
—— 1f((status = _xbegin == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCntC*)(Ip)(); // exec access

¥
else {
// abort handler
_— time_diff = __rdtscp() - time_begin; <

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)

Processor directly calls the handler
OS handling path is not involved

3. Measure timing at abort handler

35

Measuring Timing Side Channel

* Mapped / Unmapped kernel addresses (across 4 CPUs)

* Ran 1000 iterations for the probing, minimum clock on 10 runs

Mapped Page Unmapped Page

i7-6700K (4.0Ghz) 209 240 (+31)
i5-6300HQ (2.3Ghz) 164 188 (+24)
i7-5600U (2.6Ghz) 149 173 (+24)
E3-1271v3 (3.6Ghz) 177 195 (+18)

* Mapped page always faults faster

Measuring Timing Side Channel

* Executable / Non-executable kernel addresses
e Ran 1000 iterations for the probing, minimum clock on 10 runs

i7-6700K (4.0Ghz) 181 226 (+45)
i5-6300HQ (2.3Ghz) 142 178 (+36)
i7-5600U (2.6Ghz) 134 164 (+30)
E3-1271v3 (3.6Ghz) 159 189 (+30)

* Executable page always faults faster

Clear Timing Channel

| Module M/U |

200k
168480 3d0900 5b8d80 7a1200 989680 b71b00 d59f80

Address
(a) Mapped vs. Unmapped

240

230/

220

!Modulg X/NX!

Non Executable or Unr

napped

Clocks

200l

lgorfm“m

210.f

190_..2 i h*#ﬁ«

Executable

iy

163480 3dd900 55380 7a11200 589680 b71‘b00 359180

Address

(b) Executable vs. Non-executable

Clear separation between different mapping status!

38

Attack on Various OSes

e Attack Targets

* DrKis hardware side-channel attack
* The mechanism is independent to OS

* We target popular OSes: Linux, Windows, and macOS

* Attack Types
e Type 1: Revealing mapping status of each page (X / NX / U)
* Type 2: Finer-grained module detection

Attack on Various OSes

* Type 1: Revealing mapping status of each page

* Try to reveal the mapping status per each page in the area
* X (executable) / NX (Non-executable) / U (unmapped)

Oxffffffffc0278000-0xffffffffc027do00 U
Oxffffffffc027do00-oxffffffffc0281000 X
Oxffffffffc0281000-0Oxffffffffc0285000 NX
Oxffffffffc0285000-0xffffffffc0289000 U
Oxffffffffc0289000-0xffffffffc028b000 X
Oxffffffffc028b000-0Oxffffffffc028e000 NX
Oxffffffffc028e000-0xffffffffc0293000 U
Oxffffffffc0293000-0xffffffffc02b7000 X
OxffffffffcO2b7000-0Oxffffffffc02e9000 NX
Oxffffffffc02e9000-0xffffffffc02ead00 U
Oxffffffffc02ea000-0xffffffffc02f0000 X

Attack on Various OSes

* Type 2: Finer-grained 0x4000

module detection

* Section-size Signature

* Modules are allocated in fixed size
of X/NX sections if the attacker
knows the binary file

libahci
0x4000

* Example 0x16000

* If the size of executable map is
0x4000, and the size of non-
executable section is 0x4000, then it
is libahcil

iwlwifi

0x1a000

41

(master) ~/drk/linux$

sgx-Inspiron-7559 [10/21/2016 01:52PM]]

Result Summary

* Linux: 100% of accuracy around 0.1 second
* Windows: 100% for M/U in 5 sec, 99.28% for X/NX for 45 sec
* OS X: 100% for detecting ASLR slide, in 31ms

 Linux on Amazon EC2: 100% of accuracy in 3 seconds

Timing Side Channel (M/U)

* For Mapped / Unmapped addresses
* Measured performance counters (on 1,000,000 probing)

dTLB-loads 3,021,847 3,020,243
dTLB-load-misses 84 2,000,086 TLB-miss on U
Observed Timing 209 (fast) 240 (slow)

* dTLB hit on mapped pages, but not for unmapped pages.
* Timing channel is generated by dTLB hit/miss

44

Timing Side Channel (M/U)

* For Mapped / Unmapped addresses
* Measured performance counters (on 1,000,000 probing)

dTLB-loads 3,021,847 3,020,243
dTLB-load-misses 84 2)000)086) TLB-miss on U
Observed Timing 209 (fast) 240 (slow)

* dTLB hit on mapped pages, but not for unmapped pages.
* Timing channel is generated by dTLB hit/miss

45

Path for an Unmapped Page

Probing an unmapped page took 240 cycles

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

dTLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

48

Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

Page Table

dTLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!

49

Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

Always do page table walk (slow)

TLB miss

dTLB —

PME3 || PML3

Page Table

PMLA

PML2 || PML2 || PML2
PML1 [[PMTL1 || PML1
PYE
Page fault!

50

Path for a mapped Page

On the first access, 240 cycles

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a mapped Page

On the first access, 240 cycles

Kernel address access

\ 4

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a mapped Page

On the first access, 240 cycles

Kernel address access

\ 4

dTLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

53

Path for a mapped Page

On the first access, 240 cycles

Page Table

Kernel address access

dTLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!

54

Path for a mapped Page

On the first access, 240 cycles

Kernel address access

dTLB

PTE

TLB miss

Cache TLB entry! P

| Tems

PME3 || PML3

Page Table

PMLA

PML2

I\

MLl || pva || PML1

Page fault!

55

Path for a mapped Page

On the second access, 209 cycles

dTLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a mapped Page

On the second access, 209 cycles

Kernel address access

\ 4

dTLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a mapped Page

On the second access, 209 cycles

Kernel address access

dTLB

\ 4

PTE

dTLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

58

Path for a mapped Page

On the second access, 209 cycles

Kernel address access

dTLB

PTE

dTLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

No page table walk on the second access (fast)

59

Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) 1,000,247
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 (slow) 226 (slow)

e Point #1:iTLB hit on Non-exec, but it is slow (226) why?

* iTLB is not the origin of the side channel

60

Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) 590 1,000,247 272
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 st 226 (slow)

e Point #1:iTLB hit on Non-exec, but it is slow (226) why?

* iTLB is not the origin of the side channel

61

Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

Exec Page Non-exec Page Unmapped Page

iTLB-loads (hit) 590 1,000,247 272
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 (slow) 226 (slow)

* Point #2:iTLB does not even hit on Exec page, while NX page hits iTLB

e iTLB did not involve in the fast path
* |s there any cache that does not require address translation?

62

Intel Cache Architecture

E . I -
Way Flush | Set |
: Match Logic Match [~ !
12307 2337 231” i §
- | Micro-Op Cache | 292
P Tag Match| [Cache| | g\g 215
~IMatch [T lQueue| "} Data || , S
: e ; : = Micro-
-221 222 223 IS Op
............... e e ; Queu&
o) A
21 212‘? 213\> im 216
; Next
, = Miss
-5 BPU "Queue ™ P
Mux
ek
241j inclusion m~‘Use |
L 242 243, 244 | 246
d N P4 H
bty | TLB by I-Cache) inecode
: Fetch
MITE V-Cache
201 214 " 245

,,,

From the patent US 20100138608 A1
registered by Intel Corporation

Intel Cache Architecture

e L1 instruction cache

* Virtually-indexed, Physically-tagged
cache (requires TLB access)

e Caches actual x86/x64 opcode

inclusion Logic 217
' o
Way Flush Set | !
Match Logic Match [~
237 2337 | 2317
Micro-Op Cache | 292
1=l Tag Match| |Cache %\c:f 215
ZIMatch [T |Queue| | Data Shg-
! L ; : = Micro-
-221 ~222 223 ! IS Op
............... et e B e i Queu@
. ; vt § *g/ //‘V'
21 2‘!2\? 213\> im 216
; Next
, -+ Miss
-5 BPU "Queue ™ i
Mux
e
m\
‘ 244 | 5
-] h
I-Cache - ’
Fetch -+Decode
V-Cache
201

From the patent US 20100138608 A1,

registered by Intel Corporation

Intel Cache Architecture

W;y Fiuéﬁ Set |
| Match Logic Match '“
. 12327 2337 2317 s
* Decoded i-cache
. . . icro-Op Cache | 2-9»‘24
* An instruction will be decoded as j | \
micro-ops (RISC-like instruction) AN A L s R “ﬁ:i
* Decoded i-cache stores micro-ops 21| Zopp “223 ‘ffjaﬁp
: : : — /) S
* Virtually-indexed, Virtually-tagged RS | 2is
cache (no TLB access) L gpy [y Mes | N
: M‘ux
 jap/Lnclusion | In-Use 5
242 243, | 244 ?,246§
MWWM»» TLB ’%»«?s;{;:a wDeZ:ode
| [1T
MITE ’ V-Cache
201 214 - Sous

From the patent US 20100138608 A1,
registered by Intel Corporation

Path for an Unmapped Page

On the second access, 226 cycles

ITLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

ITLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

\ 4

ITLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

68

Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

Page Table

ITLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!

69

Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

Always do page table walk (slow)

TLB miss

iTLB —

PME3 || PML3

Page Table

PMLA

PML2 || PML2 || PML2
PML1 [[PMTL1 || PML1
PYE
Page fault!

70

Path for an Executable Page

On the first access

Decoded
I-cache

ITLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the first access

Kernel address
access

| Decoded

|-cache

ITLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the first access

Kernel address
access

| Decoded

|-cache

MIsS

\ 4

ITLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the first access

Kernel address
access

| Decoded

|-cache

MIsS

\ 4

ITLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the first access

Page Table

Kernel address TLB miss

miss / PNVILA
access Decoded ‘ TLB

I-cache ' PME3 || PML3

PML2 || PML2 || PML2

PML1 || Pm1 || PMLL
PYE

Insufficient privilege, fault!

75

Path for an Executable Page

On the first access

Page Table
Kern:!caeci(:ress Decoded miss TLB*' PMLA
| I-cache : LB PME3 |[PML3
PTE Cache TLB S
'\ PML2 || PL2 || PML2
ML1 || PmL1 || PML1
- PYE

Insufficient privilege, fault!

76

Path for an Executable Page

On the first access

Page Table
Kern:!caeci(:ress Decoded MmIss TLB*, PML4
| I-cache : LB PME3 |[PML3
PTE Cache TLB S
uops '\ PML2 | [PyL2 | [PML2
ML1 || PmLa || PMLL
Cache Decoded Instructions PYE

Insufficient privilege, fault!

77

Path for an Executable Page

On the second access, 181 cycles

Decoded
I-cache

uops

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the second access, 181 cycles

Kernel address
access

| Decoded

|-cache

uops

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for an Executable Page

On the second access, 181 cycles

Kernel address
access

| Decoded

|-cache
uops

ITLB

PTE

Decoded I-cache hit!

Insufficient privilege, fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

80

Path for an Executable Page

On the second access, 181 cycles

Kernel address
access

| Decoded

Insufficient privilege, fault!

|-cache
uops

ITLB

PTE

Decoded I-cache hit!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

No TLB access, No page table walk (fast)

81

Path for a non-executable, but mapped Page

On the second access, 226 cycles

Decoded
I-cache

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

85

Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address

MmIss
access ‘ Decoded

|-cache

ITLB

PTE

TLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

If no page table walk, it should be faster than unmapped (but not!)

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB
Oxff01->0x0010, NX

1. Core 1 sets OxffO1 as Non-executable memory

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB
Oxff01->0x0010, NX

Core 2

TLB
Oxff01->0x0010, X

1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB
Oxff01->0x0010, NX

Core 2

TLB
Oxff01->0x0010, X

1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1

3. Core 1 try to execute on 0xffO1 -> fault by NX

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB Execute
Oxff01->0x0010, NX

Core 2

TLB
Oxff01->0x0010, X

1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1

3. Core 1 try to execute on 0xffO1 -> fault by NX

4. Core 1 must walk through the page table
The page table entry is X, update TLB, then execute!

91

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Decoded
I-cache

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit

NX, cannot execute!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

95

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit \

NX, cannot execute!

Page Table

/ PML4

"PML3

PML3

PML2

PML2 || PML2

/

PML1

PML1

PML1

PTE

96

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit \

NX, cannot execute!

Cache TLB

Page Table
PML4
/Py

Zz

‘PME3 || PML3

AN

PML2 || PML2 || PML2

ML1

| PYE

NX, Page fault!

97

Root-cause of Timing Side Channel (X/NX)

* For executable / non-executable addresses

1. Jmp into the Kernel addr 1. Jmpinto the kernel addr 1. Jmp into the kernel addr
2. Decoded I-cache hits 2. iTLB hit 2. iTLB miss
3. Page fault! 3. Protection check fails, 3. Walks through page table
page table walk. 4. Page fault!
4. Page fault!
Cycles: 181 Cycles: 226 Cycles: 226

* Decoded i-cache generates timing side channel

Countermeasures?

* Modifying CPU to eliminate timing channels
e Difficult to be realized ®

* Turning off TSX

e Cannot be turned off in software manner (neither from MSR nor from BIOS)

* Coarse-grained timer?

* A workaround could be having another thread to measure the timing
indirectly (e.g., counting i++;)

Countermeasures?

* Using separated page tables for kernel and user processes

* High performance overhead (~30%) due to frequent TLB flush
e TLB flush on every copy_to_user()

* Fine-grained randomization
e Compatibility issues on memory alighment, etc.

* Inserting fake mapped / executable pages between the maps
* Adds some false positives to the DrK Attack

Conclusion

* Intel TSX makes cache side-channel less noisy
* Suppress OS Exception

* Timing side channel can distinguish X / NX / U pages
e dTLB (for Mapped & Unmapped)
e Decoded i-cache (for eXecutable / non-executable)
* Work across 3 different architectures, commodity OSes, and Amazon EC2

* Current KASLR is not as secure as expected

Any Questions?

*Try DrK at
e https://github.com/sslab-gatech/DrK

102

