
OpenSGX: An Open Platform for
SGX Research

Prerit Jain, Soham Desai, Seongmin Kim*, Ming-Wei Shih,
JaeHyuk Lee, Changho Choi, Youjung Shin, Taesoo Kim,

Brent Byunghoon Kang, Dongsu Han

1

Trusted Execution Environment (TEE)

2

• Hardware technologies for trusted computing

– Isolated execution: integrity of code, confidentiality

– To protect application from untrusted platform

Trusted Execution Environment (TEE)

3

• Hardware technologies for trusted computing

– Isolated execution: integrity of code, confidentiality

– To protect application from untrusted platform

Trusted Execution Environment (TEE)

4

• Hardware technologies for trusted computing

– Isolated execution: integrity of code, confidentiality

– To protect application from untrusted platform

Trusted Execution Environment (TEE)

5

• Hardware technologies for trusted computing

– Isolated execution: integrity of code, confidentiality

– To protect application from untrusted platform

Trusted Execution Environment (TEE)

6

• Hardware technologies for trusted computing

– Isolated execution: integrity of code, confidentiality

– To protect application from untrusted platform

• Practical limitations of TEEs

– Trusted Platform Module (TPM) : Poor performance

– ARM TrustZone : Compatibility (only for embedded devices)

Intel SGX

7

• An extension of x86 Instruction Set Architecture (ISA)

– Offers native performance, Compatibility with x86

– Application keeps its data/code inside the “enclave”

Operating System (untrusted)

Application (untrusted)

Enclave

Skylake CPU

Intel SGX

8

• An extension of x86 Instruction Set Architecture (ISA)

– Offers native performance, Compatibility with x86

– Application keeps its data/code inside the “enclave”

Operating System (untrusted)

Application (untrusted)

Enclave

Data
Code

Skylake CPU

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

9

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

10

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

11

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

12

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Processor Key

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

13

Address
Space

Enclave

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Snooping

Processor Key

Intel SGX 101: Isolated Execution

• Smallest attack surface by reducing TCB (App + processor)
• Protect app’s secret from untrusted privilege software

14

Address
Space

Enclave

Access from
OS/VMM

Physical
Memory

EPC

Encrypted
code/data

CPU Package

Memory Encryption
Engine (MEE)

Snooping

Processor Key

Intel SGX 101: Remote attestation

1515

• Attest an application on remote platform

– Check the integrity of enclave (hash of code/data pages)

– Verify whether enclave is running on real SGX CPU

– Can establish a “secure channel” between enclaves

Application
Enclave

Quoting
Enclave

Remote platformUser platform

1. Request

Application
Challenger

Enclave

Attestation
Verification

EPID key

Ephemeral

2. Create REPORT

3. Sign with
EPID group key
(Create QUOTE)

4. Send
QUOTE

5. Verify

Intel SGX 101: Remote attestation

1616

• Attest an application on remote platform

– Check the integrity of enclave (hash of code/data pages)

– Verify whether enclave is running on real SGX CPU

– Can establish a “secure channel” between enclaves

Application
Enclave

Quoting
Enclave

Remote platformUser platform

1. Request

Application
Challenger

Enclave

Attestation
Verification

EPID key

Ephemeral

2. Create REPORT

3. Sign with
EPID group key
(Create QUOTE)

4. Send
QUOTE

5. Verify

Intel SGX brings new opportunities for

enhancing security of applications

SGX Research: Current Status

• Pioneering research: Adopting SGX on cloud computing
(Haven [OSDI14], VC3 [S&P15])

• Confidentiality verification of SGX program
(Moat [CCS15])

• Adopts SGX on networking [HotNets15]

17

SGX Research: Current Status

• However, software technologies for SGX lag behind their
hardware counterpart

18

SGX CPU and SDK is now available! But..

• Specification for SGX [revision 1 & 2] is not fully available
on the SGX hardware (only functionalities in revision 1)

• SGX technology has a complex license model

OpenSGX: Design Goal

19

• Offers a complete platform for SGX research

– To explore software and hardware design space of SGX

– To develop and evaluate SGX-enabled applications

OpenSGX: Design Goal

20

• Offers a complete platform for SGX research

– To explore software and hardware design space of SGX

– To develop and evaluate SGX-enabled applications

• Fills non-trivial issues on SGX software components

– Support for system software and user-level APIs

– Familiar programming model and interface

– Secure design to defend against potential attack vectors
(e.g., Iago attacks)

OpenSGX: Design Goal

21

• Offers a complete platform for SGX research

– To explore software and hardware design space of SGX

– To develop and evaluate SGX-enabled applications

• Fills non-trivial issues on SGX software components

– Support for system software and user-level APIs

– Familiar programming model and interface

– Secure design to defend against potential attack vectors
(e.g., Iago attacks)

• Non goal : security guarantee

Binary
Translation

OpenSGX: Approach

22

• Using userspace emulation of QEMU

– Binary translation to support SGX instructions

– QEMU helper routine to implement complex instructions

Helper routine
- Set registers
- Operates
SGX instructions

QEMUHost (single address space)

Wrapper

Lib

Stack

Heap

Enclave

Code

Data

EPC

EPC

EPC

EPC
EPC

…

…

enclu(){
…

asm(“.byte 0x0f”
“.byte 0x01”
“.byte 0xd7”
“rax=entry”

…
}

Entry point

…
if(opcode ==

0x0f01d7) {
helper_enclu();

}
…

RIP

Binary
Translation

OpenSGX: Approach

23

• Using userspace emulation of QEMU

– Binary translation to support SGX instructions

– QEMU helper routine to implement complex instructions

Helper routine
- Set registers
- Operates
SGX instructions

QEMUHost (single address space)

Wrapper

Lib

Stack

Heap

Enclave

Code

Data

EPC

EPC

EPC

EPC
EPC

…

…

enclu(){
…

asm(“.byte 0x0f”
“.byte 0x01”
“.byte 0xd7”
“rax=entry”

…
}

Entry point

…
if(opcode ==

0x0f01d7) {
helper_enclu();

}
…

RIP

OpenSGX: Component Overview

24

• Emulated SGX hardware

SGX QEMU (HW emulation)

OpenSGX: Component Overview

25

• Emulated SGX hardware

SGX OS Emulation

SGX QEMU (HW emulation)

• OS emulation layer

OpenSGX: Component Overview

26

• Emulated SGX hardware

SGX OS Emulation

SGX QEMU (HW emulation)

SGX Libraries

Trampoline

Stub

• OS emulation layer

• OpenSGX user library

OpenSGX: Component Overview

27

• Emulated SGX hardware

SGX OS Emulation

SGX QEMU (HW emulation)

OpenSGX
toolchain

SGX Libraries

Trampoline

Stub

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

OpenSGX: Component Overview

28

• Emulated SGX hardware • Enclave loader

SGX OS Emulation

SGX QEMU (HW emulation)

OpenSGX
toolchain

Enclave
loader

SGX Libraries

Trampoline

Stub

Runtime
library

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

OpenSGX: Component Overview

29

• Emulated SGX hardware • Enclave loader

SGX OS Emulation

SGX QEMU (HW emulation)

OpenSGX
toolchain

Enclave
loader

SGX Libraries

Trampoline

Stub

Runtime
library

Enclave
Debugger

Performance
Monitor

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

• Enclave debugger

• Performance monitor

OpenSGX: Component Overview

30

• Emulated SGX hardware • Enclave loader

SGX OS Emulation

SGX QEMU (HW emulation)

Enclave Program

OpenSGX
toolchain

Enclave
loader

SGX Libraries

Trampoline

Stub

Runtime
library

Enclave
Debugger

Performance
Monitor

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

• Enclave debugger

• Performance monitor

OpenSGX: Component Overview

31

• Emulated SGX hardware • Enclave loader

SGX OS Emulation

SGX QEMU (HW emulation)

Enclave Program

OpenSGX
toolchain

Enclave
loader

SGX Libraries

Trampoline

Stub

Runtime
library

Enclave
Debugger

Performance
Monitor

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

• Enclave debugger

• Performance monitor

void enclave_main(){
char *hello = “hello sgx!\n”;
sgx_enclave_wriate(hello, strlen(hello));
sgx_exit(NULL);

}

$ opensgx hello.sgx hello.conf
hello sgx!

Code
enclave_main()

Data
“hello sgx\n”

0x0000
EPC1

0x1000
EPC2

Entry point :
SigStruct: …

OpenSGX: Component Overview

32

• Emulated SGX hardware • Enclave loader

SGX OS Emulation

SGX QEMU (HW emulation)

Enclave Program

OpenSGX
toolchain

Enclave
loader

SGX Libraries

Trampoline

Stub

Runtime
library

Enclave
Debugger

Performance
Monitor

• OS emulation layer

• OpenSGX user library

• OpenSGX toolchain

• Enclave debugger

• Performance monitor

void enclave_main(){
char *hello = “hello sgx!\n”;
sgx_enclave_wriate(hello, strlen(hello));
sgx_exit(NULL);

}

$ opensgx hello.sgx hello.conf
hello sgx!

Code
enclave_main()

Data
“hello sgx\n”

0x0000
EPC1

0x1000
EPC2

Entry point :
SigStruct: …

Hardware Emulation

33

• Emulates all data structures(e.g., EPCM) and processor key

• EPC Memory management

– Direct mapping on virtual memory

– Access protection: Instrument memory access

Hardware Emulation

34

• Emulates all data structures(e.g., EPCM) and processor key

• EPC Memory management

– Direct mapping on virtual memory

– Access protection: Instrument memory access

Virtual address space

Hardware Emulation

35

• Emulates all data structures(e.g., EPCM) and processor key

• EPC Memory management

– Direct mapping on virtual memory

– Access protection: Instrument memory access

EPC_begin

EPC_end

Virtual address space

Hardware Emulation

36

• Emulates all data structures(e.g., EPCM) and processor key

• EPC Memory management

– Direct mapping on virtual memory

– Access protection: Instrument memory access

EPC_begin

EPC_end

enclave_begin

enclave_end

Virtual address space

2. Prohibit others enclaves’
EPC to current enclave’s EPC

1. Prohibit access
from host to EPC

Hardware Emulation

37

• Emulates all data structures(e.g., EPCM) and processor key

• EPC Memory management

– Direct mapping on virtual memory

– Access protection: Instrument memory access

EPC_begin

EPC_end

enclave_begin

enclave_end

QEMU’s translation routine

…
Case (Load | Store) {

}
…

Virtual address space

2. Prohibit others enclaves’
EPC to current enclave’s EPC

1. Prohibit access
from host to EPC

Instruction Support

38

• OpenSGX supports most instructions specified

– 21 out of 24 instructions

– Except for debugging related instructions (e.g., EDBGRD)

– Instead, it offers rich environment for debugging since it is a
“software emulator” (e.g., GDB stub)

Instruction Support

39

• OpenSGX supports most instructions specified

– 21 out of 24 instructions

– Except for debugging related instructions (e.g., EDBGRD)

– Instead, it offers rich environment for debugging since it is a
“software emulator” (e.g., GDB stub)

• Provides simple C APIs which wraps assembly code

– User-level instructions (ENCLU) : accessible to user-level APIs

– Super-level instructions (ENCLS) : Requires system support

OS Emulation Layer

40

• Emulate OS to execute the privileged SGX instructions

– Bootstrapping (EPC allocation)

– Enclave initialization & page translation

– Dynamic EPC page allocation

System call Description

sys_sgx_init() Allocate EPC memory region

sys_init_enclave() Create an enclave, Add and measure EPC pages

sys_add_epc() Allocates a new EPC page to the running enclave

sys_stat_enclave() Obtains the enclave statistics

OS Emulation Layer

41

• Emulate OS to execute the privileged SGX instructions

– Bootstrapping (EPC allocation)

– Enclave initialization & page translation

– Dynamic EPC page allocation

System call Description

sys_sgx_init() Allocate EPC memory region

sys_init_enclave() Create an enclave, Add and measure EPC pages

sys_add_epc() Allocates a new EPC page to the running enclave

sys_stat_enclave() Obtains the enclave statistics

Planning to extend the emulated OS for

the system-level layer

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

42

Stub and Trampoline Interface

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

43
Enclave

Code

Heap

Lib

Emulated OSWrapper

Trampoline

(Shared)

Stub : Shared data to specify the
function code and arguments

Trampoline : Shared code to call
user-level APIs in the wrapper

Stub

Stub and Trampoline Interface

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

44
Enclave

Code

Heap

Lib

Emulated OSWrapper

Trampoline

(Shared)

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

fcode
mcode

argument1

heap_end Stub : Shared data to specify the
function code and arguments

Trampoline : Shared code to call
user-level APIs in the wrapper

…
malloc(100);

…

malloc(){
…

sgx_exit(tram);
…

}

Stub

Stub and Trampoline Interface

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

45
Enclave

Code

Heap

Lib

Emulated OSWrapper

Trampoline

(Shared)

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

fcode
mcode

argument1

heap_end Stub : Shared data to specify the
function code and arguments

Trampoline : Shared code to call
user-level APIs in the wrapper

Heap

…
malloc(100);

…

malloc(){
…

sgx_exit(tram);
…

}

Stub

FULL!

Stub and Trampoline Interface

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

46
Enclave

Code

Heap

Lib

Emulated OSWrapper

Trampoline

(Shared)

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

fcode
mcode

argument1

heap_end Stub : Shared data to specify the
function code and arguments

Trampoline : Shared code to call
user-level APIs in the wrapper

Heap

…
malloc(100);

…

malloc(){
…

sgx_exit(tram);
…

}

<Specification>
fcode : FUNC_MALLOC
mcode : EAUG
size: 100

Stub

FULL!

Trampoline and Stub Interface

Stub

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

47
Enclave

Code
…

malloc(100);
…

Heap

Lib

malloc(){
…

sgx_exit(tram);
…

}

Emulated OS

Trampoline

(Shared)

heap_end

EEXIT

FUNC_MALLOC
EAUG
100

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

Wrapper

alloc_tramp() {
…

sys_add_epc();
…

}

User-level
APIs to request
system calls

Trampoline and Stub Interface

Stub

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

48
Enclave

Code
…

malloc(100);
…

Heap

Lib

malloc(){
…

sgx_exit(tram);
…

}

Emulated OS

int sys_add_epc() {
encls(EAUG, …);

…

Trampoline

(Shared)

Call EAUG

heap_end

EEXIT

FUNC_MALLOC
EAUG
100

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

Wrapper

alloc_tramp() {
…

sys_add_epc();
…

}

User-level
APIs to request
system calls

System
Call

Trampoline and Stub Interface

Stub

…

“A strict and narrow interface to handle enclave-host

communication using shared data/code”

49
Enclave

Code
…

malloc(100);
…

Heap

Lib

malloc(){
…

sgx_exit(tram);
…

}

Emulated OS

int sys_add_epc() {
encls(EAUG, …);

…

Trampoline

(Shared)

Call EAUG
ERESUME

EEXIT

FUNC_MALLOC
EAUG
100

…
if (fcode ==

FUNC_MALLOC)
alloc_tramp();

…

Wrapper

alloc_tramp() {
…

sys_add_epc();
…

}

User-level
APIs to request
system calls

System
Call

heap_end+4K

Evaluation: Tor Network

50

• Redesigns non-trivial application to use OpenSGX

• Tor : volunteer-based anonymity network

Evaluation: Tor Network

51

• Redesigns non-trivial application to use OpenSGX

• Tor : volunteer-based anonymity network

“Defend possible attacks on Tor components
when they are compromised by adversaries”

Evaluation: Tor Network

52

• Redesigns non-trivial application to use OpenSGX

• Tor : volunteer-based anonymity network

• Here, defense against network-level attacks on Tor is
out of scope

“Defend possible attacks on Tor components
when they are compromised by adversaries”

SGX-enabled Tor Design

53

• Design goal

– Protect data/code from adversary

– Reducing Trusted Computing Base

EnclaveExit node
(or directory server) Separation

SGX-enabled Tor Design

54

• Design goal

– Protect data/code from adversary

– Reducing Trusted Computing Base

EnclaveExit node
(or directory server)

Key
Relay table

gen_key(){
…

}
encrypt(){

…
}

Core operations
(e.g., key creation,

encryption,
decryption, …)

Separation

SGX-enabled Tor Design

55

• Design goal

– Protect data/code from adversary

– Reducing Trusted Computing Base

EnclaveExit node
(or directory server)

Key
Relay table

gen_key(){
…

}
encrypt(){

…
}

Core operations
(e.g., key creation,

encryption,
decryption, …)

Separation

Interaction
Rest of Tor operations
1. Send/receive packets
2. Initialize data structures

…

EnclaveOther Tor nodes

SGX-enabled Tor Design

56

• Design goal

– Protect data/code from adversary

– Reducing Trusted Computing Base

EnclaveExit node
(or directory server)

Key
Relay table

gen_key(){
…

}
encrypt(){

…
}

Core operations
(e.g., key creation,

encryption,
decryption, …)

Separation

Interaction
Rest of Tor operations
1. Send/receive packets
2. Initialize data structures

…

Remote Attestation

Interaction

Performance Profiling

57

Code Data Total

OpenSSL 271 89 360

SgxLib 3 1 4

Tor 4 1 5

Total 278 91 369

(Unit: Number of pages)

Required EPC : Less than 2MB

• Performance profiling of Tor exit node

– Using OpenSGX performance monitor

0

200

400

600

800

1000

1200

o

f
in

st
ru

ct
io

n
s

(M
)

Key generation Consensus creation

Circuit establishment & Service Total

OpenSGX: Current Status

58

• Available at github, released in May 2015

– Available in https://github.com/sslab-gatech/opensgx

– 7 Contributors (Gatech, KAIST, Two sigma, MITRC, …)

– 31 unique cloners, 1,645 Views (Until January, 2016)

• What’s next?

– Binary compatibility with Intel SGX hardware

– Implement unsupported functionalities (e.g., multi-threading)

• Our current community

Our Early Lessons on SGX

59

• Misconceptions on SGX

– SGX for desktop-like environment : Needs secure I/O channel
(integration with hardware technology such as Intel IPT)

– Need EPID support for the remote attestation

Our Early Lessons on SGX

60

• Misconceptions on SGX

– SGX for desktop-like environment : Needs secure I/O channel
(integration with hardware technology such as Intel IPT)

– Need EPID support for the remote attestation

• Malicious use of Intel SGX

– Malware might be possible by abusing the isolation property

– Fails on traditional signature-based AV programs

Conclusion

61

• We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

Conclusion

62

• We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

• As a showcasing application, we develop SGX-enabled
Tor to enhance the security and privacy

Conclusion

63

• We design and implement OpenSGX, fully functional and
instruction-compatible SGX emulator

• As a showcasing application, we develop SGX-enabled
Tor to enhance the security and privacy

• OpenSGX offers opportunities to explore all components
of SGX research
– Hardware semantics (e.g., encryption scheme of MEE)

– System software, enclave loader and user-level APIs

– Redesigning unforeseen security applications (e.g., Tor)

64

Thanks!
Any Questions?

SGX Threat Model

65

“An adversary has control over all software
components (including OS and hypervisor) and

hardware except the CPU package”

• Protection against denial-of-service is out of scope

Comparison: Intel SGX vs OpenSGX

66

Intel SGX OpenSGX

Type Hardware Software Emulator

Instructions 16 ENCLS, 8 ENCLU
13 ENCLS, 8 ENCLU
(Except debugging)

Data structures Specified ○

Paging Page table Direct mapping

System software Not specified User level emulation

User level APIs
SDK is available

(Only for Windows)
○

OpenSGX User Library

67

• Challenge 1: Facilitate the enclave programming

– Custom in-enclave library : APIs for user-level SGX instructions

– Porting standard C library (glibc)

• Challenge 2: Minimize attack surface between
enclave and the potentially malicious host process

– Function call relies on OS features will break an execution of
enclave programs

– Such functions open up new attack surfaces
(e.g., Iago attacks)

Enclave

Defense against Iago attacks

68

• Iago attacks [ASPLOS’13] : Malicious OS tries to
subvert trusted application by incorrect behavior

ex) adds incorrect EPC page for heap

…
malloc();

…

Application In-enclave Lib

Emulated OS

Wrapper

Stub
heap_end

cur_heap_ptrvoid *malloc(int size){
if(cur_heap_ptr

== heap_end) {
stub->mcode = EAUG;
exit(trampoline);

}

Trampoline
malloc_tramp() {

sys_add_epc();
}

enclu(EACCEPT, …);
int sys_add_epc() {

…
}

Bad
EPC page

Detect!

Memory State of OpenSGX Program

69

SGX OS Emulation

QEMU SGX

User process (single address space)

ENCLS
(e.g., EINIT)

Package Info
Entry point
Measurement

Key …

SGX Lib

Trampoline

Stub

Wrapper

Lib

Stack

Heap

Enclave Program

Code

Data

EPC

EPC

EPC

EPC

EPC

…

…

Privilege
boundary

System calls
boundary

ENCLU
(e.g., EENTER)

ENCLU
(e.g., EEXIT)

System call (e.g., sys_sgxinit())

Attacks on Tor Components

• Tor network : uses 3-hop onion routing

– Directory servers : Advertise available onion routers (ORs),
vote for bad exit nodes

Entry
Relay

Exit

When exit node is compromised,
(unless end-to-end encryption is used)
1. Snooping or tampering of the plain-text
2. Break of anonymity : Bad apple attack

70

Directory servers

Tor client

Destination

Tor network

Attacks on Tor Components

• Tor network : uses 3-hop onion routing

– Directory servers : Advertise available onion routers (ORs),
vote for bad exit nodes

Directory servers

Tor client

Destination
Entry

Relay

Exit

When directory servers are compromised,
1. Tie-breaking attacks while voting
2. Admission of malicious ORs

71

Tor network

Performance Profiling: CPU cycles

72

<Directory Server> <Tor Exit Node>

0

3000

6000

9000

12000

15000

18000

#
 o

f
C
P
U

 c
y
cl

e
s

(M
)

Key generation Consensus creation Circuit establishment & Service Total

0

200

400

600

800

1000

1200

#
 o

f
C
P
U

 c
y
cl

e
s

(M
)

OpenSGX Native QEMU OpenSGX Native QEMU

2.8x 2.7x

• ENCLU(EEXIT, ERESUME) calls

• In-enclave library code to handle stub & trampoline interface

Performance Profiling: TCB

• Required EPC size: Less than 2MB for each process

• TCB size : 54% smaller than compared to Tor code base

73

Code Data Total

OpenSSL 270 88 358

SgxLib 3 1 4

Tor 3 1 4

Total 276 90 366

Code Data Total

OpenSSL 271 89 360

SgxLib 3 1 4

Tor 4 1 5

Total 278 91 369

<Directory Server> <Tor Exit Node>

(Unit: Number of pages)

OpenSGX implementation

74

• OpenSGX is an open source project!

– Modified lines of code : 19K

– First released in May, 2015

– 7 Contributors (Gatech, KAIST)

– 31 unique cloners, 1,645 Views (Until January, 2016)

– Available at https://github.com/sslab-gatech/opensgx.git

