
Breaking	Kernel	Address	Space	
Layout	Randomization	(KASLR)	

with	Intel	TSX
Yeongjin Jang,	Sangho Lee,	and	Taesoo Kim

Georgia	Institute	of	Technology

Kernel	Address	Space	Layout
Randomization	(KASLR)

• A	statistical	mitigation	for	memory	
corruption	exploits

• Randomize	address	layout	per	each	boot
• Efficient	(<5%	overhead)

• Attacker	should	guess	where	code/data	are	
located	for	exploit.
• In	Windows,	a	successful	guess	rate	is	1/8192.

2

Example:	Linux

• To	escalate	privilege	to	root	through	a	kernel	exploit,	attackers	want	
to	call	commit_creds(prepare_kernel_creds(0)).

3

Example:	Linux
• KASLR	changes	kernel	symbol	addresses	every	boot.

4

Example:	Linux
• KASLR	changes	kernel	symbol	addresses	every	boot.

5

1st Boot

Example:	Linux
• KASLR	changes	kernel	symbol	addresses	every	boot.

2nd Boot

6

1st Boot

KASLR	Makes	Attacks	Harder

• KASLR	introduces	an	additional	bar	to	exploits
• Finding	an	information	leak	vulnerability

• Both	attackers	and	defenders	aim	to	detect	info	leak	vulnerabilities.

Pr[∃Memory	Corruption	Vuln]	

7

KASLR	Makes	Attacks	Harder

• KASLR	introduces	an	additional	bar	to	exploits
• Finding	an	information	leak	vulnerability

• Both	attackers	and	defenders	aim	to	detect	info	leak	vulnerabilities.

Pr[∃Memory	Corruption	Vuln]	

8

Pr[∃ information_leak] × Pr[∃Memory	Corruption	Vuln]	

Is	there	any	other	way	than	info	leak?

• Practical	Timing	Side	Channel	Attacks	Against	Kernel	Space	
ASLR	(Hund	et	al.,	Oakland	2013)
• A	hardware-level side	channel	attack	against	KASLR
• No information	leak	vulnerability	in	OS	is	required

9

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

10

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

11

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

12

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

13

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

14

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

15

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

16

TLB	Timing	Side	Channel

TLB
Virtual	Address

Hit

Miss

Mapped	address
generate	page	fault	quicker!

Unmapped	address
takes	~40	cycles

more	for	page	table	walk

17

TLB	Timing	Side	Channel

• Result:	Fault	with	TLB	hit	took	less	than	4050	cycles
• While	TLB	miss	took	more	than	that…

• Limitation:	Too	noisy
• Why????

18

TLB	Timing	Side	Channel

• Result:	Fault	with	TLB	hit	took	less	than	4050	cycles
• While	TLB	miss	took	more	than	that…

• Limitation:	Too	noisy
• Why????

19

Mapped

Unmapped

TLB	Timing	Side	Channel

20

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

CPU
T
L
B

Timing	Side	Channel	(~40	cycles)	

OS	Noise Fault	Handling	Noise
is	too	much!

Measured	Time	(~4000	cycles)

OS	Noise	(~100	cycles)

TLB	Timing	Side	Channel

21

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

CPU
T
L
B

Timing	Side	Channel	(~40	cycles)	

OS	Noise Fault	Handling	Noise
is	too	much!

Measured	Time	(~4000	cycles)

OS	Noise	(~100	cycles)

If	we	can	eliminate the	noise	at	OS,	then	the	
timing	channel	will	be	more	stable.

A	More	Practical
Side	Channel	Attack	on	KASLR
• The	DrK Attack:	We	present	a	practical	side	channel	attack	on	KASLR
• De-randomizing	Kernel	ASLR	(this	is	where	DrK comes	from)

• Exploit	Intel	TSX	for	eliminate	the	noise	from	OS
• Distinguish	mapped	and	unmapped	pages
• Distinguish	executable	and	non-executable	pages

22

Transactional	Synchronization	Extension
(Intel	TSX)

• TSX:	relaxed	but	faster	way	of	handling	synchronization

23

Transactional	Synchronization	Extension
(Intel	TSX)

• TSX:	relaxed	but	faster	way	of	handling	synchronization

1.	Do	not	block,	do	not	use	lock

24

Transactional	Synchronization	Extension
(Intel	TSX)

• TSX:	relaxed	but	faster	way	of	handling	synchronization

1.	Do	not	block,	do	not	use	lock

2.	Try	atomic	operation	(can	fail)

25

Transactional	Synchronization	Extension
(Intel	TSX)

• TSX:	relaxed	but	faster	way	of	handling	synchronization

1.	Do	not	block,	do	not	use	lock

3.	If	failed,	handle	failure	with	abort	handler
(retry,	get	back	to	traditional	lock,	etc.)

2.	Try	atomic	operation	(can	fail)

26

Transaction	Aborts	If	Exist	any	of	a	Conflict

• Condition	of	Conflict
• Thread	races
• Cache	eviction	(L1	
write/L3	read)
• Interrupt

• Context	Switch	(timer)
• Syscalls

• Exceptions
• Page	Fault
• General	Protection
• Debugging
• …

Run	If	Transaction	Aborts 27

Transaction	Aborts	If	Exist	any	of	a	Conflict

Run	If	Transaction	Aborts 28

• Abort	Handler	of	TSX
• Suppress	all	sync.	exceptions

• E.g.,	page	fault
• Do	not	notify	OS

• Just	jump	into	abort_handler()

No	Exception	delivery	to	the	OS!
(returns	quicker,	so	less	noisy	
than	OS	exception	handler)

Reducing	Noise	with	Intel	TSX

29

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

Measured	Time	(~	4000	cycles)

Reducing	Noise	with	Intel	TSX

30

User CPU OS	Exception	Handling OS	Noise

User	Execution

CPU	Exception

OS	Execution

OS	Handling	Noise

T
L
B

TLB	Side	Channel

Timing	Side	Channel	(~	40	cycles)	

Not	involving	OS,
Less	noisy!

Measured	Time	(~	4000	cycles)

User CPU
T
L
B

Measured	Time	(~	180	cycles)

Exploiting	TSX	as	an	Exception	Handler

• How	to	use	TSX	as	an	exception	handler?

31

Exploiting	TSX	as	an	Exception	Handler

• How	to	use	TSX	as	an	exception	handler?

1.	Timestamp	at	the	beginning

32

Exploiting	TSX	as	an	Exception	Handler

• How	to	use	TSX	as	an	exception	handler?

1.	Timestamp	at	the	beginning

2.	Access	kernel	memory	within
the	TSX	region	(always	aborts)

33

Exploiting	TSX	as	an	Exception	Handler

• How	to	use	TSX	as	an	exception	handler?

1.	Timestamp	at	the	beginning

2.	Access	kernel	memory	within
the	TSX	region	(always	aborts)

3.	Measure	timing	at	abort	handler

34

Exploiting	TSX	as	an	Exception	Handler

• How	to	use	TSX	as	an	exception	handler?

1.	Timestamp	at	the	beginning

2.	Access	kernel	memory	within
the	TSX	region	(always	aborts)

3.	Measure	timing	at	abort	handler

Processor	directly	calls	the	handler
OS	handling	path	is not	involved

35

Measuring	Timing	Side	Channel

• Mapped	/	Unmapped	kernel	addresses	(across	4	CPUs)
• Ran	1000	iterations	for	the	probing,	minimum	clock	on	10	runs

• Mapped	page	always	faults	faster

Processor Mapped Page Unmapped	Page
i7-6700K (4.0Ghz) 209 240	(+31)
i5-6300HQ	(2.3Ghz) 164 188	(+24)
i7-5600U	(2.6Ghz) 149 173	(+24)
E3-1271v3	(3.6Ghz) 177 195	(+18)

36

Measuring	Timing	Side	Channel

37

• Executable	/	Non-executable	kernel	addresses
• Ran	1000	iterations	for	the	probing,	minimum	clock	on	10	runs

• Executable	page	always	faults	faster

Processor Executable	Page Non-exec	Page
i7-6700K (4.0Ghz) 181 226	(+45)
i5-6300HQ	(2.3Ghz) 142 178	(+36)
i7-5600U	(2.6Ghz) 134 164	(+30)
E3-1271v3	(3.6Ghz) 159 189	(+30)

Clear	Timing	Channel

Clear	separation	between	different	mapping	status!

Mapped Executable

38

Unmapped Non-Executable	or	Unmapped

Attack	on	Various	OSes

• Attack	Targets
• DrK is	hardware	side-channel	attack

• The	mechanism	is	independent	to	OS
• We	target	popular	OSes:	Linux,	Windows,	and	macOS

• Attack	Types
• Type	1:	Revealing	mapping	status	of	each	page	(X	/	NX	/	U)
• Type	2:	Finer-grained	module	detection

39

Attack	on	Various	OSes

• Type	1:	Revealing	mapping	status	of	each	page
• Try	to	reveal	the	mapping	status	per	each	page	in	the	area

• X	(executable)	/	NX	(Non-executable)	/	U	(unmapped)

40

Attack	on	Various	OSes

• Type	2:	Finer-grained	
module	detection
• Section-size	Signature

• Modules	are	allocated	in	fixed	size	
of	X/NX	sections	if	the	attacker	
knows	the	binary	file

41

• Example
• If	the	size	of	executable	map	is	
0x4000,	and	the	size	of	non-
executable	section	is	0x4000,	then	it	
is	libahci!

X

NX

X

NX

0x4000

0x4000
libahci

0x16000

0x1a000

iwlwifi

Demo	2:	Full	Attack	on	Linux

42

Result	Summary

• Linux:	100%	of	accuracy	around	0.1 second
• Windows:	100%	for	M/U	in	5	sec,	99.28%	for	X/NX	for	45	sec
• OS	X:	100%	for	detecting	ASLR	slide,	in	31ms
• Linux	on	Amazon	EC2:	100%	of	accuracy	in	3	seconds

43

Timing	Side	Channel	(M/U)

• For	Mapped	/	Unmapped	addresses
• Measured	performance	counters	(on	1,000,000 probing)

• dTLB hit	on	mapped	pages,	but	not	for	unmapped	pages.
• Timing	channel	is	generated	by	dTLB hit/miss

Perf.	Counter Mapped	Page Unmapped	Page Description

dTLB-loads 3,021,847 3,020,243

dTLB-load-misses 84 2,000,086 TLB-miss on	U

Observed	Timing 209	(fast) 240	(slow)

44

Timing	Side	Channel	(M/U)

• For	Mapped	/	Unmapped	addresses
• Measured	performance	counters	(on	1,000,000 probing)

• dTLB hit	on	mapped	pages,	but	not	for	unmapped	pages.
• Timing	channel	is	generated	by	dTLB hit/miss

Perf.	Counter Mapped	Page Unmapped	Page Description

dTLB-loads 3,021,847 3,020,243

dTLB-load-misses 84 2,000,086 TLB-miss on	U

Observed	Timing 209	(fast) 240	(slow)

45

Path	for	an	Unmapped	Page

dTLB

Probing	an	unmapped	page	took 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

46

Path	for	an	Unmapped	Page

dTLB

Probing	an	unmapped	page	took 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

47

Path	for	an	Unmapped	Page

dTLB

Probing	an	unmapped	page	took 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

48

Path	for	an	Unmapped	Page

dTLB

Probing	an	unmapped	page	took 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

49

Path	for	an	Unmapped	Page

dTLB

Probing	an	unmapped	page	took 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

50

Always	do	page	table	walk	(slow)

Path	for	a	mapped	Page

dTLB

On	the	first	access, 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

51

Path	for	a	mapped	Page

dTLB

On	the	first	access, 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

52

Path	for	a	mapped	Page

dTLB

On	the	first	access, 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

53

Path	for	a	mapped	Page

dTLB

On	the	first	access, 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

54

Path	for	a	mapped	Page

dTLB

On	the	first	access, 240 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

Cache	TLB	entry!

PTE

55

Path	for	a	mapped	Page

dTLB

On	the	second	access, 209 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

PTE

56

Path	for	a	mapped	Page

dTLB

On	the	second	access, 209 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

PTE

57

Path	for	a	mapped	Page

dTLB

On	the	second	access, 209 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

Page	fault!

dTLB hit

PTE

58

Path	for	a	mapped	Page

dTLB

On	the	second	access, 209 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

Page	fault!

dTLB hit

No	page	table	walk	on	the	second	access	(fast)

PTE

59

Timing	Side	Channel	(X/NX)

• For	Executable	/	Non-executable	addresses
• Measured	performance	counters	(on	1,000,000	probing)

Perf.	Counter Exec	Page Non-exec	Page Unmapped	Page

iTLB-loads	(hit) 590 1,000,247 272

iTLB-load-misses 31 12 1,000,175
Observed	Timing 181 (fast) 226 (slow) 226 (slow)

• Point	#1:	iTLB hit	on	Non-exec,	but	it	is	slow	(226)	why?

• iTLB is	not	the	origin	of	the	side	channel

60

Timing	Side	Channel	(X/NX)

• For	Executable	/	Non-executable	addresses
• Measured	performance	counters	(on	1,000,000	probing)

Perf.	Counter Exec	Page Non-exec	Page Unmapped	Page

iTLB-loads	(hit) 590 1,000,247 272

iTLB-load-misses 31 12 1,000,175
Observed	Timing 181 (fast) 226 (slow) 226 (slow)

• Point	#1:	iTLB hit	on	Non-exec,	but	it	is	slow	(226)	why?

• iTLB is	not	the	origin	of	the	side	channel

61

Timing	Side	Channel	(X/NX)

• For	Executable	/	Non-executable	addresses
• Measured	performance	counters	(on	1,000,000	probing)

Perf.	Counter Exec	Page Non-exec	Page Unmapped	Page

iTLB-loads	(hit) 590 1,000,247 272

iTLB-load-misses 31 12 1,000,175
Observed	Timing 181 (fast) 226 (slow) 226 (slow)

62

• Point	#2:	iTLB does	not	even	hit	on	Exec	page,	while	NX	page	hits	iTLB

• iTLB did	not	involve	in	the	fast	path
• Is	there	any	cache	that	does	not	require	address	translation?

Intel	Cache	Architecture

From	the	patent	US	20100138608	A1,
registered	by	Intel	Corporation 63

Intel	Cache	Architecture

• L1	instruction	cache
• Virtually-indexed,	Physically-tagged	
cache	(requires	TLB	access)
• Caches	actual	x86/x64	opcode

From	the	patent	US	20100138608	A1,
registered	by	Intel	Corporation 64

Intel	Cache	Architecture

From	the	patent	US	20100138608	A1,
registered	by	Intel	Corporation 65

• Decoded	i-cache
• An	instruction	will	be	decoded	as	
micro-ops	(RISC-like	instruction)
• Decoded	i-cache	stores	micro-ops
• Virtually-indexed,	Virtually-tagged	
cache	(no	TLB	access)

Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

66

Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access

67

Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

68

Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!

69

Path	for	an	Unmapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address	access
TLB	miss

Page	fault!
Always	do	page	table	walk	(slow)

70

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Decoded
I-cache

71

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

72

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

73

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss
Decoded
I-cache

miss

74

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss

Insufficient	privilege,	fault!

Decoded
I-cache

miss

75

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss

Insufficient	privilege,	fault!

Decoded
I-cache

miss

PTE Cache	TLB

76

Path	for	an	Executable	Page

iTLB

On	the	first	access

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

TLB	miss

Insufficient	privilege,	fault!

Decoded
I-cache

miss

PTE Cache	TLB
uops

Cache	Decoded	Instructions

77

Path	for	an	Executable	Page

iTLB

On	the	second	access,	181 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Decoded
I-cache

PTEuops

78

Path	for	an	Executable	Page

iTLB

On	the	second	access,	181 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache
PTEuops

79

Path	for	an	Executable	Page

iTLB

On	the	second	access,	181 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

Insufficient	privilege,	fault!

Decoded
I-cache

PTEuops

Decoded	I-cache	hit!

80

Path	for	an	Executable	Page

iTLB

On	the	second	access,	181 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

Insufficient	privilege,	fault!

Decoded
I-cache

PTEuops

Decoded	I-cache	hit!

No	TLB	access,	No	page	table	walk	(fast)
81

Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Decoded
I-cache

PTE

82

Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache
PTE

83

Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

84

Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

Page	fault!

TLB	hit

85

Path	for	a	non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

Page	fault!

TLB	hit

If	no	page	table	walk,	it	should	be	faster	than	unmapped	(but	not!)
86

Cache	Coherence	and	TLB

• TLB	is	not	a	coherent	cache	in	Intel	Architecture

87

Cache	Coherence	and	TLB

• TLB	is	not	a	coherent	cache	in	Intel	Architecture

TLB
0xff01->0x0010,	NX

Core	1 1.	Core	1	sets	0xff01	as	Non-executable memory

88

Cache	Coherence	and	TLB

• TLB	is	not	a	coherent	cache	in	Intel	Architecture

TLB
0xff01->0x0010,	NX

Core	1 1.	Core	1	sets	0xff01	as	Non-executable memory

TLB
0xff01->0x0010,	X

Core	2

2.	Core	2	sets	0xff01	as	Executable memory
No	coherency,	do	not	update/invalidate	TLB	in	Core	1

89

Cache	Coherence	and	TLB

• TLB	is	not	a	coherent	cache	in	Intel	Architecture

TLB
0xff01->0x0010,	NX

Core	1 1.	Core	1	sets	0xff01	as	Non-executable memory

TLB
0xff01->0x0010,	X

Core	2

2.	Core	2	sets	0xff01	as	Executable memory
No	coherency,	do	not	update/invalidate	TLB	in	Core	1

3.	Core	1	try	to	execute	on	0xff01	->	fault	by	NX

90

Cache	Coherence	and	TLB

• TLB	is	not	a	coherent	cache	in	Intel	Architecture

TLB
0xff01->0x0010,	NX

Core	1 1.	Core	1	sets	0xff01	as	Non-executable memory

TLB
0xff01->0x0010,	X

Core	2

2.	Core	2	sets	0xff01	as	Executable memory
No	coherency,	do	not	update/invalidate	TLB	in	Core	1

3.	Core	1	try	to	execute	on	0xff01	->	fault	by	NX

4.	Core	1	must	walk	through	the	page	table
The	page	table	entry	is	X,	update	TLB,	then	execute!

Execute

91

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Decoded
I-cache

PTE

92

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache
PTE

93

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

94

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

NX,	cannot	execute!

TLB	hit

95

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access Decoded

I-cache

miss

PTE

NX,	cannot	execute!

TLB	hit

96

Path	for	a	Non-executable,	but	mapped	Page

iTLB

On	the	second	access,	226 cycles

PML4
PML3 PML3

PML2 PML2 PML2
PML1 PML1 PML1

PTE

Page	Table

Kernel	address
access

NX,	Page	fault!

Decoded
I-cache

miss

PTE Cache	TLB

NX,	cannot	execute!

TLB	hit

97

Root-cause	of	Timing	Side	Channel	(X/NX)

• For	executable	/	non-executable	addresses

Fast	Path	(X) Slow	Path	(NX) Slow	Path	(U)
1. Jmp into	the	Kernel	addr
2. Decoded	I-cache	hits
3. Page	fault!

1. Jmp into	the	kernel	addr
2. iTLB hit
3. Protection	check fails,	

page	table	walk.
4. Page	fault!

1. Jmp into	the	kernel	addr
2. iTLB miss
3. Walks through	page	table
4. Page	fault!

Cycles:	181 Cycles:	226 Cycles: 226

• Decoded	i-cache generates	timing	side	channel

98

Countermeasures?

• Modifying	CPU	to	eliminate	timing	channels
• Difficult	to	be	realized	L

• Turning	off	TSX
• Cannot	be	turned	off	in	software	manner	(neither	from	MSR	nor	from	BIOS)

• Coarse-grained	timer?
• A	workaround	could	be	having	another	thread	to	measure	the	timing	
indirectly	(e.g.,	counting	i++;)

99

Countermeasures?

• Using	separated	page	tables	for	kernel	and	user	processes
• High	performance	overhead	(~30%)	due	to	frequent	TLB	flush

• TLB	flush	on	every	copy_to_user()

• Fine-grained	randomization
• Compatibility	issues	on	memory	alignment,	etc.

• Inserting	fake	mapped	/	executable	pages	between	the	maps
• Adds	some	false	positives	to	the	DrK Attack

100

Conclusion

• Intel	TSX	makes	cache	side-channel	less	noisy
• Suppress	OS	Exception

• Timing	side	channel	can	distinguish	X	/	NX	/	U	pages
• dTLB (for	Mapped	&	Unmapped)
• Decoded	i-cache	(for	eXecutable /	non-executable)
• Work	across	3	different	architectures,	commodity	OSes,	and	Amazon	EC2

• Current	KASLR	is	not	as	secure	as	expected

101

Any	Questions?

•Try	DrK at
•https://github.com/sslab-gatech/DrK

102

