
RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads
Amir Yazdanbakhsh Gennady Pekhimenko§ Bradley Thwaites
Hadi Esmaeilzadeh Taesoo Kim Onur Mutlu§ Todd C. Mowry§

Georgia Institute of Technology Carnegie Mellon University§

Abstract

This paper aims to tackle two fundamental memory bottle-
necks: limited off-chip bandwidth (bandwidth wall) and long
access latency (memory wall). To achieve this goal, our ap-
proach exploits the inherent error resilience of a wide range
of applications. We introduce an approximation technique,
called Rollback-Free Value Prediction (RFVP). When certain
safe-to-approximate load operations miss in the cache, RFVP
predicts the requested values. However, RFVP never checks
for or recovers from load value mispredictions, hence avoid-
ing the high cost of pipeline flushes and re-executions. RFVP
mitigates the memory wall by enabling the execution to con-
tinue without stalling for long-latency memory accesses. To
mitigate the bandwidth wall, RFVP drops some fraction of
load requests which miss in the cache after predicting their
values. Dropping requests reduces memory bandwidth con-
tention by removing them from the system. The drop rate
then becomes a knob to control the tradeoff between perfor-
mance/energy efficiency and output quality.

For a diverse set of applications from Rodinia, Mars, and
NVIDIA SDK, employing RFVP with a 14KB predictor per
streaming multiprocessor (SM) in a modern GPU delivers, on
average, 40% speedup and 31% energy reduction, with aver-
age 8.8% quality loss. With 10% loss in quality, the benefits
reach a maximum of 2.4× speedup and 2.0× energy reduc-
tion. As an extension, we also evaluate RFVP’s latency ben-
efits for a single core CPU. For a subset of the SPEC CFP
2000/2006 benchmarks that are amenable to safe approxima-
tion, RFVP achieves, on average, 8% speedup and 6% energy
reduction, with 0.9% average quality loss.

1. Introduction
The disparity between the speed of processors and off-chip
memory is one of the main challenges in microprocessor de-
sign. Loads that miss in the last level cache can take hun-
dreds of cycles to deliver data. This long latency causes fre-
quent long stalls in the processor. This problem is known
as the memory wall. Modern GPUs exploit data parallelism
to hide main memory latency. However, this solution suf-
fers from another fundamental bottleneck: the limited off-
chip communication bandwidth. In fact, memory bandwidth
is predicted to be one of the main performance-limiting fac-
tors in accelerator-rich architectures as technology scales [12].
This problem is known as the bandwidth wall [47]. Fortu-
nately, there is an opportunity to leverage the inherent error re-
siliency of many emerging applications and services to tackle
these problems. This paper exploits this opportunity.

Large classes of emerging applications such as web search,
data analytics, machine learning, cyber-physical systems,
augmented reality, and vision can tolerate error in large parts
of their execution. Hence the growing interest in developing
general-purpose approximation techniques. These techniques
accept error in computation and trade Quality of Result for
gains in performance, energy, and storage capacity. These
techniques include (a) voltage over-scaling [17, 10], (b) loop
perforation [56], (c) loop early termination [6], (d) computa-
tion substitution [49, 18, 3], (e) memoization [2, 48, 5], (f)
limited fault recovery [15, 27], and (g) approximate data stor-
age [33, 51]. However, there is a lack of approximation tech-
niques that address the memory system performance bottle-
necks of long access latency and limited off-chip bandwidth.

To mitigate these memory subsystem bottlenecks, this
paper introduces a new approximation technique called
Rollback-Free Value Prediction (RFVP). The key idea is to
predict the value of the safe-to-approximate loads when they
miss in the cache, without checking for mispredictions or re-
covering from them, thus avoiding the high cost of pipeline
flushes and re-executions. RFVP mitigates the memory wall
by enabling the computation to continue without stalling for
long-latency memory accesses of safe-to-approximate loads.
To tackle the bandwidth wall, RFVP drops a certain frac-
tion of the cache misses after predicting their values. Drop-
ping these requests reduces the memory bandwidth demand
as well as memory and cache contention. The drop rate be-
comes a knob to control the tradeoff between performance-
energy and quality.

In this work, we aim to devise concepts and mechanisms
that maximize RFVP’s opportunities for speedup and en-
ergy gains, while keeping the quality degradations accept-
ably small. We provide architectural mechanisms to control
quality degradation and always guarantee execution without
catastrophic failures by leveraging programmer annotations.
RFVP shares some similarities with traditional exact value
prediction techniques [54, 32, 16, 20, 44] that can mitigate
the memory wall. However, it fundamentally differs from the
prior work in that it does not check for misspeculations and
does not recover from them. Consequently, RFVP not only
avoids the high cost of recovery, but is able to drop a fraction
of the memory requests to mitigate the bandwidth wall.

This paper makes the following contributions:
(1) We introduce a new approximation technique, Rollback-
Free Value Prediction (RFVP), that addresses two important
system bottlenecks: long memory latency and limited off-
chip bandwidth by utilizing value prediction mechanisms.
(2) We propose a new multi-value prediction architecture for
SIMD load instructions in GPUs that request multiple values

in one access. To minimize the overhead of the multi-value
predictor, we exploit the insight that there is significant value
similarity across accesses in the adjacent threads (e.g., ad-
jacent pixels in an image). Such value similarity has been
shown in recent works [48, 5]. We use the two-delta predic-
tor [16] as the base for our multi-value predictor. We perform
a Pareto-optimality analysis to explore the design space of our
predictor and apply the optimal design in a modern GPU.
(3) We provide a comprehensive evaluation of RFVP using a
modern Fermi GPU architecture. For a diverse set of bench-
marks from Rodinia, Mars, and NVIDIA SDK, employing
RFVP delivers, on average, 40% speedup and 31% energy
reduction, with average 8.8% quality loss. With less than
10% quality loss, the benefits reach a maximum of 2.4×
speedup and 2.0× energy reduction. For a subset of SPEC
CFP 2000/2006 benchmarks that are amenable to safe ap-
proximation, employing RFVP in a modern CPU achieves,
on average, 8% speedup and 6% energy reduction, with 0.9%
average quality loss.

2. Architecture Design for RFVP
2.1. Rollback-Free Value Prediction
Motivation. GPU architectures exploit data-level paral-
lelism through many-thread SIMD execution to mitigate the
penalties of long memory access latency. Concurrent SIMD
threads issue many simultaneous memory accesses that re-
quire high off-chip bandwidth–one of the main bottlenecks
for modern GPUs. Figure 1 illustrates the effects of memory
bandwidth on application performance by varying the avail-
able off-chip bandwidth in the Fermi architecture. Many of
the applications in our workload pool benefit significantly
from increased bandwidth. For instance, a system with twice
the baseline off-chip bandwidth enjoys 26% average speedup,
with up to 80% speedup for the s.srad2 application. These re-
sults support that lowering bandwidth contention can result
in significant performance benefits. RFVP exploits this in-
sight and aims to lower the bandwidth pressure by dropping
a fraction of the predicted safe-to-approximate loads, trading
output quality for gains in performance and energy efficiency.

Overview. The key idea of rollback-free value prediction
(RFVP) is to predict the values of the safe-to-approximate
loads when they miss in the cache with no checks or recovery
from misspeculations. RFVP not only avoids the high cost
of checks and rollbacks but also drops a fraction of the cache
misses. Dropping these misses enables RFVP to mitigate the
bottleneck of limited off-chip bandwidth, and does not affect
output quality when the value prediction is correct. All other
requests are serviced normally, allowing the core to benefit
from the spatial and temporal locality in future accesses.

Drop rate becomes a knob to control the tradeoff between
performance/energy gains and quality loss. Higher drop rates
cause the core to use more predicted approximate values and
avoid accessing main memory. We expose the drop rate as a
microarchitectural mechanism to the software. The compiler
or the runtime system can use this knob to control the per-

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Sp
ee
du
p

bac
kpr
op

fas
twa
lsh

gau
ssia

n

hea
rtw
all

ma
trix
mu
l

par
ticl
efil
ter

s.re
duc

e

sim
ilar
itys

cor
e

s.sr
ad2

stri
ngm

atc
h

geo
me
an

13.7 2.5 13.5 2.6 4.0 2.6
0.5 x 2.0 x 4.0 x 8.0 x Perfect MemoryBaseline Bandwidth

Figure 1: Performance improvement with different DRAM
bandwidth and perfect memory (last bar). The baseline band-
width is 173.25 GB/sec (based on the NVIDIA GTX 480 chipset
with Fermi architecture). (The N legend indicates a configura-
tion with N times the bandwidth of the baseline.)

formance/energy and quality tradeoff. Furthermore, RFVP
enables the core to continue without stalling for long-latency
memory accesses that service the predicted load misses. Con-
sequently, these cache-missing loads are removed from the
critical path of the execution. We now elaborate on the safety
guarantees with RFVP, its ISA extensions and their semantics,
and the microarchitectural integration of RFVP.
2.2. Safe Approximation with RFVP
Not all load instructions can be safely approximated. For
example, loads that affect critical data segments, array in-
dices, pointer addresses, or control flow conditionals are usu-
ally not safe to approximate. RFVP is not used to predict
the value of these loads. Furthermore, as prior work in ap-
proximation showed [50], safety is a semantic property of the
program, and language construction with programmer anno-
tations is necessary to identify safely-approximable instruc-
tions. As a result, the common and necessary practice is
to rely on programming language support along with com-
piler optimizations to identify which instructions are safe to
approximate [6, 8, 50, 17, 18]. Similarly, RFVP requires pro-
grammer annotations to determine the set of candidate load in-
structions for safe approximation. Therefore, any architecture
that leverages RFVP needs to provide ISA extensions that en-
able the compiler to mark the safely-approximable loads. Sec-
tion 2.3 describes these ISA extensions. Section 3 describes
the details of our compilation and language support for RFVP.
2.3. Instruction Set Architecture to Support RFVP
We extend the ISA with two new features: (1) approximate
load instructions, and (2) a new instruction for setting the
drop rate. Similar to prior work [17], we extend the ISA with
dual approximate versions of the load instructions. A bit in
the opcode is set when a load is approximate, thus permit-
ting the microarchitecture to use RFVP. Otherwise, the load
is precise and must be executed normally. Executing an ap-
proximate load does not always invoke RFVP. RFVP is trig-
gered only when the load misses in the cache. For ISAs with-
out explicit load instructions, the compiler marks any safe-
to-approximate instruction that can generate a load micro-op.
RFVP will be triggered only when the load micro-op misses
in the cache.

The drop rate is a knob that is exposed to the compiler to

2

Predictor

L1 Data
Cache

Load

Memory Request

WarpID/PC

Load Type

Cache Miss

Prediction

Drop Signal

Streaming
Multiprocessor

Figure 2: Microarchitecture integration of the predictor.

control the quality tradeoffs. We provide an instruction that
sets the value of a special register to the desired drop rate.
This rate is usually set once during application execution (not
for each load). More precisely, the drop rate is the percentage
of approximate cache misses that will not initiate memory ac-
cess requests, and instead trigger rollback-free value predic-
tion 1. When the request is not dropped, it will be considered
a normal cache miss, and its value will be fetched from mem-
ory.

Semantically, an approximate load is a probabilistic load.
That is, executing load.approx Reg<id>, MEMORY<address> as-
signs the exact value stored in MEMORY<address> to Reg<id>
with some probability, referred to as the probability of exact
assignment. The Reg<id> receives an arbitrary value in other
cases. Intuitively, with RFVP, the probability of exact assign-
ment is usually high for three reasons. First, our technique
is triggered only by cache misses. Approximate loads which
hit in the cache (usually a common case) return the correct
value. Second, our automated profiling phase helps to elimi-
nate any loads from the approximate list which are destructive
to quality. Finally, even in the case of a cache miss, the value
predictor may generate a correct value prediction. Our mea-
surements with 50% drop rate show that, across all the GPU
applications, the average probability of exact assignment to
the approximate loads is 71%. This probability ranges from
43% to 88%. These results confirm the effectiveness of us-
ing cache misses as a trigger for RFVP. However, we do not
expect the compiler to reason about these probabilities.
2.4. Integrating RFVP in the Microarchitecture
As Figure 2 illustrates, the value predictor supplies the data
to the core when triggered. The core then uses the data as
if it were supplied by the cache. The core commits the load
instruction without any checks or pipeline stalls associated
with the original miss. In the microarchitecture, we use a
simple pseudo-random number generator, a Linear Feedback
Shift Register (LFSR) [39], to determine when to drop the
request based on the specified drop rate.

In modern GPUs, each Streaming Multiprocessor (SM)
contains several Stream Processors (SP) and has its own ded-
icated L1. We augment each SM with an RFVP predictor
that is triggered by its L1 data cache misses. Integrating
the RFVP predictor with SMs requires special consideration

1Another option is to enable dropping after a certain percentage of all cache
accesses including hits. Such a policy may be desirable for controlling error
in multi-kernel workloads.

Source
Code

Annotated
Source
CodeProgrammer

Test
Inputs

GPU

Intermediate
Binary SM

Predictor

Code annotations identify
safe-to-approximate operations

Focuses approximation only
on performance-critical loads

Removes loads which severely
degrade output fidelity

Compilation

ExecutionFirst Profiling Stage Programmer Safety Analysis Second Profiling Stage

Test
Inputs

GPU

Final
Binary

Figure 3: RFVP Workflow. Programmer annotations guarantee
safety, while profiling assists output quality and performance.

because each GPU SIMD load instruction accesses multiple
data elements for multiple concurrent threads. In the case of
an approximate load miss, if the predictor drops the request,
it predicts the entire cache line. The predictor supplies the re-
quested words back to the SM, and also inserts the predicted
line in the L1 cache. If RFVP did not update the cache line,
the subsequent safe-to-approximate loads to the same cache
line would produce another miss. Since RFVP does not pre-
dict nor drop all missing safe-to-approximate loads, the line
would be requested from memory in the next access. Due to
the temporal locality of the cache line accesses, RFVP would
not be able to effectively reduce bandwidth consumption.

Since predicted lines may be written to memory, we re-
quire that any data accessed by a precise load must not share a
cache line with data accessed by approximate loads. The com-
piler is responsible for allocating objects in memory such that
precise and approximate data never share a cache line. We ac-
complish this by always requiring that the compiler allocate
objects in memory at cache line granularity. Approximate
data will always begin at a cache line boundary, and will be
padded to end on a cache line boundary. Thus, we can ensure
that any data predictions will not contaminate precise load
operations. The same stipulation has been set forth in several
recent works in approximate computing, such as EnerJ [50]
and Truffle [17].

The coalescing logic in the SMs handles memory diver-
gence and serializes the divergent threads. Since RFVP is
only triggered by cache misses that happen after coalescing,
RFVP is agnostic to memory divergence.

3. Language and Software Support for RFVP
Our design principle for RFVP is to maximize the opportu-
nities for gains in performance and energy efficiency, while
limiting the adverse effects of approximation on output qual-
ity. We develop a profile-directed compilation workflow,
summarized in Figure 3. In the first step, the workflow
uses the programmer-supplied annotations to determine the
loads that are safe to approximate and will not cause catas-
trophic failures if approximated. The second step identifies
the performance-critical safe-to-approximate loads. These
safe-to-approximate loads are the ones that provide a higher
potential for performance improvement. These performance-
critical safe-to-approximate loads are the candidate for ap-
proximation with RFVP. However, approximating all of the
candidate loads may significantly degrade output quality.
Thus, we develop a third step that identifies which of the can-

3

1 2 3 4 5 6 7 8 9 10
Number of Loads

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f
Lo

ad
 M

is
se

s
backprop
fastwalsh
gaussian
heartwall
matrixmul
particlefilter
reduce
similarityscore
srad2
stringmatch

Figure 4: Cumulative distribution function (CDF) plot of the
LLC load cache misses. A point (x, y) indicates that y percent
of the cache misses are caused by x distinct load instructions.

didate safe-to-approximate loads need to be excluded from
the RFVP-predictable set to keep the quality degradation to
low and acceptable levels. This step also determines the drop
rate.2

3.1. Providing Safety Guarantees
The first step is to ensure that loads which can cause safety vi-
olations are excluded from RFVP. Any viable approximation
technique, including ours, needs to provide strict safety guar-
antees. That is to say applying approximation should only
cause graceful quality degradations without catastrophic fail-
ures, e.g., segmentation faults or infinite loops.

Safety is a semantic property of a program [50, 8]. There-
fore, only the programmer can reliably identify which instruc-
tions are safe to approximate. For example, EnerJ [50] pro-
vides language constructs and compiler support for annotat-
ing safe-to-approximate operations in Java. We rely on sim-
ilar techniques. The programmer uses the following rule to
ensure safety. The rule of thumb is that it is usually not safe
to approximate array indices, pointers, and control flow con-
ditionals. However, even after excluding these cases to ensure
safety, as the results confirm, RFVP still provides significant
performance and energy gains because there are still enough
performance critical loads that are safe to approximate.

Figure 5 shows code snippets from our application to illus-
trate how approximating load instructions can lead to safety
violations. In Figure 5a, it is not safe to approximate loads
from ei, row, d_iS[row] variables that are used as array indices.
Approximating such loads may lead to array out-of-bounds
accesses and segmentation faults. In Figure 5b, it is unsafe to
approximate variable d_Src, which is a pointer. Approxima-
tion of this variable may lead to memory safety violations and
segmentation faults. In Figure 5c, it is not safe to approximate
the ei_new and in2_elem variables because they affect control
flow. Approximating such loads may lead to infinite loops
or premature termination. In many cases, control flow in the
form of if-then-else statement can be if-converted to data flow.
Therefore, it might be safe to approximate the loads that af-
fect the if-convertible control flow conditionals. Figure 5d
illustrates such a case. Loads for both value and newValue are
safe-to-approximate even though they affect the if condition.

3.2. Targeting Performance-Critical Loads
The next step is a profiling pass that identifies the subset of
the loads that cause the largest percentage of cache misses.
As prior work has shown [13], and our experiments corrobo-
rate, only a few load instructions cause the large majority of
the total cache misses. Figure 4 illustrates this trend by show-
ing the cumulative distribution function of the LLC cache
misses caused by distinct load instructions in the GPU. As
Figure 4 shows, in all of our GPU applications except one,
six loads cause more than 80% of the misses. We refer to
these loads as the performance-critical loads. Clearly, fo-
cusing rollback-free value prediction on these loads will pro-
vide the opportunity to eliminate the majority of the cache
misses. Furthermore, the focus will reduce the predictor size
and consequently its overheads. Therefore, this step provides
a subset of this list that contains the most performance-critical
and safe-to-approximate loads as candidates for approxima-
tion. Note that the programmer annotation identify the safe-
to-approximate loads and not the profiling.
3.3. Avoiding Significant Quality Degradations
The first two steps provide a small list of safe and
performance-critical loads. However, approximating all these
loads may lead to significant quality degradation. Therefore,
in the last step, we perform a quality profiling pass that identi-
fies the approximable loads that significantly degrade quality.
This pass examines the output quality degradation by individ-
ually approximating the safe loads. A load is removed from
the approximable list if approximating it individually leads to
quality degradation higher than a programmer-defined thresh-
old. Furthermore, any approximation technique may pro-
long convergence for iterative algorithms. We guard against
this case by removing safe-to-approximate load instructions
which increase run time when approximated.

Finally, the compiler uses a simple heuristic algorithm to
statically determine the highest drop rate given a statistical
quality requirement and a set of representative inputs. Of the
set of representative inputs, half are used for profiling and the
rest are used for validation. The algorithm works as follows:
(1) select a “moderate” drop rate around 25% as the baseline;
(2) run the application with test data to determine the output
error at that drop rate; (3) if the quality degradation is too
large, decrease the drop rate by some small delta, if the qual-
ity degradation is permitted to be higher, increase the drop
rate by the delta; (4) repeat steps 2 and 3 until reaching the
maximum drop rate that statistically satisfies the quality ex-
pectation.

Alternatively, we can determine the drop rate dynami-
cally at run time using techniques such as those described
in SAGE [49]. SAGE uses computation sampling and occa-
sional redundant execution on the CPU to dynamically mon-
itor and control approximation. While setting the drop rate
dynamically may provide an advantage of more adaptive er-
ror control, it also has a disadvantage of some additional over-
heads. Ultimately, we considered this tradeoff and decided to
2We use GPGPU-Sim [7] for profiling the GPU applications.

4

void srad2{
N = d_c[ei];
S = d_c[d_iS[row] + d_Nr * col];
W = d_c[ei];
E = d_c[row + d_Nr * d_jE[col]];
}

(a) A snippet from srad

float *d_Src = d_Input + base;
for(int pos = threadIdx.x;

pos < N; pos += blockDim.x)
{

s_data[pos] = d_Src[pos];
}

(b) A snippet from fastwalsh

while(ei_new < in2_elem){
row = (ei_new+1)

% d_common.in2_rows - 1;
col = (ei_new+1)

/ d_common.in2_rows + 1;
}

(c) A snippet from heartwall

if (value - newValue < .5f)
{
result = newValue;

}
else
result = newValue + 1;

(d) A snippet from particlefilter

Figure 5: Code examples with different safety violations.

use a static drop rate based on profiling information in our
evaluation, but using such a dynamic quality control scheme
is a viable alternative.

Either technique results in a statistical guarantee that the
output error will be within the bounds set by the program-
mer. Although these techniques do not strictly guarantee qual-
ity for any program input, they provide confidence that the
program will satisfy the quality expectation if the inputs are
drawn from the same distribution used for profiling. Such
statistical guarantees are commensurate with other state-of-
the-art techniques in approximate computing [35, 49, 56, 6].
Even dynamic quality control only provides statistical guar-
antees. Generally, providing formal quality guarantees for
approximation techniques across all possible inputs is still
an open research problem. Altogether, these steps provide
a compilation workflow that focus RFVP on the safe-to-
approximate loads with the highest potential–both in terms
of performance and effect on the output quality.

4. Value Predictor Design for RFVP
One of the main design challenges for effective rollback-
free value prediction is devising a low-overhead fast-learning
value predictor. The predictor needs to quickly adapt to the
rapidly-changing value patterns in every approximate load
instruction. There are several modern exact value predic-
tors [20, 44]. We use the two-delta stride predictor [16] due
to its low complexity and reasonable accuracy as the base
for multi-value prediction. We have also experimented with
other value prediction mechanisms such as dfcm [20], last
value [31] and stride [54]. Empirically, two-delta provides a
good tradeoff between accuracy and complexity. We choose
this scheme because it only requires one addition to perform
the prediction and a few additions and subtractions for learn-
ing. It also requires lower storage overhead than more accu-
rate context-sensitive alternatives [20, 44]. However, this pre-
dictor cannot be readily used for multi-value prediction which
is required for GPUs. Due to the SIMD execution model in
modern GPUs, the predictor needs to generate multiple con-
current predictions for multiple concurrent threads.

Below, we first describe the design of the base predictor,
and then devise an architecture that performs full cache line
multi-value GPU prediction.
4.1. Base Predictor for RFVP
Figure 6 illustrates the structure3 of the two-delta predic-
tor [16], which we use as a base design for rollback-free value
prediction in GPUs. The predictor consists of a value history

3For clarity, Figure 6 does not depict the update logic of the predictor.

+

Last
Value Stride1 Stride2

{PC}

PredictionHash

FP

Figure 6: Structure of the base two-delta [16] predictor.

table that tracks the values of the load instructions. The table
is indexed by a hash of the approximate load’s PC. We use
a hash function that is similar to the one used in [20]. Each
row in the table stores three values: (1) the last precise value,
(2) Stride1, and (3) Stride2. The last value plus Stride1 makes
up the prediction. When a safe-to-approximate load misses
in the cache but is not dropped, the predictor updates the last
value upon receiving the data from lower level memory. We
refer to the value from memory as the current value. Then,
it calculates the stride, the difference between the last value
and the current value. If the stride is equal to the Stride2, it
stores the stride in Stride1. Otherwise Stride1 will not be up-
dated. The predictor always stores the stride in Stride2. The
two-delta predictor only updates the Stride1, which is the pre-
diction stride, if it observes the same stride twice in a row.
This technique lowers the rate of mispredictions. However,
for floating point loads, it is unlikely to observe two match-
ing strides. Floating point additions and subtractions are also
costly. Furthermore, RFVP is performing approximate value
predictions for error-resilient applications that can tolerate
small deviations in floating point values. Considering these
challenges and the approximate nature of the target applica-
tions, our two-delta predictor simply outputs the last value
for floating point loads. We add a bit to each row of the pre-
dictor to indicate whether or not the corresponding load is a
floating point instruction.
4.2. Rollback-Free Value Predictor for GPUs
Here we expound the RFVP predictor design for multi-value
prediction in GPUs, where SIMD loads read multiple words.

GPU predictor structure. The fundamental challenge in
designing the GPU predictor is that a single data request is
a SIMD load that must produce values for many concurrent
threads. A naive approach to performing value prediction in
GPUs is to replicate the single value predictor for each con-
current thread. For example, in a typical modern GPU, there
may be as many as 1536 threads in flight during execution.
Therefore, the naive predictor would require 1536 two-delta
predictors, which of course is impractical. Fortunately, while
each SIMD load requires many predicted data elements, ad-
jacent threads operate on data that has significant value simi-
larity. In other words, we expect that the value in a memory

5

LVW0 Two-Delta (Th0-Th15) LVW16 V FP Tag LRU

Hash

Two-Delta (Th16-Th31)

{WarpID,PC}

ThreadID_Bit[5]
Active[ThreadID]

V: Valid Bit (1 bit), FP: Floating Point Entry (1 bit), Tag:{WarpID, PC} (38 bits), LRU: LRU Bits (6 bits)

W31W0

00 01 10 11
0
1

00 01 10 11
0
1

Set0

SetN

Prediction for Th0-Th15 Prediction for Th16-Th31

Figure 7: Structure of the multi-value predictor for RFVP in
GPUs. The GPU predictor consists of two two-delta and
two last value predictors. The GPU predictor is also set-
associative to reduce the conflicts between loads from differ-
ent active warps. It produces predictions for full cache lines.

location accessed by thread N will be similar to the values ac-
cessed by threads N-1 and N+1. This insight drives our value
predictor design.

In many GPU applications, the adjacent threads in a warp
process data elements with some degree of value similarity,
e.g. pixels of an image. We also leverage the fact that pre-
dictions are only approximations and the application can tol-
erate small errors. We exploit these opportunities and design
a predictor that consists of only two parallel specialized two-
delta predictors. As Figure 7 shows, the Two-Delta (Th0–Th15)
structure generates predictions for threads with ThreadID=0–
15. Similarly, the Two-Delta (Th16-Th32) structure generates
predictions for threads with ThreadID=16–31. The GPU pre-
dictor is indexed by the hash of the WarpID plus the load PC.
This combination uniquely identifies the load. We always up-
date the predictor with the value of the active thread with the
lowest threadID. The GPU predictor also performs full cache
line prediction. Each cache line in our design has 32 4-byte
words.

We add a column to each two-delta predictor that tracks the
last value of the word0 and word16 in the cache line being ac-
cessed by the approximate load. When predicting the cache
line, all the words that are accessed by the active thread will
be filled by the pair of two-delta predictors. However, there
might be less than 32 active threads, leaving “gaps” in the pre-
dicted cache line. These gaps are filled in with the value of
word0 and word16. The last value of word0 may fill words0−15
and the last value of word16 may fill words16−31. To reduce
the conflicts between loads from different active warps, we
make the GPU predictor set associative with LRU replace-
ment policy. As Figure 7 shows, for each row in the predictor,
we keep the corresponding load’s {WarpID, PC} as the row tag.
The load values will only be predicted if their {WarpID, PC}
matches the row tag. For measurements, we use a predictor
that has 192 entries, is 4-way set associative, and consists of
two two-delta predictors and two last value predictors. Sec-
tion 6 provides a detailed design space exploration for the
GPU predictor. Note that the none of the predictors store the
full cache line. Instead, the predicted cache line is inserted in
the cache. Each predictor only tracks the value of the active

Table 1: GPU applications, input data, and quality metrics.

Name Suite Domain Quality
Metric

Profiling Set
(10 of)

Test Set
(10 of)

Approx
Loads

backprop Rodinia Machine Learning Avg Relative
Error

A Neural Network
with 65,536 Neurons

A Neural Network with
262,144 Neurons (10, 2)

fastwalsh NVIDIA SDK Signal Processing Image Diff 128x128-Pixel Color
Image

512x512-Pixel Color
Image (2, 1, 4)

gaussian NVIDIA SDK Image Processing Image Diff 128x128-Pixel Color
Image

512x512-Pixel Color
Image 5

heartwall Rodinia Medical Imaging Avg
Displacement

A Frame of
Ultrasound Image

Five Frames of
Ultrasound Images 10

matrixmul Mars Scientific NRMSE Two 128x128
Matrices Two 512x512 Matrices 8

particle
filter Rodinia Medical Imaging Avg

Displacement
256x256x10 Cube
with 100 Particles

512x512x10 Cube
with 2,000 Particles (2, 3)

similarity
score Mars Web Mining NRMSE One HTML File Five HTML Files 8

s.reduce Rodinia Image Processing NRMSE 128x128-Pixel Color
Image

512x512-Pixel Color
Image 2

s.srad2 Rodinia Image Processing NRMSE 128x128-Pixel Color
Image

512x512-Pixel Color
Image 4

string
match Mars Web Mining Missmatch

Rate 4 MB File 16 MB File 1

G
PU

 A
pp

lic
at

io
ns

thread with the lowest ID.

5. Experimental Methodology
We use a diverse set of applications, cycle-accurate simula-
tion, and low-level energy modeling to evaluate RFVP in a
modern GPU. This section details our experimental method-
ology and Section 6 presents the results.
5.1. Experimental Methodology for GPUs
Applications. As Table 1 shows, we use a diverse set of
GPU applications from the Rodinia [11], NVIDIA SDK [1],
and Mars [22] benchmark suites to evaluate RFVP with the
GPU architectures. Columns 1-3 of Table 1 summarize
these applications and their domains. The applications are
amenable to approximation and represent a wide range of do-
mains including pattern recognition, machine learning, image
processing, scientific computing, medical imaging, and web
mining. One of the applications, srad takes an inordinately
long time to simulate to completion. Therefore, we evalu-
ate the two kernels that dominate srad’s runtime separately.
These kernels are denoted as s.reduce and s.srad2 in Table 1.
We use NVCC 4.2 from the CUDA SDK to compile the ap-
plications. Furthermore, we optimize the number of thread
blocks and number of threads per block of each kernel for our
simulated hardware.

Quality metrics. Column 4 of Table 1 lists each applica-
tion’s quality metric. Each application-specific error metric
determines the application’s output quality loss as it under-
goes RFVP approximation. Using application-specific qual-
ity metrics is commensurate with other work on approxima-
tion [17, 50, 6, 18, 3]. To measure quality loss, we compare
the output from the RFVP-enabled execution to the output
with no approximation. For similarityscore, s.reduce, s.rad2 and
matrixmul, which generate numerical outputs, we use the nor-
malized root-mean-square error (NRMSE) as the quality met-
ric. The backprop application solves a regression problem and
generates a numeric output. The regression error is measured
in relative error. Since gaussian and fastwalsh output images,
we use the image difference RMSE as the quality metric. The
heartwall application finds the inner and outer walls of a heart
from 3D images and computes the location of each wall. We
measure the quality loss using the average Euclidean distance
between the corresponding points of the approximate and pre-

6

Table 2: GPU microarchitectural parameters.
Processor: 700 MHz, No. Compute Units: 30, SMs: 16, Warp Size: 32, SIMD
Width: 8, No. of Threads per Core: 1024, L1 Data Cache: 16KB, 128B line, 4-
way, LRU; Shared Memory: 48KB, 32 banks; L2 Unified Cache: 768KB, 128B
line, 8-way, LRU; Memory: GDDR5, 924 MHz, FR-FCFS, 4 memory channels,
Bandwidth: 173.25 GB/sec

cise output. We use the same metric for particlefilter, which
computes locations of particles in a 3D space. Finally, we use
the total mismatch rate for stringmatch.

Profiling and load identification. As Table 1 shows in
columns 5 and 6, we use distinct data sets for profiling and
final measurements. Doing so avoids biasing our results to-
wards a particular data set. We use smaller data sets for pro-
filing and larger datasets for final measurements. Using larger
data sets ensures that the simulations capture all relevant ap-
plication behavior. The final column of Table 1 lists the num-
ber of approximate loads, which are identified in the profiling
phase. For some applications, such as backprop, fastwalsh, and
particlefilter, we identify approximable loads for each kernel
individually. In this case we list the number of loads for each
kernel as a tuple in Table 1 (e.g., (2, 1, 4) for fastwalsh).

Cycle-accurate simulations. We use the GPGPU-Sim
cycle-accurate simulator version 3.1 [7]. We modified the
simulator to include our ISA extensions, value prediction, and
all necessary cache and memory logic to support RFVP. We
use one of GPGPU-Sim’s default configurations that closely
models an NVIDIA GTX 480 chipset with Fermi architecture.
Table 2 summarizes the microarchitectural parameters of the
chipset. To account for random events in the simulations, we
run each application 10 times and report the average results.
We also run the applications to completion.

Energy modeling and overheads. To measure the energy
benefits of RFVP, we use GPUWattch [25], which is inte-
grated with GPGPU-Sim. RFVP comes with overheads in-
cluding the prediction tables, arithmetic operation, and al-
location of the predicted lines in the cache. Our simulator
changes enable GPUWattch to account for the caching over-
heads. We estimate the prediction table read and write energy
using CACTI version 6.5 [38]. We extract the overhead of
arithmetic operations from McPAT [26]. Our energy evalua-
tions use a 40 nm process node and 700 MHz clock frequency.
Furthermore, we have synthesized the LFSR and the hash
function and incorporated the energy overheads. The default
RFVP prediction table size is 14 KB per SM and the GPU
consists of 16 SMs. The GPU off-chip memory bandwidth is
173.25 GB/sec.

6. Experimental Results
This section empirically evaluates the tradeoffs between per-
formance, energy, and quality when RFVP is employed in a
modern GPU. This section also includes a Pareto analysis of
the RFVP predictor design.

1
1.11

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee
du
p 

ba
ckp
rop

fas
twa
lsh

ga
us
sia
n

he
art
wa
ll

ma
trix
mu
l

pa
rtic
lefi
lte
r

s.r
ed
uc
e

sim
ilar
ity
sco
re

s.s
rad
2

ge
om
ean

str
ing
ma
tch

2.2 2.4
Error 1% Error 3% Error 5% Error 10%

(a) Speedup

En
er

gy
 R

ed
uc

tio
n 

1.0

1.1

1.2

1.3

1.4
1.9 2.01.6

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(b) Energy Reduction

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

B
an

dw
id

th
  

C
on

su
m

pt
io

n
R

ed
uc

tio
n 2.3 1.9

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(c) Bandwidth Consumption Reduction
Figure 8: GPU (a) performance improvement, (b) energy reduc-
tion, and (c) bandwidth consumption reduction for 1%, 3%, 5%,
and 10% quality degradation.
6.1. GPU Measurements
6.1.1. Performance, Energy, Bandwidth, and Quality Fig-
ure 8a shows the speedup with RFVP for 1%, 3%, 5%, and 10%
quality degradation. We have explored this tradeoff by setting
different drop rates, which is RFVP’s knob for quality con-
trol. The baseline is the default architecture without RFVP.
Figures 8b and 8c illustrate the energy reduction and the re-
duction in off-chip bandwidth consumption, respectively.

As Figures 8a and 8b show, RFVP yields, on average, 36%
speedup and 27% energy reduction with 10% quality loss. The
speedup is as high as 2.2× for matrixmul and 2.4× for similari-
tyscore with 10% quality loss. The maximum energy reduction is
2.0× for similarityscore. RFVP yields these benefits despite ap-
proximating less than 10 static performance-critical load instruc-
tion per kernel. The results show the effectiveness of our profiling
stage in focusing approximation where it is most beneficial.

With 5% quality loss, the average performance and energy
gains are 16% and 14%, respectively. These results demon-
strate RFVP’s ability to navigate the tradeoff between quality
and performance-energy based on the user requirements.

Even with a small quality degradation of 1%, RFVP yields sig-
nificant speedup and energy reduction in several cases, including
fastwalsh, particlefilter, similarityscore, s.srad2. In particular, the
benefits are as high as 22% speedup and 20% energy reduction
for particlefilter with 1% quality loss.

Comparing Figures 8a, 8b, and 8c shows that the benefits
strongly correlate with the reduction in bandwidth consump-
tion. This strong correlation suggests that RFVP is able to
significantly improve both GPU performance and energy

7

1.0
1.1
1.2
1.3
1.4
1.5
1.6 2.

2
3.
3

4.
2

8.
3

1.
7

9.
1

2.
4

3.
8

4.
7

1.
6

1.
8

1.
9

2.
0

2.
2

3.
5

Drop Rate = 12.5% Drop Rate = 25% Drop Rate = 50% Drop Rate = 60% Drop Rate = 75% Drop Rate = 80% Drop Rate = 90%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean

2.
1

1.
7

1.
6

1.
9

2.
5

2.
9

3.
9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

Sp
ee
du
p

(a) Speedup

1.0
1.1
1.2
1.3
1.4
1.5
1.6 1.

9
2.

5
2.

9
3.

9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

1.
7

En
er

gy
 R

ed
uc

tio
n

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean

(b) Energy Reduction

Q
ua

lit
y

D
eg

ra
da

tio
n 100%

80%
60%
40%
20%
0%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch average

(c) Quality Degradation

Figure 9: Exploring (a) speedup, (b) energy reduction, and (c) quality trade-offs with different drop rates.

consumption by predicting load values and dropping memory
access requests. The applications for which the bandwidth
consumption is reduced the most (matrixmul, similarityscore),
are usually the ones that benefit the most from RFVP. One
notable exception is s.reduce. Figure 8c shows that RFVP re-
duces this application’s bandwidth consumption significantly
(up to 90%), yet the performance and energy benefits are
relatively modest (about 10%). However, Figure 1 illustrates
that s.reduce yields less than 40% performance benefit even
with unlimited memory bandwidth. Therefore, the benefits
from RFVP are predictably limited even with significant
bandwidth reduction. This case shows that the applications’
sensitivity to off-chip communication bandwidth is an
important factor in RFVP’s ability to achieve performance
and energy benefits. Also, Figure 8 shows no benefits for
stringmatch with less than 10% quality degradation. This case
is an interesting outlier which we discuss in greater detail in
the next subsection. To better understand the sources of the
benefits, we perform an experiment in which RFVP fills the
L1 cache with predicted values, but does not drop the corre-
sponding memory accesses. In this scenario, RFVP yields
only 2% performance improvement and increases energy
consumption by 2% on average for these applications. These
results further suggest that the source of RFVP’s benefits
come primarily from reduced bandwidth consumption, which
is a large bottleneck in GPUs that hide latency with many-
thread execution. We study the effects of RFVP on single-
core CPUs that are more latency sensitive in Section 7.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
 o

f L
oa

ds

Exact Value
Approximate Value

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

Figure 10: Fractions of load instruction that receive exact and
approximate values during execution. The drop rate is 25%.

All applications but one benefit considerably from RFVP due to
reduced off-chip communication. Particularly, the energy benefits
are due to reduced runtime and fewer costly data fetches from
off-chip memory. Overall, these results confirm the effectiveness
of rollback-free value prediction in mitigating the bandwidth bottle-
neck for a diverse set of GPU applications.

6.1.2. Sources of Quality Degradation To determine the ef-
fectiveness of our value prediction, we measure the portion
of load operations which ultimately return imprecise values.
Figure 10 shows the result of these measurements. The re-
sults show that on average only 2% (max 5.4%) of all dynamic
load instructions return imprecise values. Thus, the large ma-
jority of all dynamic loads return correct values. The predic-
tion accuracy is relatively low, yet commensurate with prior
works on value prediction [16, 20, 9]. However, our profil-
ing phase focuses approximation on the safe-to-approximate
loads that do not significantly degrade output quality. These
observations help justify the low quality degradation shown
in Figure 9c.

8

6.1.3. Quality Tradeoffs with Drop Rate Drop rate is
RFVP’s knob for navigating the quality tradeoffs. It dictates
what percentage of the missed approximate loads to predict
and drop. For example, with 12.5% rate, RFVP drops one
out of eight approximate load misses. We examine the effect
of this knob on performance, energy, and quality by sweep-
ing the drop rate from 12.5% to 90%. Figure 9 illustrates the
effect of drop rate on speedup (Figure 9a), energy reduction
(Figure 9b), and quality degradation (Figure 9c).

As the drop rate increases, so do the performance and energy
benefits. However, the benefits come with some cost in output
quality. On average, speedup ranges from 1.07× with 12.5% drop
rate, to as much as 2.1× with 90% drop rate. Correspondingly,
the average energy reduction ranges from 1.05× to 1.7× and
the quality degradation ranges from 6.5% to 31%.

Figure 9c shows that in all but one case, quality degrada-
tion increases slowly and steadily as the drop rate increases.
The clear exception is stringmatch. It searches a file with
a large number of strings to find the lines that contain a
search word. This application’s input data set only contains
English words with very low value locality. Furthermore, the
application output is the indices of the matching lines, which
provides a very low margin for error. Either the index is
correctly identified or the output is wrong. The quality metric
is the percentage of the correctly matched lines. During
search, even if a single character is incorrect, the likelihood
of matching the words and identifying the correct lines is low.

Even though stringmatch shows 61% speedup and 44% energy
reduction with 25% drop rate, its quality loss of 60% is not ac-
ceptable. In fact, stringmatch is an example of an application that
cannot benefit from RFVP due to low error tolerance.

As Figure 9 shows, each application tolerates the effects
of RFVP approximation differently. For some applications,
such as gaussian and fastwalsh, as the rate of approximation
(drop rate) increases, speedup, energy reduction and quality
loss gradually increase. In other applications such as matrix-
mul and similarityscore, the performance and energy benefits
increase sharply while the quality degradation increases grad-
ually. For example in similarityscore, increasing the drop rate
from 25% to 50% yields a jump in speedup (from 28% to 59%)
and energy reduction (from 10% to 57%), while quality loss
only rises 2%.

Those applications, which experience a jump in benefits, are
usually the ones that show the most sensitivity to the available
off-chip communication bandwidth (see Figure 1).

6.1.4. Design Space Exploration and Pareto Analysis The
two main design parameters of the GPU predictor are the
number of parallel predictors and the number of entries in
each predictor. We vary these two parameters to explore the
design space of the GPU predictor and perform a Pareto anal-
ysis to find the optimal configuration. Figure 11 shows the re-
sult of this design space exploration. The x-axis captures the
complexity of the predictor in terms of size in KBytes. The
y-axis is the Normalized Energy×Normalized Delay×Error

2260 20 40 60 80 100 120 140 160 180 200

0.2

.04

.08

.12

.16

Predictor Size (KB)

N
or

m
al

iz
ed

 E
ne

rg
y
✕

N

or
m

al
iz

ed
 D

el
ay

 ✕
 E

rro
r

RFVP GPU Predictor (192E,2Th) ≈ 14 KB

(128E,2Th)(32E,2Th) (192E,2Th) (64E,8Th)
(192E,32Th)

(64E,2Th) (32E,8Th)
(128E,32Th)(64E,32Th)(192E,8Th)(128E,8Th)(32E,32Th)

Figure 11: GPU predictor design space exploration and Pareto
analysis. A predictor configuration of (192E,2Th), which is our
default configuration, is the most Pareto optimal design point.
In this graph, lower and left is better. The normalization base-
line is the execution without RFVP. The (xE,yTh) represents
the configuration with y parallel predictors each with x entries.
All the predictors are 4-way set associative.
across all the GPU applications. The normalization baseline
is the execution without RFVP. This product simultaneously
captures the three metrics of interest, namely performance,
energy, and quality. The optimal predictor minimizes size
(left on the x-axis), energy dissipation, execution delay, and
error (lower on the y-axis). In Figure 11, (xE,yTh) represents
a configuration with y parallel predictors each with x entries.
All the predictors are 4-way set associative.

In Figure 11, the knee of the curve is the most cost-effective
point. This Pareto-optimal design is the (192E,2Th) configuration,
which requires 14 KB of storage, and is our default configuration.

This design space exploration shows that the number
of entries in the prediction table has a clear effect on
the potential benefits. Increasing the number of entries
from 32 to 192 provides 1.4× improvement in Normalized
Energy×Normalized Delay×Error. A higher number of
entries lowers the chance of destructive aliasing in the
prediction table that leads to eviction of value history
from the prediction tables. However, adding more par-
allel predictors beyond a certain point does not provide
any significant benefit and wastes area. With fewer pre-
dictors, RFVP relies more on the value locality across
the threads, which is a common case in GPU applications.

Exploiting value locality reduces RFVP’s area overhead without
significantly degrading output quality.

Finally, we compare the benefits of RFVP with the benefits
that can be achieved by simply enlarging the caches by the
RFVP predictor size. We found that, for the studied applica-
tions, the increased L1 size in each SM results in 4% perfor-
mance improvement and 1% energy savings on average. The
increased L2 size yields only 2% performance improvement
and 1% energy savings on average. RFVP provides signifi-
cantly higher benefits with the same overhead by trading out-
put quality for performance and energy gains.

7. CPU Experiments
To understand the effectiveness of of RFVP in a system where
latency is the primary concern, we investigate the application

9

Table 3: CPU applications, input data, and quality metrics.
Name Suite Domain Quality

Metric Profiling Set Test Set Approx
Loads

bwaves CFP2006 Scientific NRMSE Test Set Reference Set 26

cactusADM CFP2006 Scientific NRMSE Test Set Reference Set 28

fma3D CFP2000 Scientific NRMSE Test Set Reference Set 27

gemsFDTD CFP2006 Scientific NRMSE Test Set Reference Set 23

soplex CFP2006 Optimization NRMSE Test Set Reference Set 21

swim CFP2000 Scientific NRMSE Test Set Reference Set 23

C
PU

 A
pp

lic
at

io
ns

of RFVP in a single core CPU system.
7.1. Methodology
Applications. As Table 3 shows, we evaluate RFVP for
CPUs using an approximable subset of SPEC CFP2000/2006.
The applications come from the domains of scientific com-
puting and optimization. As the work in [55] discusses, the
CFP2000/2006 benchmarks have some natural tolerance to
approximation. When these floating point applications dis-
cretize continuous-time inputs, the resulting data is naturally
imprecise. We compile the benchmarks using gcc version 4.6.

Quality metrics. As discussed below, our subset of the
SPEC applications produce numerical outputs. Therefore, we
use NRMSE to measure the quality loss. For swim, the out-
put consist of all diagonal elements of the velocity fields of
a fluid model. In fma3d, the outputs are position and veloc-
ity values for 3D solids. In bwaves, the outputs define the
behavior of blast waves in 3D viscous flow. The cactusADM
benchmark outputs a set of coordinate values for space-time
in response to matter content. The soplex benchmark solves
a linear programming problem and outputs the solution. Fi-
nally, GemsFDTD outputs the radar cross section of a perfectly
conducting object using the Maxwell equations.

Profiling and load identification. As in the GPU evalua-
tions, we use smaller (SPEC test) data sets for profiling and
larger (SPEC reference) data sets for the performance, energy,
and quality evaluations. We use Valgrind with the Cachegrind
tool [42] for both the profiling and final quality of result eval-
uation. We modify Cachegrind to support rollback-free value
prediction. Valgrind is fast enough to both perform the profil-
ing and run our applications until completion with reference
data sets. Thus, we use Valgrind plus Cachegrind for pro-
filing, approximate loads selection, and final quality assess-
ments.

Cycle-accurate simulations. We implement RFVP in the
MARSSx86 cycle-accurate simulator [43]. The baseline
memory system includes a 32 KB L1 cache, a 2 MB LLC,
and external memory with 200-cycle access latency. In mod-
ern processors, the LLC size is often 2 MB × number of cores.
Thus, we use a 2 MB LLC for our single core experiments.
Furthermore, the simulations accurately model port and inter-
connect contention at all levels of the memory hierarchy. The
core model follows the Intel Nehalem microarchitecture [37].
Because simulation until completion is impractical for SPEC
applications with reference data sets, we use Simpoint [21]
to identify the representative application phases. We perform
all the measurements for the same amount of work in the ap-

Table 4: CPU microarchitectural parameters.
Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store Queue: 48-
entry/32-entry, ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical Reg-
isters: 256/256, Branch Predictor: Tournament 48 KB, BTB Sets/Ways: 1024/4,
RAS Entries: 64, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB En-
tries: 128/256; L1: 32 KB I$, 32 KB D$, 64B line, 8-Way, Latency: 2 cycles; L2: 2
MB, 64B line, 8-Way, Latency: 20 cycles; Memory Latency: 200 cycles

Table 5: CPU L2 MPKI comparison with and without RFVP.
bwaves cactusADM fma3d gemsFDTD soplex swim

Baseline 11.6 5 1.5 23.1 26.5 3.9
RFVP 2.2 3.9 0.6 10.3 21.4 2.4

plication using markers in the code. Table 4 summarizes the
microarchitectural parameters for the CPU simulations. As
in the GPU evaluations, we run each application 10 times and
report the average to account for random events in simulation.
Energy modeling and overheads. We use McPAT [26] and
CACTI [38] to measure energy benefits while considering all
the overheads associated with RFVP. The caching overheads
are incorporated into the statistics that Marssx86 produces for
McPAT. As in the GPU case, we estimate the prediction table
overhead using CACTI version 6.5, and extract the arithmetic
operations overhead from McPAT. The energy evaluations use
a 45 nm process, 0.9 Vdd and 3.0 GHz core clock frequency.
7.2. Results
Figure 12 shows the speedup, energy reduction, and quality
degradation with RFVP. The baseline is the execution with
no approximation. In this case, RFVP aims to mitigate the
long memory access latencies. Thus, RFVP predicts all miss-
ing approximate load requests but does not drop any of them.
We experimented with dropping requests in the CPU experi-
ments. However, there was no significant benefit since these
single-threaded CPU workloads are not sensitive to the off-
chip communication bandwidth.

As Figure 12 shows, RFVP provides 8% average speedup and
6% energy reduction with a single-core CPU. The average quality
loss is 0.9%.

While the CPU benefits are lower than the GPU benefits, the
CPU quality degradations are also comparatively low. The
GPU applications in our workload pool are more amenable
to approximation than the CPU applications. That is, a
larger fraction of the performance-critical loads are safe to
approximate in GPU workloads. Nevertheless, Figure 12
shows that bwaves gains 19% speedup and 16% energy
reduction with only 1.8% quality degradation.

To better understand the CPU performance and energy
benefits, we examine MPKI reduction in the L2 cache, and
present the results in Table 5. RFVP reduces MPKI by en-
abling the core to continue without stalling for memory to
supply data. Usually, a larger reduction in MPKI leads to
larger benefits. For example, for bwaves the L2 MPKI drops
from 11.6 to 2.2, leading to 19% speedup and 16% energy re-
duction.

To understand the low quality degradations of the CPU ap-
plications with RFVP, we also study the distribution the frac-
tion of the load values that receive approximate and precise
values during execution. The trends are similar to the ones
that we observed for the GPU experiment (see Figure 10). In

10

1.0

1.1

1.2

1.3

1.4

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

Sp
ee
du
p

(a) Speedup

error
1.8%
0.30%
1.60%
0.50%

1.00

1.05

1.10

1.15

1.20

En
er

gy
 R

ed
uc

tio
n

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

(b) Energy Reduction

2

g

Q
ua

lit
y

D
eg

ra
da

tio
n100%

80%

60%

40%

20%

0%
1.8% 0.3% 1.6% 0.5% 1.8% 0.2% 0.9%

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

(c) Quality Degradation
Figure 12: Employing RFVP in a single-core CPU. (a) speedup, (b) energy reduction, and (c) quality degradation.

the CPU case, on average only 1.5% of all the dynamic loads
receive imprecise values.

Due to the overall low rate at which load instructions return im-
precise data to the CPU, the applications experience low quality
degradation in the final output. In fact, RFVP in the CPU case
achieves performance and energy gains that are one order of
magnitude greater than the quality loss.

The value prediction accuracy in the CPU case is on par
with prior work [16, 20, 9] and the GPU case. Once again,
the profiling phase focuses approximation on the safe-to-
approximate loads that do not significantly degrade the output
quality. These results show that RFVP effectively mitigates
the long memory access latency with a low degradation in
quality.

8. Related Work
General-purpose approximate computing. Recent work
explored a variety of approximation techniques. However,
approximation techniques that tackle memory subsystem per-
formance bottlenecks are lacking. This paper defines a new
technique that mitigates the memory subsystem bottlenecks
of long access latency and limited off-chip bandwidth.

The existing techniques include (a) approximate storage
designs [33, 51] that trades quality of data for reduced
energy [33] and larger capacity [51], (b) voltage over-
scaling [17, 10, 40, 23, 24], (c) loop perforation [56, 36,
46], (d) loop early termination [6], (e) computation substi-
tution [49, 6, 4, 53], (f) memoization [2, 48, 5], (g) lim-
ited fault recovery [15, 27, 28, 14, 36, 19, 61], (h) preci-
sion scaling [50, 59], and (i) approximate circuit synthe-
sis [45, 60, 34, 41, 29, 30]. Most of these techniques (1) op-
erate at the coarse granularity of a loop body or a functional
call; (2) are agnostic to and unaware of micro-architectural
events; (3) and are explicitly invoked by the code. In con-
trast, rollback-free value prediction (1) operates at the fine-
granularity of a single load instruction and (2) is triggered by
microarchitectural events, (3) without direct and explicit run-
time software invocation. In this context, we discuss the most
related work.

EnerJ [50] is a language for approximate computing. Its
corresponding architecture, Truffle [17], leverages only volt-
age overscaling, floating point bitwidth reduction, and re-
duced DRAM refresh. We borrow the programming con-
structs and ISA augmentation approach from EnerJ and Truf-
fle, respectively. However, we define our own novel microar-
chitectural approximation technique. EnerJ and Truffle re-
duce energy consumption in CPUs, while we improve both
performance and energy efficiency in GPUs as well as CPUs.
The work in [33] and [51] design approximate DRAM and

Flash storage blocks. Flikker [33] reduced the DRAM re-
fresh rate when approximate data is stored in main memory.
The work in [5] uses hardware memoization to reduce redun-
dant computation in GPUs. However, while this work elim-
inates execution within the SMs, it still requires data inputs
to be read from memory. Some bandwidth savings may arise
by eliminating these executions, but our work fundamentally
differs in that it attacks the bandwidth wall directly by com-
pletely eliminating memory traffic. The work in [51] uses
faulty flash blocks for storing approximate data to prolong
its lifetime. This work also aims to improve the density and
access latency of flash memory using multi-level cells with
small error margins. The technique in [53] exploits approxi-
mation to mitigate branch and memory divergence in GPUs.
In case of branch divergence, authors force all the threads
to execute the most popular path. In case of memory di-
vergence, they force all the threads to access the most com-
monly demanded memory block. Their work is agnostic to
cache misses and does not leverage value prediction nor it
drops memory requests. In contrast, our novel approxima-
tion technique predicts the value of the approximate loads that
miss in the cache without ever recovering from the mispredic-
tion. Further, we reduce the bandwidth demand and memory
contention by dropping a fraction of the approximate load re-
quests after predicting their value. Our approach can be poten-
tially combined with many of the prior works on approxima-
tion since it exclusively focuses on mitigating off-chip com-
munication limitations.

Value prediction. RFVP takes inspiration from prior work
that explores exact value prediction [54, 32, 62, 16, 57, 20,
44]. However, our work fundamentally differs from these
techniques because it does not check for mispredictions and
does not rollback from them. Furthermore, we drop a frac-
tion of the load requests to reduce off-chip memory traffic.
Among these techniques, Zhou et al. [62] use value predic-
tion to speculatively prefetch cache misses that are normally
serviced sequentially. They used value prediction to break de-
pendence chains where one missing load’s address depends
on the previous missing load’s value. However, they do not
allow the speculative state to contaminate the microarchitec-
tural state of the processor or the memory. Since their tech-
nique only initiates prefetches, they do not need to recover
from value mispredictions. Our technique, however, is not
used for prefetch requests. Instead, the predictor directly
feeds the predicted value to the processor as an approxima-
tion of the load value.

Recently, in a concurrent submission, San Miguel et
al. [52], proposed a technique which utilizes approximate

11

load handling via value prediction without checks for mis-
prediction to address the memory latency bottleneck. Concur-
rently to [52], Thwaites et al. [58] proposed in a short paper a
similar idea: predict the values of safe-to-approximate loads
to reduce average memory access time in latency-critical ap-
plications. However, these works only use approximate load
handing to solve latency bottlenecks in CPU systems. Our
work differs from both works in the following ways: (1) we
evaluate our techniques in a GPU environment, thus showing
that RFVP is an effective tool for mitigating both latency and
bandwidth constraints, (2) we drop a portion of missing load
requests, thus addressing the fundamentally different bottle-
neck of limited off-chip bandwidth, and (3) we utilize the in-
herent value similarity of accesses across adjacent threads to
develop a multi-value predictor capable of producing values
for many simultaneously-missing loads with low overhead.

9. Conclusions
This paper introduces Rollback-Free Value Prediction
(RFVP) and demonstrates its effectiveness in tackling two ma-
jor memory system bottlenecks–limited off-chip bandwidth
and long memory access latency. RFVP predicts the values of
safe-to-approximate loads only when they miss in the cache
with no checks or recovery from misspeculations. We utilize
programmer annotations to guarantee safety, while a profile-
directed compilation workflow applies approximation only to
the loads which provide the most performance improvement
with the least quality degradation. We extend and use a light-
weight and fast-learning prediction mechanism, which is ca-
pable of adapting to rapidly-changing value patterns between
individual loads with low hardware overhead.

RFVP uses these predicted values both to hide the mem-
ory latency and ease bandwidth limitations. The drop rate be-
comes a knob that controls the tradeoff between quality of re-
sults and performance/energy gains. Our extensive evaluation
shows that RFVP for GPUs yields average 40% performance
increase and 31% energy reduction with average 8.8% qual-
ity loss. Thus, RFVP achieves significant energy savings and
performance improvement with limited loss of quality. The
results support the effectiveness of RFVP in mitigating the
two memory subsystem bottlenecks.

References
[1] NVIDIA corporation. NVIDIA CUDA SDK code samples. [Online].

Available: https://developer.nvidia.com/gpu-computing-sdk.
[2] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization

for floating-point multimedia applications,” IEEE Trans. Comput.,
vol. 54, no. 7, 2005.

[3] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Es-
maeilzadeh, A. Hassibi, L. Ceze, and D. Burger, “General-purpose
code acceleration with limited-precision analog computation,” in
ISCA, 2014.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe, “Petabricks: a language and compiler for algo-
rithmic choice,” in PLDI, 2009.

[5] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Eliminating
redundant fragment shader executions on a mobile gpu via hardware
memoization,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 529–540. Available: http:
//dl.acm.org/citation.cfm?id=2665671.2665748

[6] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in
PLDI, 2010.

[7] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in ISPASS, 2009.

[8] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in OOP-
SLA, 2013.

[9] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “Cava: Using
checkpoint-assisted value prediction to hide l2 misses,” ACM Trans-
actions on Architecture and Code Optimization, vol. 3, no. 2, 2006.

[10] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V.
Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC architec-
tures based on probabilistic CMOS (PCMOS) technology,” in DATE,
2006.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

[12] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip het-
erogeneous computing: Does the future include custom logic, FPGAs,
and GPUs?” in MICRO, 2010.

[13] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen, “Speculative precomputation: Long-range
prefetching of delinquent loads,” in ISCA, 2001.

[14] M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerg-
ing workloads and silicon reliability trends,” in SELSE, 2009.

[15] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA,
2010.

[16] R. J. Eickemeyer and S. Vassiliadis, “A load-instruction unit for
pipelined processors,” IBM Journal of Research and Development,
vol. 37, no. 4, 1993.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.

[19] Y. Fang, H. Li, and X. Li, “A fault criticality evaluation framework of
digital systems for error tolerant video applications,” in ATS, 2011.

[20] B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential
fcm: Increasing value prediction accuracy by improving table usage
efficiency,” in HPCA, 2001.

[21] G. Hamerly, E. Perelman, and B. Calder, “How to use simpoint to
pick simulation points,” ACM SIGMETRICS Performance Evaluation
Review, vol. 31, no. 4, 2004.

[22] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
mapreduce framework on graphics processors,” in PACT, 2008.

[23] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

[24] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in DATE,
2010.

[25] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture. ACM, 2013, pp. 487–498.

12

https://developer.nvidia.com/gpu-computing-sdk.
http://dl.acm.org/citation.cfm?id=2665671.2665748
http://dl.acm.org/citation.cfm?id=2665671.2665748

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures,” in MICRO,
2009.

[27] X. Li and D. Yeung, “Application-level correctness and its impact on
fault tolerance,” in HPCA, 2007.

[28] X. Li and D. Yeung, “Exploiting application-level correctness for low-
cost fault tolerance,” J. Instruction-Level Parallelism, 2008.

[29] A. Lingamneni, C. Enz, K. Palem, and C. Piguet, “Synthesizing par-
simonious inexact circuits through probabilistic design techniques,”
ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, 2013.

[30] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V. Palem,
and C. Piguet, “Algorithmic methodologies for ultra-efficient inexact
architectures for sustaining technology scaling,” in CF, 2012.

[31] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in MICRO, 1996.

[32] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” in ASPLOS, 1996.

[33] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning,”
in ASPLOS, 2011.

[34] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic syn-
thesis under general error magnitude and frequency constraints,” in
ICCAD, 2013.

[35] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
reliability-and accuracy-aware optimization of approximate computa-
tional kernels,” in Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Appli-
cations. ACM, 2014, pp. 309–328.

[36] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010.

[37] D. Molka, D. Hackenberg, R. Schone, and M. Muller, “Memory Per-
formance and Cache Coherency Effects on an Intel Nehalem Multi-
processor System,” in PACT, 2009.

[38] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

[39] M. Murase, “Linear feedback shift register,” 1992, US Patent.
[40] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-

tic processors,” in DATE, 2010.
[41] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A technique for

automated behavioral synthesis of approximate computing circuits,”
in DATE, 2014.

[42] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007.

[43] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full sys-
tem simulator for x86 CPUs,” in DAC, 2011.

[44] A. Perais and A. Seznec, “Practical Data Value Speculation for Future
High-end Processors,” in HPCA, 2014.

[45] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in DATE, 2014.

[46] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou, “Patterns
and statistical analysis for understanding reduced resource comput-
ing,” in Onward!, 2010.

[47] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
scaling,” in ISCA, 2009.

[48] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: pattern-
based approximation for data parallel applications,” in ASPLOS, 2014.

[49] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
self-tuning approximation for graphics engines,” in MICRO, 2013.

[50] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

[51] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in MICRO, 2013.

[52] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in MICRO, 2014.

[53] J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant gpu applications,” Multime-
dia, IEEE Transactions on, vol. 15, no. 2, 2013.

[54] Y. Sazeides and J. E. Smith, “The predictability of data values,” in
MICRO, 1997.

[55] S. Sethumadhavan, R. Roberts, and Y. Tsividis, “A case for hy-
brid discrete-continuous architectures,” Computer Architecture Let-
ters, vol. 11, no. 1, pp. 1–4, Jan 2012.

[56] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[57] R. Thomas and M. Franklin, “Using dataflow based context for accu-
rate value prediction,” in PACT, 2001.

[58] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh,
O. Mutlu, J. Park, G. Mururu, and T. Mowry, “Rollback-free value
prediction with approximate loads,” in Proceedings of the 23rd inter-
national conference on Parallel architectures and compilation, 2014,
pp. 493–494.

[59] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Quality programmable vector processors for ap-
proximate computing,” in MICRO, 2013.

[60] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC, 2012.

[61] V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in SELSE, 2006.

[62] H. Zhou and T. M. Conte, “Enhancing memory-level parallelism via
recovery-free value prediction,” IEEE Trans. Comput., vol. 54, 2005.

13

	Introduction
	Architecture Design for RFVP
	Rollback-Free Value Prediction
	Safe Approximation with RFVP
	Instruction Set Architecture to Support RFVP
	Integrating RFVP in the Microarchitecture

	Language and Software Support for RFVP
	Providing Safety Guarantees
	Targeting Performance-Critical Loads
	Avoiding Significant Quality Degradations

	Value Predictor Design for RFVP
	Base Predictor for RFVP
	Rollback-Free Value Predictor for GPUs

	Experimental Methodology
	Experimental Methodology for GPUs

	Experimental Results
	GPU Measurements
	Performance, Energy, Bandwidth, and Quality
	Sources of Quality Degradation
	Quality Tradeoffs with Drop Rate
	Design Space Exploration and Pareto Analysis

	CPU Experiments
	Methodology
	Results

	Related Work
	Conclusions

