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Kernel Address Space Layout
Randomization (KASLR)

* A statistical mitigation for memory
corruption exploits

 Randomize address layout per each boot
 Efficient (<5% overhead)

 Attacker should guess where code/data are
located for exploit.

* In Windows, a successful guess rate is 1/8192.
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Example: Linux

* To escalate privilege to root through a kernel exploit, attackers want
to call commit_creds(prepare_kernel creds(0)).
// full-nelson.c

static int __attribute__((regparm(3)))
getroot(void * file, void * vma)

{
commit_creds(prepare_kernel_cred(0));
return -1;

¥

// https://blog.plenz.com/2013-02/privilege-escalation-kernel-exploit.html
int privesc(struct sk_buff *skb, struct nlmsghdr *nlh)

{

commit_creds(prepare_kernel_cred(0));

return Q;



Example: Linux

* KASLR changes kernel symbol addresses every boot.



Example: Linux

* KASLR changes kernel symbol addresses every boot.

commit_creds\| prepare_kernel'
15t Boot

~$ | sudo cat /proc/kallsyms | grep
ffffffffaa0a3bdd T
ffffffffaa0a3fco T _cred



Example: Linux

* KASLR changes kernel symbol addresses every boot.

~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

FEFFFFffaada3bdo T N
FEFFFFffaa0a3fco T _cred 1% Boot

~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

FFFFFFFFbdOA3bdD T ~
FFFFFFFFbAOA3FCO T _cred 2" Boot



KASLR Makes Attacks Harder

e KASLR introduces an additional bar to exploits
* Finding an information leak vulnerability

Pr[ 3 Memory Corruption Vuln ]

e Both attackers and defenders aim to detect info leak vulnerabilities.



KASLR Makes Attacks Harder

e KASLR introduces an additional bar to exploits
* Finding an information leak vulnerability

Pr[ 3 Memory Corruption Vuln ]

4

Pr[ 3 information_leak ]| x Pr[ 3 Memory Corruption Vuln]

e Both attackers and defenders aim to detect info leak vulnerabilities.



s there any other way than info leak?

* Practical Timing Side Channel Attacks Against Kernel Space
ASLR (Hund et al., Oakland 2013)

* A hardware-level side channel attack against KASLR
* No information leak vulnerability in OS is required



TLB Timing Side Channel
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TLB Timing Side Channel
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TLB Timing Side Channel
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TLB Timing Side Channel
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TLB Timing Side Channel

e Result: Fault with TLB hit took less than 4050 cycles
* While TLB miss took more than that...

* Limitation: Too noisy
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TLB Timing Side Channel

e Result: Fault with TLB hit took less than 4050 cycles
* While TLB miss took more than that...

* Limitation: Too noisy
e Why????

- | Unmapped

410055 i g
v ::' ' :‘ :g -':: o
- LIS 2 w
[8) Lea'. aa . - o
4050 : - = = =om s P =
) o= = —_— — L ey Pt -
4000 i i & £
3950
st 0 | | | 1
0x80000000L 0x90000000L 0xa0000000L 6xb00000OOL OxcO000000L 6xd00OOOOOL 0xe0000000L 0xF0000000L

virtual address



TLB Timing Side Channel

Measured Time (~4000 cycles)

User CPU

OS Exception Handling

Timing Side Channel (~40 cycles)

OS Noise (~100 cycles)

Fault Handling Noise
is too much!

. User Execution

. CPU Exception
TLB Side Channel
. OS Execution

OS Handling Noise
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TLB Timing Side Channel

Measured Time (~4000 cycles)
D —————— e —

=
User CPU | L OS Exception Handling OS Noise

If we can the  then the
timing channel will be

> (S Noise (~100 cycles) B Os Execution

Fault Handling Noise . 0S Handling Noise
is too much!
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A More Practical
Side Channel Attack on KASLR

* The DrK Attack: We present a practical side channel attack on KASLR
* De-randomizing Kernel ASLR (this is where DrK comes from)

* Exploit Intel TSX for eliminate the noise from OS
* Distinguish mapped and unmapped pages
* Distinguish executable and non-executable pages



Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f( (status = _xbegin()) == _XBEGIN_STARTED) {

// atomic region
try_atomic_operation();

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();

23



Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();
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Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

2. Try atomic operation (can fail)

_xend();

// atomic region end
Iy
else {

// 1f failed,
handle_abort();
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Transactional Synchronization Extension
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

2. Try atomic operation (can fail)

_xend();

// atomic region end
Iy
else {

g/ i{ Faki;led’ - 3. If failed, handle failure with abort handler
andle_abort(); (retry, get back to traditional lock, etc.)
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Transaction Aborts If Exist any of a Conflict

Lnt status = 0; * Condition of Conflict
1f( (status = _xbegin()) == _XBEGIN_STARTED) { e Thread races
// atomic region * Cache eviction (L1
try_atomic_operation(); write/L3 read)
* Interrupt
_xend(); * Context Switch (timer)
// atomic region end e Syscalls
}1 ; * Exceptions
eLse * Page Fault

// if failed, . GeneraI-Protection
handle_abort(); * Debugging
} \

Run If Transaction Aborts

27



Transaction Aborts If Exist any of a Conflict

status = 0;

if( (status = _xbegin()) == _XBEGIN_STARTED) {

// atomic region
try_atomic_operation();

_xend();

// atomic region end

Iy
else {

// 1f failed,
handle_abort();

N

Run If Transaction Aborts

 Abort Handler of TSX

e Suppress all sync. exceptions
* E.g., page fault

* Do not notify OS
e Just jump into abort_handler()

No Exception delivery to the OS!
(returns quicker, so less noisy
than OS exception handler)

28



Reducing Noise with Intel TSX

Measured Time (~ 4000 cycles)

User CPU OS Exception Handling

. User Execution

. CPU Exception
TLB Side Channel
. OS Execution

OS Handling Noise
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Reducing Noise with Intel TSX

Measured Time (~ 4000 cycles)

User CPU OS Exception Handling

Measured Time (~ 180 cycles)
D ——
Timing Side Channel (~ 40 cycles) B cPU Exception

. User Execution

] ] TLB Side Channel
Not involving OS,

Less noisy!

User CPU

. OS Execution

OS Handling Noise
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Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;

*p = (Int*)OxFFfffff80000000; // kernel addresss
time_begin = __rdtscp();
1f((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction

*p; // read access
// or,

CCint*HOIp)O; // exec access

¥
else {

// abort handler

time_diff = __rdtscp() - time_begin;
¥
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Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;

*p = (Int*)oxffffffff80000000; // kernel addresss
time_begin = __rdtscp(); <
1f((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction

*p; // read access
// or,

CCint*HOIp)O; // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin;

1. Timestamp at the beginning

32



Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;
status = 0;

*n = ( IO 80000000; // kernel addresss
time_begin = __rdtscp(); -«
1f((status = _xbegin == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCntC*)(Ip)(); // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin;

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)
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Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;
*P = ( *)@“%%%%%%%£8®@®@@@@; /7 kernel addresss
time_begin = __rdtscp(); <
—— if((status = _xbegin()) == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCnt*)O)p)(); // exec access

¥
else {
// abort handler
time_diff = __rdtscp() - time_begin; <«

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)

3. Measure timing at abort handler
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Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;
*n = ( IO 80000000; // kernel addresss
time_begin = __rdtscp(); <
—— 1f((status = _xbegin == _XBEGIN_STARTED) {

// TSX transaction
*p; // read access

// or,
CCntC*)(Ip)(); // exec access

¥
else {
// abort handler
_— time_diff = __rdtscp() - time_begin; <

1. Timestamp at the beginning

2. Access kernel memory within
the TSX region (always aborts)

Processor directly calls the handler
OS handling path is not involved

3. Measure timing at abort handler
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Measuring Timing Side Channel

* Mapped / Unmapped kernel addresses (across 4 CPUs)

* Ran 1000 iterations for the probing, minimum clock on 10 runs

Mapped Page Unmapped Page

i7-6700K (4.0Ghz) 209 240 (+31)
i5-6300HQ (2.3Ghz) 164 188 (+24)
i7-5600U (2.6Ghz) 149 173 (+24)
E3-1271v3 (3.6Ghz) 177 195 (+18)

* Mapped page always faults faster



Measuring Timing Side Channel

* Executable / Non-executable kernel addresses
e Ran 1000 iterations for the probing, minimum clock on 10 runs

i7-6700K (4.0Ghz) 181 226 (+45)
i5-6300HQ (2.3Ghz) 142 178 (+36)
i7-5600U (2.6Ghz) 134 164 (+30)
E3-1271v3 (3.6Ghz) 159 189 (+30)

* Executable page always faults faster



Clear Timing Channel

| Module M/U |

200k
168480 3d0900 5b8d80 7a1200 989680 b71b00 d59f80

Address
(a) Mapped vs. Unmapped

240

230/

220

!Modulg X/NX!
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lgorfm“m

210.f

190_..2 ............ i h*#ﬁ« ..... ......

Executable

iy

163480 3dd900 55380 7a11200 589680 b71‘b00 359180

Address

(b) Executable vs. Non-executable

Clear separation between different mapping status!
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Attack on Various OSes

e Attack Targets

* DrKis hardware side-channel attack
* The mechanism is independent to OS

* We target popular OSes: Linux, Windows, and macOS

* Attack Types
e Type 1: Revealing mapping status of each page (X / NX / U)
* Type 2: Finer-grained module detection



Attack on Various OSes

* Type 1: Revealing mapping status of each page

* Try to reveal the mapping status per each page in the area
* X (executable) / NX (Non-executable) / U (unmapped)

Oxffffffffc0278000-0xffffffffc027do00 U
Oxffffffffc027do00-oxffffffffc0281000 X
Oxffffffffc0281000-0Oxffffffffc0285000 NX
Oxffffffffc0285000-0xffffffffc0289000 U
Oxffffffffc0289000-0xffffffffc028b000 X
Oxffffffffc028b000-0Oxffffffffc028e000 NX
Oxffffffffc028e000-0xffffffffc0293000 U
Oxffffffffc0293000-0xffffffffc02b7000 X
OxffffffffcO2b7000-0Oxffffffffc02e9000 NX
Oxffffffffc02e9000-0xffffffffc02ead00 U
Oxffffffffc02ea000-0xffffffffc02f0000 X



Attack on Various OSes

* Type 2: Finer-grained 0x4000

module detection

* Section-size Signature

* Modules are allocated in fixed size
of X/NX sections if the attacker
knows the binary file

libahci
0x4000

* Example 0x16000

* If the size of executable map is
0x4000, and the size of non-
executable section is 0x4000, then it
is libahcil

iwlwifi

0x1a000
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(master) ~/drk/linux$

sgx-Inspiron-7559 [10/21/2016 01:52PM]]



Result Summary

* Linux: 100% of accuracy around 0.1 second
* Windows: 100% for M/U in 5 sec, 99.28% for X/NX for 45 sec
* OS X: 100% for detecting ASLR slide, in 31ms

 Linux on Amazon EC2: 100% of accuracy in 3 seconds



Timing Side Channel (M/U)

* For Mapped / Unmapped addresses
* Measured performance counters (on 1,000,000 probing)

dTLB-loads 3,021,847 3,020,243
dTLB-load-misses 84 2,000,086 TLB-miss on U
Observed Timing 209 (fast) 240 (slow)

* dTLB hit on mapped pages, but not for unmapped pages.
* Timing channel is generated by dTLB hit/miss
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Timing Side Channel (M/U)

* For Mapped / Unmapped addresses
* Measured performance counters (on 1,000,000 probing)

dTLB-loads 3,021,847 3,020,243
dTLB-load-misses 84 2)000)086) TLB-miss on U
Observed Timing 209 (fast) 240 (slow)

* dTLB hit on mapped pages, but not for unmapped pages.
* Timing channel is generated by dTLB hit/miss
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Path for an Unmapped Page

Probing an unmapped page took 240 cycles

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1
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Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

dTLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

48




Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

Page Table

dTLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!
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Path for an Unmapped Page

Probing an unmapped page took 240 cycles

Kernel address access

Always do page table walk (slow)

TLB miss

dTLB —

PME3 || PML3

Page Table

PMLA

PML2 || PML2 || PML2
PML1 [[ PMTL1 || PML1
PYE
Page fault!
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Path for a mapped Page

On the first access, 240 cycles

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for a mapped Page

On the first access, 240 cycles

Kernel address access

\ 4

dTLB

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for a mapped Page

On the first access, 240 cycles

Kernel address access

\ 4

dTLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for a mapped Page

On the first access, 240 cycles

Page Table

Kernel address access

dTLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!
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Path for a mapped Page

On the first access, 240 cycles

Kernel address access

dTLB

PTE

TLB miss

Cache TLB entry! P

| Tems

PME3 || PML3

Page Table

PMLA

PML2

I\

MLl || pva || PML1

Page fault!
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Path for a mapped Page

On the second access, 209 cycles

dTLB

PTE

Page Table

PML4

PML3
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PML2 || PML2

PML1

PML1
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Path for a mapped Page

On the second access, 209 cycles

Kernel address access

\ 4

dTLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for a mapped Page

On the second access, 209 cycles

Kernel address access

dTLB

\ 4

PTE

dTLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for a mapped Page

On the second access, 209 cycles

Kernel address access

dTLB

PTE

dTLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

No page table walk on the second access (fast)
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Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) 1,000,247
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 (slow) 226 (slow)

e Point #1:iTLB hit on Non-exec, but it is slow (226) why?

* iTLB is not the origin of the side channel
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Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) 590 1,000,247 272
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 st 226 (slow)

e Point #1:iTLB hit on Non-exec, but it is slow (226) why?

* iTLB is not the origin of the side channel
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Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

Exec Page Non-exec Page Unmapped Page

iTLB-loads (hit) 590 1,000,247 272
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 (slow) 226 (slow)

* Point #2:iTLB does not even hit on Exec page, while NX page hits iTLB

e iTLB did not involve in the fast path
* |s there any cache that does not require address translation?
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Intel Cache Architecture
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Intel Cache Architecture

e L1 instruction cache

* Virtually-indexed, Physically-tagged
cache (requires TLB access)

e Caches actual x86/x64 opcode
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Intel Cache Architecture ... .
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Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

ITLB

Page Table

PML4

PML3
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Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

\ 4

ITLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

Page Table

ITLB

TLB miss

| Tems

PMLA

PME3 || PML3

PML2

PML1 || Pm1 || PMLL

P

Page fault!
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Path for an Unmapped Page

On the second access, 226 cycles

Kernel address access

Always do page table walk (slow)

TLB miss

iTLB —

PME3 || PML3

Page Table

PMLA

PML2 || PML2 || PML2
PML1 [[ PMTL1 || PML1
PYE
Page fault!
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Path for an Executable Page
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Path for an Executable Page

On the first access
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Path for an Executable Page

On the first access

Kernel address
access
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|-cache

MIsS
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ITLB

Page Table
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Path for an Executable Page

On the first access

Kernel address
access

| Decoded

|-cache

MIsS

\ 4

ITLB

TLB miss

| Tems

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for an Executable Page

On the first access

Page Table

Kernel address TLB miss

miss / PNVILA
access Decoded ‘ TLB

I-cache ' PME3 || PML3

PML2 || PML2 || PML2

PML1 || Pm1 || PMLL
PYE

Insufficient privilege, fault!
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Path for an Executable Page

On the first access

Page Table
Kern:!caeci(:ress Decoded miss TLB*' PMLA
| I-cache : LB PME3 |[PML3
PTE Cache TLB S
'\ PML2 || PL2 || PML2
ML1 || PmL1 || PML1
- PYE

Insufficient privilege, fault!
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Path for an Executable Page

On the first access

Page Table
Kern:!caeci(:ress Decoded MmIss TLB*, PML4
| I-cache : LB PME3 |[PML3
PTE Cache TLB S
uops '\ PML2 | [PyL2 | [ PML2
ML1 || PmLa || PMLL
Cache Decoded Instructions PYE

Insufficient privilege, fault!
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Path for an Executable Page

On the second access, 181 cycles
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Path for an Executable Page

On the second access, 181 cycles

Kernel address
access
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|-cache

uops

ITLB

PTE

Page Table
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PML3
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PML1

PML1

PTE




Path for an Executable Page

On the second access, 181 cycles

Kernel address
access

| Decoded

|-cache
uops

ITLB

PTE

Decoded I-cache hit!

Insufficient privilege, fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for an Executable Page

On the second access, 181 cycles

Kernel address
access

| Decoded

Insufficient privilege, fault!

|-cache
uops

ITLB

PTE

Decoded I-cache hit!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

No TLB access, No page table walk (fast)
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Path for a non-executable, but mapped Page

On the second access, 226 cycles

Decoded
I-cache

ITLB

PTE
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Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE




Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for a non-executable, but mapped Page

On the second access, 226 cycles

Kernel address

MmIss
access ‘ Decoded

|-cache

ITLB

PTE

TLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

If no page table walk, it should be faster than unmapped (but not!)




Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture
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TLB
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 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB
Oxff01->0x0010, NX

Core 2

TLB
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1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1



Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB
Oxff01->0x0010, NX

Core 2

TLB
Oxff01->0x0010, X

1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1

3. Core 1 try to execute on 0xffO1 -> fault by NX



Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l

TLB Execute
Oxff01->0x0010, NX

Core 2

TLB
Oxff01->0x0010, X

1. Core 1 sets OxffO1 as Non-executable memory

2. Core 2 sets OxffO1 as Executable memory
No coherency, do not update/invalidate TLB in Core 1

3. Core 1 try to execute on 0xffO1 -> fault by NX

4. Core 1 must walk through the page table
The page table entry is X, update TLB, then execute!
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Path for a Non-executable, but mapped Page

On the second access, 226 cycles
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Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access
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PTE
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Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit

NX, cannot execute!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE
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Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit \

NX, cannot execute!

Page Table

/ PML4

"PML3

PML3

PML2

PML2 || PML2

/

PML1

PML1

PML1

PTE
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Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Kernel address
access

| Decoded

|-cache

MIsS

ITLB

PTE

TLB hit \

NX, cannot execute!

Cache TLB

Page Table
PML4
/Py

Zz

‘PME3 || PML3

AN

PML2 || PML2 || PML2

ML1

| PYE

NX, Page fault!
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Root-cause of Timing Side Channel (X/NX)

* For executable / non-executable addresses

1. Jmp into the Kernel addr 1. Jmpinto the kernel addr 1. Jmp into the kernel addr
2. Decoded I-cache hits 2. iTLB hit 2. iTLB miss
3. Page fault! 3. Protection check fails, 3. Walks through page table
page table walk. 4. Page fault!
4. Page fault!
Cycles: 181 Cycles: 226 Cycles: 226

* Decoded i-cache generates timing side channel



Countermeasures?

* Modifying CPU to eliminate timing channels
e Difficult to be realized ®

* Turning off TSX

e Cannot be turned off in software manner (neither from MSR nor from BIOS)

* Coarse-grained timer?

* A workaround could be having another thread to measure the timing
indirectly (e.g., counting i++;)



Countermeasures?

* Using separated page tables for kernel and user processes

* High performance overhead (~30%) due to frequent TLB flush
e TLB flush on every copy_to_user()

* Fine-grained randomization
e Compatibility issues on memory alighment, etc.

* Inserting fake mapped / executable pages between the maps
* Adds some false positives to the DrK Attack



Conclusion

* Intel TSX makes cache side-channel less noisy
* Suppress OS Exception

* Timing side channel can distinguish X / NX / U pages
e dTLB (for Mapped & Unmapped)
e Decoded i-cache (for eXecutable / non-executable)
* Work across 3 different architectures, commodity OSes, and Amazon EC2

* Current KASLR is not as secure as expected



Any Questions?

*Try DrK at
e https://github.com/sslab-gatech/DrK
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