
Fast, Flexible and Secure Onloading of
Edge Functions using AirBox

Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada
Gavrilovska, Taesoo Kim, Karsten Schwan

08/27/2016

Edge Computing Drivers

Latency matters: Better user
experience, revenue

User perceived delay

Client

Network

Datacenter

Client

Network

prepare render

process

Network = Wireless + ISP + CDNs

Bandwidth Costs: For end users
and service providers

Source: Akamai state of Internet report Q1’2015

• Capital intensive to build.
• Expensive to operate.

Alternative: Build more, bigger data centers

• To achieve 1 ms latency a
data center every 300 KM

• Sheer number of bytes that
need to travel over Internet

• No control over network

• 3.5 ZB per year by 2019
(Cisco)

• Would take 8 years on 800
Gbps connection

Approaches
Client driven

Cyber-
foraging

Offloading: MAUI,
CloneCloud, Comet,
PCloud, ECC, COSMOS,
...

Backend
driven Cyber-

foraging

Onloading: AppFlux,
AppSachet, Cloudlet,
FlyWheel, CDNs, micro-
data centers, …

Onloading: Backend driven Edge Computing

Lets speak the same language …

• Beyond which users only have wireless access - Edge

• Infrastructure – Edge cloud, Cloudlet, Fog server, …

• Services running on edge infrastructure – Edge Functions

Edge Function (EF)

• Definition: Any third party service deployed on edge
infrastructure that interacts with end client requests on
behalf of a backend service deployed in remote clouds.

• Typically implemented above layer 3
• Employs application specific knowledge

• Edge function platform (EFP): Software platform that
enables Edge functions to be deployed at the edge

High Level Intuitive Choices

• Leverage cloud model for the edge computing
• Use of virtualization to enable arbitrary edge functions

• Dynamic just-in-time deployment model

• Secure Edge nodes, Edge functions and their stored state

Challenges for an Edge function Platform

Developer
Flexibility

Questions raised in this paper

• What type of virtualization to use for EFs?
• OS agnostic hypervisor – Virtual machines

• OS level virtualization – OS Containers

• Application level virtualization – Sandboxes

• How to handle security concerns of edge functions?
• Are they different from cloud security concerns?

Technology Space Exploration: Provisioning

• Chosen Technologies
• Virtual machines - Cloudlet

• Containers - Docker

• Sandboxes - Embassies

• Constraints on developers
• Cloudlet – None

• Docker – OS

• Embassies – Porting

• Other Technologies
• Java virtual machines
• Native Sandboxes e.g.,

Chrome’s NaCl
• Runtimes: node.js
• Unikernels: Jitsu

• Constraints on developers
• Specific Toolchains
• Lack of optimized libraries
• Deployment packaging

Experimental Setup

Type Deployment scenario Hardware configuration

Mini edge Strategic placed server racks by
mobile networks operators or
enterprises - Server class
machine

Intel x86-64, 24 CPUs, 1.6 GHz, 50 GB
RAM, 4 NUMA nodes, 2 sockets, 6 cores
per socket, 2 threads per core, VT-x, L1
(i+d): 64 KB, L2: 256 KB, L3: 12 MB

Micro edge Randomly placed standalone
servers by businesses or
individuals - Desktop class
machine.

Intel x86-64, 4 CPUs, 1.6 GHz, 4 GB RAM,
VT-x, L1 (i+d): 64 KB, L2: 4096 KB

OS: Ubuntu 14.04 LTS, Ported all chosen solutions to it.
Edge function: Image processing using exactimage library, Think Instagram filters.

Provisioning Speed and Scalability

Faster and scalable EF provisioning with
containers

Provisioning Resource Consumption

Lower resource consumption with containers

Questions raised in this paper

• What type of virtualization to use for EFs?
• OS agnostic hypervisor – Virtual machines

• OS level virtualization – OS Containers

• Application level virtualization – Sandboxes

• How to handle security concerns of edge functions?
• Are they different from cloud security concerns?

EF Security Concerns

1. Integrity verification: Verification of deployed EF code

2. Execution security: Resource isolation during EF execution

3. State confidentiality: Securing data stored by EF on edge cloud

4. End user privacy: Ensuring that end user requests remain private

Approaches to Security

• Cloudlet VMs
• TrustVisor – formally verified VM,

InkTag – verification

• Embassies Sandboxes
• Cryptographic attestation

• Docker Containers
• Docker registry, namespaces,

SELinux, AppArmour

• Haven
• Narrow system call interface, use

of libOS and Intel SGX

• VC3 – solution to secure map
reduce via SGX based
verification of results

AirBox: An Edge Function Platform

• Using Docker containers with SGX based integrity verification boot
block for deployment vehicles for EFs

• Designed as a console for EF managers and provisioner module to be
deployed for edge cloud nodes

• Prescribes a secure EF anatomy using Intel SGX for security concerns
• Implemented on top of OpenSGX

Intel SGX

• New secure instructions in Intel processors
• Loading, entry and exit to SGX enclave
• For OS to allocate PRM page/eviction

• Processor reserved memory hashed after
enclave load till its exit

• New processor mode & related HW
structures

• Unforgeable attestation qoute generation
• Remote attestation
• No I/O or interrupts in/from enclave
• Difficult to setup SGX enclave debugging

AirBox Benefits

• Integrates seamlessly with Docker ecosystem making it easy to create,
package and deliver EFs

• A single interface to deploy EFs, a single module for edge nodes and
easy remote attestation of enclave in an EF

• Abstracts Intel SGX provided features to provide intuitive API to an EF
developer or EF manager

AirBox – SGX interface

• Ease of use: Focus on the
functionalities

• Performance: minimize SGX
overhead – enclave page cache,
TLB thrashing, …

• Security: Enclave can be
compromised by incorrectly
using system calls in host part of
SGX application

• Remote Attestation:
airbox_sgx_attest(quote)

• Remote Authentication:
airbox_sgx_auth(quote)

• Sealed Storage:
• airbox_sgx_get(key, len)

• airbox_sgx_put(key,
klen,*value, *vlen)

• airbox_sgx_getkeys(*keys,
len)

• EF defined:
• airbox_sgx_run(module,
conf)

AirBox EF provisioning

AirBox Secure EF anatomy

SGX features in AirBox
• Remote Attestation
• Sealing

Preserving end user privacy at Edge

• EF acquires TLS session key in enclave

• EF saves it using sealing for session duration

• EF Decrypt user requests and their responses inside enclave

• Even AirBox just sees encrypted blobs going network

END to END TLS

HTTP HTTP

TCP TCP

Secure split connection at edge using SGX

Securing Storage at Edge

• EF cannot direct read/write from inside of enclave

• 2 phase disk I/O: Phase 1: meta-data, Phase 2: data

• AirBox reads and writes only encrypted blobs from/to disk

Host
EF

Enclave
EF

Storage

Secure storage at the Edge using SGX

Implementation Details

• Using stable Docker release on Ubuntu 14.04

• SGX functionality prototyped using OpenSGX

• Generic edge functions for SGX impact

• OpenSGX: A qemu based software platform that provides necessary
support for SGX application programmers to readily implement and
evaluate their applications that leverage

Experimental Setup

Type Deployment scenario Hardware configuration

Mini edge Strategic placed server racks by
mobile networks operators or
enterprises - Server class
machine

Intel x86-64, 24 CPUs, 1.6 GHz, 50 GB
RAM, 4 NUMA nodes, 2 sockets, 6 cores
per socket, 2 threads per core, VT-x, L1
(i+d): 64 KB, L2: 256 KB, L3: 12 MB

Micro edge Randomly placed standalone
servers by businesses or
individuals - Desktop class
machine.

Intel x86-64, 4 CPUs, 1.6 GHz, 4 GB RAM,
VT-x, L1 (i+d): 64 KB, L2: 4096 KB

OS: Ubuntu 14.04 LTS, Ported all chosen solutions to it.
Edge function: Image processing using exactimage library, Think Instagram filters.

AirBox provisioning performance

Negligible attestation overhead (< 1ms)

SGX overhead: Generic Edge Functions

EF Benefit Aggregation Buffering Caching

Latency x x

Bandwidth x x x

Edge resource

Compute x x

Storage x x x

SGX Overhead: ABC usecases

10-15% Overhead. Host Enclave memcpy.

memcpy: OpenSGX vs. Real Hardware

Directly proportional to size of memory.

Deployment Scenarios

• In mobile networks to enable performant and secure edge computing

• In enterprise networks, as part of vCPE equipment for better price to
performance ration and securing valuable services

• In military tactical edge, where security concerns are paramount in
case of a compromise

Next steps

• Already ported in real SGX hardware
• After SGX linux SDK was released (mid 2016)

• Protocol level solutions for handling traffic over secure protocols

• Evaluate on real mobile infrastructure – 4G LTE, …

• Formal model of Edge Functions and their benefits

Summary

• Introduced the notion of Edge Functions

• Design of AirBox based on empirical analysis
• Integrated with Docker eco-system

• Simplify use of Intel SGX for EF security
• AirBox secure Interface

• Experimental demonstration
• AirBox delivers competing benefits in terms of deployment
• Speed, costs (in terms of resource consumption) and developers constraints
• EF can be secured with ~10% runtime impact.

Questions?

Contact:
Ketan Bhardwaj (ketanbj@gatech.edu)

AirBox

mailto:ketanbj@gatech.edu

