OpenSGX: An Open Platform for
SGX Research

Prerit Jain, Soham Desai, Seongmin Kim*, Ming-Wei Shih,
JaeHyuk Lee, Changho Choi, Youjung Shin, Taesoo Kim,
Brent Byunghoon Kang, Dongsu Han

Geqeia) KAIST

[——=1.1

Trusted Execution Environment (TEE)

 Hardware technologies for trusted computing
— |solated execution: integrity of code, confidentiality
— To protect application from untrusted platform

Trusted Execution Environment (TEE)

AMD, ARM Partner on Future TrustZone
Security Platform y

8Y DAMOM POETER JUNE 13, 2012 05:15PM EST @8 1 COMMENT
e

Trusted Execution Environment (TEE)

AMD, ARM Partner on Future TrustZone
Security [
linly German Federal Government Certifles

Infineon TPM

Trusted Execution Environment (TEE)

AMD, ARM Partner on Future TrustZone
Security [
linly German Federal Government Certifles

Infineon TPM

Intel alters design of ‘Skylake’ processors to enhance security

October 3rd, 2015 at 12:04 pm - Author Anton Shilov

Trusted Execution Environment (TEE)

AMD, ARM Partner on Future TrustZone
Security [
linly German Federal Government Certifles

Infineon TPM

Intel alters design of ‘Skylake’ processors to enhance security

October 3rd, 2015 at 12:04 pm - Author Anton Shilov

* Practical limitations of TEEs
— Trusted Platform Module (TPM) : Poor performance
— ARM TrustZone : Compatibility (only for embedded devices)

Intel SGX

* An extension of x86 Instruction Set Architecture (ISA)
— Offers native performance, Compatibility with x86
— Application keeps its data/code inside the “enclave”

Enclave
Application (untrusted) w

SkaeCPU Operating System (untrusted) w

Intel SGX

* An extension of x86 Instruction Set Architecture (ISA)
— Offers native performance, Compatibility with x86
— Application keeps its data/code inside the “enclave”

(@)

Data

Code

Enclave G
Application (untrusted) w

SkaeCPU Operating System (untrusted) w

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

Physical Address
Memory Space
CPU Package o
TTTTTT Enclave
‘ EPC
222
Encrypted
code/data | _

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

Physical Address
Memory Space
CPU Package -
TTTTTT Enclave
| EPC
222
Encrypted
code/data | _
Memory Encryption

Engine (MEE)

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

Physical Address
Memory Space
CPU Package -
TTTTTT Enclave
| EPC
Encrypted
code/data | _
Memory Encryption

Engine (MEE)

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

Physical Address
Memory Space
CPU Package -
Encrypted
code/data | _
Memory Encryption

Engine (MEE)

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

Physical Address
Memory Space
CPU Package -
SAAARRE Processor Key EPC Enclave

= . |Encrypted
@gpmg code/data [_

Memory Encryption
Engine (MEE)

Intel SGX 101: Isolated Execution

* Smallest attack surface by reducing TCB (App + processor)
* Protect app’s secret from untrusted privilege software

CPU Package
SAAARRE Processor Key

j ESnooping

Memory Encryption
Engine (MEE)

oy
.

Physical
Memory

Address

Space

EPC

Encrypted
code/data

Enclave

&

Access from
OS/VMM

14

Intel SGX 101: Remote attestation

e Attest an application on remote platform
— Check the integrity of enclave (hash of code/data pages)
— Verify whether enclave is running on real SGX CPU
— Can establish a “secure channel” between enclaves

User platform Remote platform

Application](' 1. Request 1 @ challenser
Enclave Application >L &
5 J 4. Send Enclave
Y

I |
I |
| i
I |
I |
I |
I |
| 2. Create REPORT 1 QUOTE | 15.Verify
I |
I |
I |
I |
I |
I |
I |

3. Sign with Quoting Attestation
EPID group key Enclave Verification
(Create QUOTE) -

Intel SGX 101: Remote attestation

e Attest an application on remote platform
— Check the integrity of enclave (hash of code/data pages)
— Verify whether enclave is running on real SGX CPU
— Can establish a “secure channel” between enclaves

4 R
Intel SGX brings new opportunities for

enhancing security of applications
Y,

2. Create REPORT 15. Verify

|

| |

| l |

| l |

| . . . | |
! Epls[')gn W'thk ?uoltlng ; ! Attestation
: group key [Enclave ! 1 | Verification

l (Create QUOTE) : |

| |

16

SGX Research: Current Status

* Pioneering research: Adopting SGX on cloud computing
(Haven [OSDI14], VC3 [S&P15])

* Confidentiality verification of SGX program
(Moat [CCS15])

* Adopts SGX on networking [HotNets15]

SGX Research: Current Status

* However, software technologies for SGX lag behind their
hardware counterpart

SGX CPU and SDK is now available! But..

e Specification for SGX [revision 1 & 2] is not fully available
on the SGX hardware (only functionalities in revision 1)

e SGX technology has a complex license model

OpenSGX: Design Goal

e Offers a complete platform for SGX research
— To explore software and hardware design space of SGX
— To develop and evaluate SGX-enabled applications

19

OpenSGX: Design Goal

e Offers a complete platform for SGX research
— To explore software and hardware design space of SGX
— To develop and evaluate SGX-enabled applications

* Fills non-trivial issues on SGX software components
— Support for system software and user-level APIs
— Familiar programming model and interface

— Secure design to defend against potential attack vectors
(e.g., lago attacks)

20

OpenSGX: Design Goal

e Offers a complete platform for SGX research
— To explore software and hardware design space of SGX
— To develop and evaluate SGX-enabled applications

* Fills non-trivial issues on SGX software components
— Support for system software and user-level APIs
— Familiar programming model and interface

— Secure design to defend against potential attack vectors
(e.g., lago attacks)

* Non goal : security guarantee

21

OpenSGX: Approach

* Using userspace emulation of QEMU

— Binary translation to support SGX instructions

— QEMU helper routine to implement complex instructions

Host (single address space)

Code

Lib

Data

Stack

Heap

EPC
EPC

EPC

EPC
EPC

Enclave

,,‘\

" Entry point

(@

}

enclu(){

asm(“.byte 0xOf”
“byte Ox01”
“byte Oxd7”
“rax=entry”

Wrapper

Binary
Translation

—

QEMU

RIP

if(opcode ==
0x0f01d7) {
helper_enclu();

}

Helper routine
- Set registers
- Operates

SGX instructions

22

OpenSGX: Approach

* Using userspace emulation of QEMU

— Binary translation to support SGX instructions

— QEMU helper routine to implement complex instructions

Host (single address space)

QEMU

-

Code

Lib

Data

Stack

Heap

EPC
EPC

EPC

EPC
EPC

Enclave

,,‘\‘

" Entry point

(@

}

enclu(){

asm(“.byte 0xOf”
“byte Ox01”
“byte Oxd7”
“rax=entry”

Wrapper

Binary
Translation

—

)

F' RIP

if(opcode ==

}

0x0f01d7) {
helper_enclu();

Helper routine
- Set registers
- Operates

SGX instructions

23

OpenSGX: Component Overview

 Emulated SGX hardware

SGX QEMU (HW emulation)

OpenSGX: Component Overview

 Emulated SGX hardware
* OS emulation layer

SGX OS Emulation

SGX QEMU (HW emulation)

OpenSGX: Component Overview

 Emulated SGX hardware
* OS emulation layer

* OpenSGX user library

' SGX Libraries |
Trampoline

Stub

SGX OS Emulation

SGX QEMU (HW emulation)

OpenSGX: Component Overview

Emulated SGX hardware
OS emulation layer

OpenSGX user library

OpenSGX toolchain

' SGX Libraries |
Trampoline

Stub

{ OpenSGX } SGX OS Emulation

toolchain SGX QEMU (HW emulation)

OpenSGX: Component Overview

Emulated SGX hardware Enclave loader
OS emulation layer

OpenSGX user library
OpenSGX toolchain

s N (A
Enclave Runtime

loader library
o AN J

' SGX Libraries |
Trampoline

Stub

OpenSGX SGX OS Emulation

toolchain SGX QEMU (HW emulation)

OpenSGX: Component Overview

Emulated SGX hardware
OS emulation layer

OpenSGX user library

OpenSGX toolchain

Enclave loader
e Performance monitor

* Enclave debugger

OpenSGX
toolchain

- N (N\ (.
] SGX Libraries
Enclave || Runtime ,
] Trampoline
loader library e
N AN) &Z2

e

SGX OS Emulation

SGX QEMU (HW emulation)

L

Enclave
Debugger

/

Performance

Monitor

N

OpenSGX: Component Overview

Emulated SGX hardware
OS emulation layer

OpenSGX user library

OpenSGX toolchain

Enclave loader

e Performance monitor

* Enclave debugger

Enclave Program

OpenSGX
toolchain

s N (N (. (
] SGX Libraries Enclave
Enclave AR Trampoline Debugger
loader library 2 .
| Stub W
o AN J - | Performance
SGX OS Emulation Monitor

/

SGX QEMU (HW emulation)

\

OpenSGX: Component Overview

Emulated SGX hardware
OS emulation layer

OpenSGX user library

OpenSGX toolchain

to

* Enclave loader
e Performance monitor

* Enclave debugger

Enclave Program

p Y (@
0x0000 Code . void enclave_main(){
EPC1 enclave_main() x J|| char *hello = “hello sgx!\n”;
p \ sgx_enclave_wriate(hello, strlen(hello));
0x1000 Data sgx_exit(NULL);
EPC2 . “hello sgx\n”)
7Z— P y
Entry point : -/ S opensgx hello.sgx hello.conf
SigStruct: ... jl hello sgx!

OpenSGX: Component Overview

Emulated SGX hardware v Enclave loader
OS emulation layer v/ e Performance monitor

OpenSGX user library v/ * Enclave debugger

OpenSGX toolchain
Enclave Program

4 Y (@

p
0x0000 Code . void enclave_main(){
EPC1 | enclave_main() x | char *hello = “hello sgx!\n”;
p 3~ sgx_enclave_wriate(hello, strlen(hello));
0x1000 Data) | sgx_exit(NULL);

EPC2 “hello sgx\n”
‘ ek ,

Op 4
to Entry point : -/ S opensgx hello.sgx hello.conf
SigStruct: ... jl hello sgx!

Hardware Emulation

* Emulates all data structures(e.g., EPCM) and processor key
* EPC Memory management

— Direct mapping on virtual memory
— Access protection: Instrument memory access

Hardware Emulation

* Emulates all data structures(e.g., EPCM) and processor key
* EPC Memory management

— Direct mapping on virtual memory
— Access protection: Instrument memory access

Virtual address space 34

Hardware Emulation

* Emulates all data structures(e.g., EPCM) and processor key
* EPC Memory management

— Direct mapping on virtual memory
— Access protection: Instrument memory access

EPC_begin

EPC_end

Virtual address space 3

Hardware Emulation

* Emulates all data structures(e.g., EPCM) and processor key

* EPC Memory management
— Direct mapping on virtual memory
— Access protection: Instrument memory access

EPC_begin
enclave begin 1. Prohibit access
from host to EPC
enclave_end 2. Prohibit others enclaves’
EPC end EPC to current enclave’s EPC

36

Virtual address space

Hardware Emulation

* Emulates all data structures(e.g., EPCM) and processor key

* EPC Memory management
— Direct mapping on virtual memory
— Access protection: Instrument memory access

EPC_begin Case (Load | Store) {
enclave begin 1. Prohibit access
from host to EPC
enclave_end 2. Prohibit others enclaves’
EPC end EPC to current enclave’s EPC
- |

Virtual address space QEMU'’s translation routine *

Instruction Support

* OpenSGX supports most instructions specified
— 21 out of 24 instructions
— Except for debugging related instructions (e.g., EDBGRD)

— Instead, it offers rich environment for debugging since it is a
“software emulator” (e.g., GDB stub)

Instruction Support

* OpenSGX supports most instructions specified
— 21 out of 24 instructions
— Except for debugging related instructions (e.g., EDBGRD)

— Instead, it offers rich environment for debugging since it is a
“software emulator” (e.g., GDB stub)

* Provides simple C APIs which wraps assembly code
— User-level instructions (ENCLU) : accessible to user-level APIs
— Super-level instructions (ENCLS) : Requires system support

OS Emulation Layer

 Emulate OS to execute the privileged SGX instructions
— Bootstrapping (EPC allocation)
— Enclave initialization & page translation
— Dynamic EPC page allocation

System call

sys_sgx_init() Allocate EPC memory region
sys_init_enclave() Create an enclave, Add and measure EPC pages

sys_add_epc() Allocates a new EPC page to the running enclave
sys_stat_enclave() Obtains the enclave statistics

 Emulate OS to execute the privileged SGX instructions

OS Emulation Layer

— Bootstrapping (EPC allocation)
— Enclave initialization & page translation
— Dynamic EPC page allocation

7

A\

Planning to extend the emulated OS for
the system-level layer

o

/

sys_init_enclave() Create an enclave, Add and measure EPC pages

sys_add_epc() Allocates a new EPC page to the running enclave

sys_stat_enclave() Obtains the enclave statistics

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

42

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

() (N [%
Lib Trampoline 4
Trampoline : Shared code to call

user-level APIs in the wrapper

Code Stub 7

Stub : Shared data to specify the
function code and arguments

Heap

. Enclave (Shared) { Wrapper J{Emulated 0S |

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

Lib
malloc(){

sgx_exit(tram);

-

Code

“malloc(100);

Heap

Enclave

_

J

Trampoline

if (fcode ==
FUNC_MALLOC)
alloc_tramp();

Stub

heap_end

fcode
mcode
argumentl

(Shared)

7

\

(A ([il

Trampoline : Shared code to call
user-level APIs in the wrapper

7

Stub : Shared data to specify the
function code and arguments

{ Wrapper J {Emulated 0S |

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

_

N
Lib
malloc(){
sg.>.<._exit(tram) ;
)
Code
“malloc(100);
\V/
FULL!

Enclave

Trampoline

if (fcode ==
FUNC_MALLOC)
alloc_tramp();

Stub

heap_end

fcode
mcode
argumentl

(Shared)

7

\

(A ([ﬁl

Trampoline : Shared code to call
user-level APIs in the wrapper

7

Stub : Shared data to specify the
function code and arguments

{ Wrapper J {Emulated OS |

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

_

ral

fcode : FUNC_MALLOC

mcode : EAUG
size: 100

Trampoline

e ==
_MALLOC)
_tramp();

Code

“malloc(100);

FULL!

Enclave

Stub

heap_end

fcode
mcode
argumentl

(Shared)

7

\

(N[{

Trampoline : Shared code to call
user-level APIs in the wrapper

7

Stub : Shared data to specify the
function code and arguments

{ Wrapper J {Emulated OS |

Trampoline and Stub Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

_

() ()
Tl -
| Trampoline User-level
malloc(){ EEXIT A APIs to request
‘I code ==
sgx_exit(tram); FUNC_MALLOC) system calls
- alloc_tramp(); g alloc_tramp() {
sys_add_epc();
Code Stub Y P
" malloc(100); heap_end }
FUNC_MALLOC
EAUG
Heap 100
Enclave | (Shared) . Wrapper | | Emulated OS

Trampoline and Stub Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

(() ()
Tl -
| Trampoline User-level
malloc(){ EEXIT A APIs to request
‘I coqge ==
sgx_exit(tram); FlllJNC_MALL(())C) system calls
alloc_tramp(); alloc_tram
} H—alloc_tramp() Call EAUG
Code sys_add_epc(); mmpint sys_add_epc() {
Stub encls(EAUG, ...);
malloc(100); heap_end }
FUNC_MALLOC System
EAUG Call
Heap 100
. Enclave (Shared) _ Wrapper J {Emulated OS |

Trampoline and Stub Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

é () ()
Tl -
| Trampoline User-level
malloc(){ EEXIT A APIs to request
I coqge ==
sgx_exit(tram); FlllJNC_MALL(())C) system calls
alloc_tramp(); lloc_t
}) allcc_tramp() { Call EAUG
ERESUME _
Code sys_add_epc(); mmpint sys_add_epc() {
Stub encls(EAUG, ...);
malloc(100); heap end+4K) S
FUNC_MALLOC ystem
EAUG Call
Heap 100 J {
. Enclave (Shared) _ Wrapper Emulated OS

Evaluation: Tor Network

* Redesigns non-trivial application to use OpenSGX
* Tor : volunteer-based anonymity network

Evaluation: Tor Network

* Redesigns non-trivial application to use OpenSGX

* Tor : volunteer-based anonymity network

/

\.

“Defend possible attacks on Tor components
when they are compromised by adversaries”

o

/

Evaluation: Tor Network

* Redesigns non-trivial application to use OpenSGX

* Tor : volunteer-based anonymity network

/

\.

“Defend possible attacks on Tor components
when they are compromised by adversaries”

o

/

* Here, defense against network-level attacks on Tor is
out of scope

SGX-enabled Tor Design

* Design goal
— Protect data/code from adversary
— Reducing Trusted Computing Base

4 Exit node \ pmmm e

<
[’

(or directory server) Separation‘

= J

53

SGX-enabled Tor Design

* Design goal
— Protect data/code from adversary
— Reducing Trusted Computing Base

e Exit node \ ______ - (Enclave A

. Ky . X .
(or directory server) [Separation | (o) Core operations
gen_key({ | (e.g., key creation,
encryption,
} .
s decryption, ...)
o, J Key
K / < Relay table)

54

SGX-enabled Tor Design

* Design goal
— Protect data/code from adversary
— Reducing Trusted Computing Base

e Exit node \ ______ - (Enclave A

. :’ . | i
(or directory server) [Separation | [c p (Lo Bl
. gen_key({ | (e.g., key creation,

Rest of Tor operations [€ — encryption,

1 Send . Interaction | |! d :

. Send/receive packets encrypt(){ ecryption, ...)
2. Initialize data structures ol Key

_ -/ N\ . Relay table =)

55

SGX-enabled Tor Design

* Design goal

— Protect data/code from adversary

— Reducing Trusted Computing Base

4 Exit node
(or directory server)

Rest of Tor operations
1. Send/receive packets
2. Initialize data structures

(Other Tor nodes]<

Interaction)[

PP } (Enclave A
' Separationy S y Core operations
§ . gen_key({ | (e.g., key creation,
. encryption,
} .
Interaction —— decryption, ...)
4, J Key
g Relay table Y,
‘ Remote Attestation
Enclave

56

|

Performance Profiling

* Performance profiling of Tor exit node

— Using OpenSGX performance monitor

@ Key generation B Consensus creation

@ Circuit establishment & Service B Total
(Unit: Number of pages)

E 1200

1000 -m
S s00 OpensSL 271

‘g‘ 600 SgxLib 3 1 4

bar] Tor 4 1 5

» 400

c Total 278 91 369

q6 200

+ 0 Required EPC : Less than 2MB

57

OpenSGX: Current Status

* Available at github, released in May 2015
— Available in https://github.com/sslab-gatech/opensgx
— 7 Contributors (Gatech, KAIST, Two sigma, MITRC, ...)
— 31 unique cloners, 1,645 Views (Until January, 2016)

e What’s next?

— Binary compatibility with Intel SGX hardware
— Implement unsupported functionalities (e.g., multi-threading)

58

* QOur current community Y oV
€ TWO SIGMA @

Our Early Lessons on SGX

* Misconceptions on SGX

— SGX for desktop-like environment : Needs secure |I/O channel
(integration with hardware technology such as Intel IPT)

— Need EPID support for the remote attestation

Our Early Lessons on SGX

* Misconceptions on SGX

— SGX for desktop-like environment : Needs secure |I/O channel
(integration with hardware technology such as Intel IPT)

— Need EPID support for the remote attestation

* Malicious use of Intel SGX
— Malware might be possible by abusing the isolation property
— Fails on traditional signature-based AV programs

Conclusion

* We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

Conclusion

* We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

* As a showcasing application, we develop SGX-enabled
Tor to enhance the security and privacy

Conclusion

* We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

* As a showcasing application, we develop SGX-enabled
Tor to enhance the security and privacy

* OpenSGX offers opportunities to explore all components
of SGX research

— Hardware semantics (e.g., encryption scheme of MEE)
— System software, enclave loader and user-level APls
— Redesigning unforeseen security applications (e.g., Tor)

Thanks!
Any Questions?

SGX Threat Model

“An adversary has control over all software

components (including OS and hypervisor) and
hardware except the CPU package”

* Protection against denial-of-service is out of scope

65

Comparison: Intel SGX vs OpenSGX
| IntelSGX | OpenSGX

Type Hardware Software Emulator
13 ENCLS, 8 ENCLU

Instructions 16 ENCLS, 8 ENCLU Brezs delbumsing
Data structures Specified O
Paging Page table Direct mapping
System software Not specified User level emulation
User level APIs SDK is available O

(Only for Windows)

OpenSGX User Library

* Challenge 1: Facilitate the enclave programming
— Custom in-enclave library : APIs for user-level SGX instructions
— Porting standard C library (glibc)

* Challenge 2: Minimize attack surface between
enclave and the potentially malicious host process

— Function call relies on OS features will break an execution of
enclave programs

— Such functions open up new attack surfaces
(e.g., lago attacks)

67

Defense against lago attacks

* lago attacks [ASPLOS’13] : Malicious OS tries to
subvert trusted application by incorrect behavior

ex) adds incorrect EPC page for heap

4 N\
Enclave Wrapper

- N\ N Trampoline

Application In-enclave Lib {»-malloc_tramp

»void *malloc(int size){ sys_add_epc

if(cur_heap_ptr }
l'l" N == heap_end) {

MalloCl); - stub->mcode = EAUG; (-)
exit(trampoline); v Emulated OS 0

}
enclu(EACCEPT, ...);

N J

add_epc() {

68

Memory State of OpenSGX Program

User process (smgle address space)

* Package Info | Code | EPC |
Entry point Lib EPC
Measurement
i Data EPC
SGX Lib
Trampoline Stack EPC
Stub Heap EPC
ENCLU \ Wrapper ~ Enclave Program ENCLLéEXIT
g e.g.,
(€8, EENTER) System call (e. g sys_sgxinit()) (e-g)
ENCLS System calls
bound
(e.g., EINIT) SGX OS Emulation oundary

Privilege

QEMU 5GX boundary

Attacks on Tor Components

* Tor network : uses 3-hop onion routlng

(unless end-to-end encryption is used)

1. Snooping or tampering of the plain-text
2. Break of anonymity : Bad apple attack

Destination

Tor client

Tor network

70

Attacks on Tor Components

* Tor network : uses 3-hop onion routing

— Directory servers : Advertise available onion routers (ORs),
vote for bad exit nodes

When directory servers are compromised,
1. Tie-breaking attacks while voting
2. Admission of malicious ORs

Destination
Tor client

Tor network

71

Performance Profiling: CPU cycles

I Key generation B Consensus creation M Circuit establishment & Service B Total

<Directory Server>

18000 el
— A

= 15000

e

® 12000

9 2.8X
> 9000

-

2 6000

@) _—— e - -
(T

e Hanll I
1+ 0] .

OpenSGX Native QEMU
e ENCLU(EEXIT, ERESUME) calls

* In-enclave library code to handle stub & trampoline interface

1200

=
(=]
o
o

0
(=]
o

600

400

200

of CPU cycles (M)

o

<Tor Exit Node>

————g----

2.7X

il 0_0

OpenSGX Native QEMU

72

Performance Profiling: TCB

<Directory Server> <Tor Exit Node>
-m -m
OpenSSL 270 358 OpenSSL 271
SgxLib 3 1 4 SgxLib 3 1 4
Tor 3 1 4 Tor 4 1 5
Total 276 90 366 Total 278 91 369

(Unit: Number of pages)

 Required EPC size: Less than 2MB for each process
 TCBsize : 54% smaller than compared to Tor code base

OpenSGX implementation

* OpenSGX is an open source project!
— Modified lines of code : 19K
— First released in May, 2015
— 7 Contributors (Gatech, KAIST)
— 31 unique cloners, 1,645 Views (Until January, 2016)
— Available at https://github.com/sslab-gatech/opensgx.git

74

