Automatic intrusion recovery
with system-wide history

Taesoo Kim

MIT CSAIL



Current focus of system security:
preventing attacks

* System hardening tools/techniques

- (e.g.,) Firewall, AntiVirus ...

Vo
-

I .
I a;mﬂyf/%(




My work on preventing attacks
(proactive security)

StealthMem [Security "12]
Morula [Oakland '"14]
UserFS [Security '10]
Mbox [ATC '13]

VMsec [APSys "13]




My work on preventing attacks
(proactive security)

StealthMem [Security "1 24
Morula [Oakland '14]
UserFS [Security "10]
Mbox [ATC '13]

VMsec [APSys "13]




My work on preventing attacks
(proactive security)

* StealthMem [Security 124
* Morula [Oakland '14]
UserFS [Security '10

* Mbox [ATC "13]

VMsec [APSys "13]

-~




Attackers routinely compromise
computer systems

Here's how Google Palestine was hacked; local root
server confirms repair

As other outlets are reporting, Google.ps, Google's landing page was hacked
vesterday, to protest the naming conventions on Google Maps. Four hackers
named Cold z3ro, Haml3t, Sas, and Dr@g took responsibility, naming
themselves as members of Hackteach, a Palestinian website that features tech

® Comment 0

news and hacker forums.

Google Owned
No News Is a Good News

Cold 23re - Hamidl - 588 - Dritg
From Palestine: W are the Best of the Rest

CO( )gle

uncle google we say hi from palestine to remember you that the country in google map not called israel. its
called Palestine



Attackers routinely compromise
computer systems

Here's how Google Palestine was hacked; local root

server confirms repair

h Avnaust 2 =

As other outlets are reporting, Google.ps, Google's landing page was has
vesterday, to protest the naming conventions on Google Maps. Four ha
named Cold z3ro, Haml3t, Sas, and Dr@g took responsibility, naming

themselves as members of Hackteach, a Palestinian website that featur

news and hacker forums.

Google Owned

No News Is a Good News

Cold 23r0 - Hami3 - Sas - Drilg
From Palestine: W are the Best of the Rest

G()Ugle

Facebook remote code execution
bug nets researcher $33,500

Swummary: The social network's payout represents the largest bug bounty it has ever rewarded

a researcher with.

E E‘; By Michael Lee | January 23, 2014 -- 03:41 GMT (19:41 PST)

Facebook has paid out its largest bug bounty ever of $33,500 to a security researcher who could have
potentially taken full control of a server within its network.

Since 2012, Brazilian computer engineer Reginaldo Silva has been toying with vulnerabilities in OpenlD,
the open technology that allows users to use an account with an existing identity provider to sign in to
other compatible services. For example, a user can trust Symantec's Personal Identity Portal to create an
OpenID account, then use that one account to sign in to WordPress.

In the event that users forget their passwords, Facebook itself can use an OpenlD provider to verify the
identity of the user. As part of the communication process, Facebook communicates with the provider,
receiving an XML document and parsing it to verify that it is indeed the correct provider.

uncle google we say hi from palestine to remember you that the country in google map not called israel. its

called Palestine



Attackers routinely compromise
computer systems

Here's how Google Palestine was hacked; local root

server confirms repair Facebook remote code execution
pe A bug nets researcher $33,500

As other outlets are reporting, Google.ps, Google's landing page was ha Summary: The social network's payout represents the largest bug bounty it has ever rewarded
yesterday, to protest the naming conventions on Google Maps. Four ha @ researcherwith.

named Cold z3ro, Haml3t, Sas, and Dr@g took responsibility, naming E ﬁ; By Michael Lee | January 23, 2014 - 03:41 GMT (13:41 PST)

themselves as members of Hackteach, a Palestinian website that featur i‘

news and hacker forums.
Facebook has paid out its largest bug bounty ever of $33,500 to a security researcher who could have
potentially taken full control of a server within its network.

Google Owned

Sinea 2N12 RArazilian camnnter anainear Daninalda Silva has haan tavina with wolnarshilitiag in OpeniD,
e "“’ .'f:.f:i:f“ GitHub hacked, millions of projects at risk of o *
being modified or deleted

Sebastian Anthony :r to verify the

the provider,
GitHub, one of the largest repositories P

-
glthUb of commercial and open source

SOCIAL CODING

Google

uncle google we say hi from palestine to remember you that the country in ¢
called Palestine

software on the web, has been hacked.
Over the weekend, developer Egor
Homakowv exploited a gaping
vulnerability in GitHub that allowed him
(or anyone else with basic hacker
know-how) to gain administrator access
to projects such as Ruby on Rails, Linux,
and millions of others. Homakov
Share This Article could’ve deleted the entire history of
projects such as jQuery, Node js,
Reddit, and Redis.



Attackers routinely compromise
computer systems

Here's how Google Palestine was hacked; local root
server confirms repair Facebook remote code execution

by Nina Curley, August 27, 2013 Resident Shield: New virus detected

bug nets rq

Swummary: The social netw(

yesterday, to protest the naming conventions on Google Maps. Four ha @ researcherwith.
named Cold z3ro, HamlI3t, Sas, and Dr@g took responsibility, naming -

.. . - Description:  This backdoor arrives as attachment to email messages med by
themselves as members of Hackteach, a Palestinian website that featur | S R Eri Thiisa by ok

E another malware or a malicious user. This is a backdoo onent of

the Darkmoon RAT (Remate Admi ion Tool), via this backdoor

news and haCker forums- hackers attempt to contral wour PC.
Facebook has paid out its large

potentially taken full control of

EE} Warning! New virus detected

ine o ola’ ine o
As other outlets are reporting, Google.ps, Google's landing page was has T ———

Security risk: | E—
g ; By Michael Lee | Ja Infected file:  C:AWINDOWSisystem32icompact exe

|F? Recommended: Please click "Remove A" button to heal &l
@ ]J infecked files and protect your PC

Google Owned

Cimea 2N1 72 Rrazilian coamnoitar

GitHub hacked, millions of projects at risk of .~ "*

tal to create an

No News Is a Good News

Cokd 23ra - Hamidl - Sas - Drilg

PaputSties Wsum s s being modified or deleted

@ warning / Sebastian Anthony 21 Comments r to verify the
. ) [t provider,
11
Warning! Virus detected # WARNING!II Quick System Scan Results gl
&
o
« Harmful and malicious software detected
Threat detected:  Trojan-PSW.Win32.Antigen.a Oljline Scanner detected programs t_hat mary ;Umprumise_yuur
privacy ar damage vour computer, Understanding alert levels,
Security Risk:
Infected file: CaDocuments and Settings\administratofiRecent,.. Marne Alert level
- [rse) T i
Description: This Trojan named ANTIGEN.EXE scans system files for '!Efr Backdoor:Win32/NTRoot  High »
your Internet passwords to steal and misuse them. It '@' Backdoor:Win3z2/fSivuxa. High
also scans yvour data for mare private information: phone .@, Trojan.Caiijing High =
“
Share This Article -~
Recommended =
Pleas all* button ko erase all infected files and protect your PC
Remove Al l [ Ignore




Compromises inevitable

* Programmers write buggy code

- A single bug can lead to system compromises

* Admins mis-configure policies

* Users choose weak, guessable passwords

10



Compromises inevitable

Need both proactive security mechanism
and reactive recovery mechanism!

Recovering integrity is required to
continue operating!



Existing recovery tools are
limited

e Anti-virus tools

- Only repair from predictable attacks

* Backup tools

- Attack may be detected days or weeks later

- Restoring from backup discards all changes

12



Existing recovery tools are
limited

e Anti-virus tools

- Only repair from predictable attacks

Admins spend days or weeks manually
tracking down all effects of the attack
with no guarantee that everything is cleaned up!



Example: kernel.org

* A main repository of code for the Linux kernel

- Also host open source projects like Git and Android

The Linux Kernel Archives

Frequently Asked Questions

E - Latest Stable Kernel:

Protocol Location 3.0.3
HTTP httpjwww.kernel.org/puby/

FTP ftp: .kernel.org/pub

BSYMC rsync:ffrsync kernel.org/pubyf

linux-next: next-20110826 2011-08-26 [Patch] [vView Patch] [Gitweb]

linux-next: next-20110826 2011-08-26 [Patch] [View Patch] [Gitweb]

snapshot: 3.1-rc3-git6 2011-08-27 [Patch] [View Patch]

mainline: 3.1-rc3 2011-08-22 [Full Source] [Patch] [View Patch] [Gitweb] [Changelog]
stable: 3.0.3 2011-08-17 [Full Source] [Patch] [view Patch] [ViewInc.] [Gitweb] [Changelog]
stable: 2.6.39.4 2011-08-03 [Eull Source] [Patch] [View Patch] [ViewInc.] [Gitweb] [Changelog]
stable: 2.6.38.8 2011-06-03 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.6.37.6 2011-03-27 [Rull Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
longterm: 2.6.35.14 2011-08-01 [Full Source] [Patch] [View Patch] [ViewInc.] [Gitweb] [Changelog]
longterm: 2.6.34.10 2011-06-26 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
longterm: 2.6.33.18 2011-08-16 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
longterm: 2.6.32.45 2011-08-16 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
longterm: 2.6.27.59 2011-04-30 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]

Changelogs are pravided by the kemel authors directly. Please danit write the w ebmaster about them.
Customize the patch viewer

14



Example: kernel.org attack

* Detected that kernel.org had been compromised

- Noticed error messages from a program that
administrators never installed themselves

2011 Aug. ?7? eug. 28"\ Sept. 1% Oct. 3™

15



Example: kernel.org attack

* Investigated the attack for three days

- The initial break-in likely happened a month ago
(Trojaned SSHD was modified around that time)

2011 e Aug. 28 Sept. 1% Oct. 3"

16



Example: kernel.org attack

* Fully re-installed all servers with the latest backup

- Rollback is only safe option (too many suspects to clean up)

- Took a month for security experts to fully recover

2011 Aug. ?? Aug. 28% Sept. 1% Oct. 3™

Only safe opt is rollback:

Trojaned SSHD
— everything suspicious

17



Example: kernel.org attack

* Fully re-installed all servers with the latest backup

- Rollback is only safe option (too many suspects to clean up)

- Took a month for security experts to fully recover

2011 Aug. ?? Aug. 28% Sept. 1% Oct. 3™

Site down
for recovery!

Only safe opt is rollback:

Trojaned SSHD
— everything suspicious

18



Problems in today's repair
strategies

* Manual analysis & recovery is time consuming

2011 Aug. ?7? Aug. 28% Sept. 1% Oct. 3™
—.—ﬁ-—‘-—-—-—-—-—‘—»

19



Problems in today's repair
strategies

* Manual analysis & recovery is time consuming

* Rollback ends up losing changes

2011 Aug. ?7? Aug. 28% Sept. 1% Oct. 3™
- @R @ E EEE¥E

t

20



Problems in today's repair
strategies

* Manual analysis & recovery is time consuming
* Rollback ends up losing changes

* No guarantees of complete removal of attack

2011 Aug. ?7? Aug. 28% Sept. 1% Oct. 3™

?u.l 0 1 \
Ldaa

2



Problems in today's repair
strategies

How can we design automate recovery system
that preserves legitimate changes and
provides guarantees?

2011 Aug. ?7? Aug. 28% Sept. 1% Oct. 3™

W//{/{///%V////////////////Wﬂ N N NN
7... I I
Laa



ldea: keep complete history

of computations
* Inputs/outputs on time-line

Time

Inputs Outputs




ldea: keep complete history

of computations
* Represent computer in fine-grained details




ldea: keep complete history
of computations

New opportunities to track down attacks!

Time




Approach: change our past with

history of computations
* Recovery = cancel the initial attack input

Attack




Approach: change our past with

history of computations
* Recovery = cancel the initial attack input

* Reconstruct states as if attack never happened!

Attack




Approach: change our past with

history of computations
* Recovery = cancel the initial attack input

* Reconstruct states as if attack never happened!

Ny "CRE T

Turn problem of manual recovery into
problem of manipulating history!

N

o




Challenges in real systems

» Existing systems are not designed for history

- Implicit dependencies and time-line

» Attacks can be anywhere in the history

- Attacks are often detected days or weeks later

* History can not be changed in some cases

- External dependencies: spam sent out

29



Contribution:
built real-world systems

* Automatic recovery
— Operating system: Retro [OSDI'10]
- Web application: Warp [SOSP'11]
- Distributed web services: Aire [SOSP'13]

« Automatic detection of attacks
- Web application: Poirot [OSDI'1 2]

30



Today's talk

* Automatic recovery

— Operating system: Retro [OSDI'10]

« Automatic detection of attacks
- Web application: Poirot [OSDI'1 2]

* Future research agenda

31



Today's talk

4 .
* Automatic recovery

_~ Operating system: Retro [O5DI"10]

« Automatic detection of attacks
- Web application: Poirot [OSDI'1 2]

* Future research agenda

32



Example attack scenario

Attacker g

Admin

Alice

33



Example attack scenario

e Adds new account for himself

(— modifies /etc/passwd)

\S@( * Installs trojaned pdflatex
Attacker g
Admin

Alice

34



Example attack scenario

* Adds new account for himself
(— modifies /etc/passwd)
* Installs trojaned pdflatex

Attacker « Adds new account for Alice
(= modifies /etc/passwd)

Admin

Alice

35



Example attack scenario

* Adds new account for himself
(— modifies /etc/passwd)
* Installs trojaned pdflatex

Attacker . adds new account for Alice
(= modifies /etc/passwd)
e Logs in via SSH Admin

(= SSHD reads /etc/passwd)
* Runs trojaned pdf latex

il

Alice
36



History strawman 1:
Taint tracking

pdflatex LaTeX
binary ﬂ process
Alice's
Alice's shell
Attacker passwd login Alice's
process file PDF file
Alice's
paper
adduser
alice

Admin's

shell
37/




History strawman 1:
Taint tracking

* Track dependencies between processes & files

pdflatex LaTeX
binary &VPFOCGSS
Alice's \
, Alice's %  shell
Attacker login Alice's
process \ PDF file
Alice's
paper
adduser
alice

Admin's

shell
38




History strawman 1:
Taint tracking

e (Given attack, track down all affected files —
restore those files from earlier backup

pdflatex LaTeX
AttaCk binary process
\ w Alice's \
Alice's _~% shell
passwd _—~* |ogin Alice's
file \
/ / Alice's
paper
- adduser
alice
Admin's
shell

39

PDF file



History strawman 1:
Taint tracking

* (Given attack, track down all affected files =
restore those files from earlier backup

Alice's
PDF file

Alice's
paper

Admin's
shell
40



History strawman 1:
Taint tracking

e (Given attack, track down all affected files —
restore those files from earlier backup

PR

pdflatex LaTeX
5 b blnary ’ process
\ / Alice's \
AN Alice's «_~"" shell
Attacker passwd / login Alice's
process ‘ file ) \
/ /~ of Alice's
paper
: adduser
alice
Admin's
shell

471

PDF file



Problem with taint tracking:

false positives
e Lost Alice's account and files that are not

actually affected by attacker!

Y 4
,'pdflatex“ LaTeX

', binary /process
\\\\5~. ////)'~ . Alice's \l
o T Alice's s_~"" shell
Attacker i 1 ' Alice's
process ' file . \ PDF file
L4
‘{// ‘//”~ ) Alice's
paper

adduser
alice

Admin's
shell

4/



History strawman 2:
VM replay

Time

Virtual machine

43



History strawman 2:
VM replay

INputs

Outputs

Virtual machine

44



Periodic VM checkpoints

INputs

Outputs

Virtual machine

45



Step 1: identify attack input

INputs

Outputs
Attack input

Virtual machine

46



Step 2: rollback to the latest
checkpoint

INputs

Outputs
Attack input

Virtual machine

47



Step 3: replay non-attack inputs

INputs

Outputs

Attack input \k

Virtual machine

48



Problems with VM replay

* VM replay is expensive

- Repairing a week-old attack needs a week for replay

* Past inputs are meaningless to new system

- Non-determinism: new SSH crypto keys ...

- Deterministic replay won't work

49



Retro's approach:
Action history graph

* Represent fine-grained history

- Includes kernel objects, system calls, function calls, ...

- Assume tamper-proof kernel, storage

50



Retro's approach:
Action history graph

* Represent fine-grained history

- Includes kernel objects, system calls, function calls, ...

- Assume tamper-proof kernel, storage

* Rollback objects directly affected by attack

- Avoid the false positives of Taint tracking

» Selectively re-execute indirectly affected actions

- Avoid the expensive VM replay

57



Action history graph:
Objects represent files, processes

Attacker's password adduser Admin's

procesw file Aliceﬂ sheng e

52



Action history graph:
Actions represent execution (syscall)

Attacker's password adduser Admin's

Drocess file Alice shell e

53



Action history graph:
Actions have dependencies

Attacker's password adduser Admin's
Drocess file Alice shell

54

Time



Action history graph:
Actions have dependencies

Attacker's password adduser Admin's
Drocess file Alice shell

55

Time



Action history graph:
Actions have dependencies

Attacker's password adduser Admin's
process file Alice shell

56

Time



Action history graph:
Objects have checkpoints

Attacker's password adduser Admin's

process file Alice shell e

S5/



Step 1: find attack action

Attacker's password adduser Admin's

process file Alice shell e

58



Step 2: rollback affected objects

Attacker's password adduser Admin's

Drocess file Alice shell e

59



Step 3: skip attack action

Attacker's password adduser Admin's

process file Alice shell e

60



Step 4: redo non-attack actions

Attacker's password adduser Admin's

process file Alice shell e

o)



Repeat step 2: rollback objects

Attacker's password adduser Admin's

Drocess file Alice shell e

62



Repeat step 3: redo actions

Attacker's password adduser Admin's

process file Alice shell e

Key advantage over
VM replay:

Re-run only adduser,
not entire VM.

63



Repeat step 3: redo actions

Attacker's password adduser Admin's

process file Alice shell e

64



Repeat step 3: redo actions

Attacker's password adduser Admin's

process file Alice shell e

Key advantage over

Taint tracking:

Attacker removed,
Alice account preserved

~

65



Challenge: how to avoid
re-executing everything?

Attacker's password adduser Admin's

| . Time
Drocess file Alice shell

Exit status affects shell,
which affects sshd, and so on... I

Naive process-level re-execution

still re-executes entire system! |

06



Observation: Admin's shell
was not affected

 “"Adduser alice"” succeed as before

- This is what Admin wanted to do

- |f failed, need to re-execute Admin's shell

6/



Example 1:
exit status to shell unchanged

Attacker's password adduser Admin's
process file Alice shell

c )
reaq (pro& ore

(off:
Set dats ) I
Write 3
Koﬁseﬁ data

-

63



Predicates:
avoid equivalent re-execution

Attacker's password adduser Admin's

process file Alice shell e

Check if adduser
succeed as before?

Skip the re-run
of admin's shell

69



Example 2:
user's password unchanged

Attacker's password
pDrocess file

70



Observation: Alice's SSHD
was not affected

* Alice's SSHD checked only Alice's account
- This is what Alice's SSHD wanted to do

- If Alice's account changed, need to re-execute SSHD

/1



Refinement:
exploits high-level semantics

Attacker's password getpwnam) Alice's

Drocess file function SSHD Time

/2



Refinement:
exploits high-level se

—
getpwnam)

function

Attacker's password
pDrocess file

/3




Refinement:
exploits high-level semantics

Attacker's password getpwnam) Alice's

Drocess file function SSHD Time

74



Refinement:
exploits high-level semantics

Attacker's password getpwnam) Alice's

process file function SSHD Time

Rerun getpwnam()
instead of SSHD

/5



Refinement:
exploits high-level semantics

Attacker's password getpwnam) Alice's

process file function SSHD Time

Predicate:

Check if return
same Alice's passwd?

Skip the re-run
of Alice's SSHD



Quick summary:
Retro's approach

* Action history graph: represent history in detail

* Two techniques to minimize re-execution:

- Predicates: skips equivalent computations

- Refinement: re-executes fine-grained actions

77



Challenge:
external dependencies

* What if the attack was externally-visible?

- Spam sent out ...

- Hard in general case = ask for user's decision

* Help users to understand repaired state

- (e.g.) notify user spam email was sent out ...

/8



Compensating action:
notify changes in terminal output

[redo] cat ~/.ssh/authorized keys

/A --- old I
| +++ new

l @@ -1,3 +1,2 @@

I  ssh-rsa AAAAB3NzaClyc2EAAAABIw... vagrant

| -ssh-rsa AAAAB3NzaClyc2EAAAADAQ... attacker

I  ssh-rsa AAAAB3NzaClyc2EAAAAr2... new pubkey

\ Y

79



Userspace

Retro implementation

Action history graph

Processes

$3 ¢

Kernel

L §

Linux kernel

Retro module

File system
(checkpts)




Retro implementation

Repair
Controller

Managers

(e.g., fs, terminal )

Action history graph

Processes

$3 ¢

81

L §

Linux kernel

Retro module

File system
(checkpts)




plementation

-----------------------

Processes

$3 ¢

Repair
Managers
Repair 5 bt el )
Controller 3 (e.g., Ts, termina ..):
Userspace Action history graph
Kernel

32

L §

Linux kernel

Retro module

File system
(checkpts)




Demo: recovering from
inadvertently installed virus

* Backtracking tool
o Selective re-execution

* Compensating action

83



Problem: detecting an entry
point of attacks is hard

e How to find one-month-old attack?

* Too much information

- Manual analysis is time-consuming

34



Observation: security patch
renders attack harmless

* Escape URL arguments for firefox

// slider.c

! ! 7
sprintf(cmd, “firefox %s”, evt->uri));

slider sh | slider sh |
firefox virus firefox virus

VS X

Unpatched a5 Patched



Approach: comparing both
histories to detect past attacks

* How can we get history of patched execution?

- Replay inputs after applying security patches

- Different history — potential threats

slider sh | slider sh |
firefox virus firefox virus

VS X

Unpatched 36 Patched



Approach: comparing both
histories to detect past attacks

Turn manual effort of auditing process
into computational problem!
(patch-based auditing)

slider sh | slider sh |
firefox virus firefox virus

VS X

Unpatched g7 Patchea



Challenge: performance

* Re-executing is costly for busy computer

- Auditing requests — re-executes all requests again

- Auditing one month = takes another month!

383



Three techniques developed for
partial re-execution

* Control flow filtering

- Audit possibly affected executions

* Function-level auditing

- Compare function-level executions

* Memoized re-execution

- Avoid duplicated executions while replaying

89



Putting all together:
fixing our past & future with patch

+ 4 4
Patch from upstream

(fixing a bug in SSHD)

2011 Aug. 77 Aug. 28" Sept. 1 Oct. 3™
—.—ﬁ-—‘-—-—-—-—-—‘—»

7. 44 } |
C Ldaa

90



Putting all together:
fixing our past & future with patch

———  Automatic detection
L o L o

Patch from upstream
(fixing a bug in SSHD)

2011 Aug. 77 Aug. 28" Sept. 1 Oct. 3™
SAA t \ |

e 000 11

LJ

91



Putting all together:
fixing our past & future with patch

———  Automatic detection
o e o

Patch from upstream * Preserve changes
(fixing a bug in SSHD)

2011 Aug. 77 Aug. 28" Sept. 1* Oct. 3™
—@ dmmmmmgP



Putting all together:
fixing our past & future with patch

———  Automatic detection
L o L o

Patch from upstream * Preserve changes
(fixing a bug in SSHD)
* Strong guarantees

2011 Aug. 77 Aug. 28" Sept. 1* Oct. 3™
3—-—-—-—-—-—‘—»
e AA
11
Ld.

X

93



Putting all together:
fixing our past & future with patch

———  Automatic detection
o e o

Patch from upstream * Preserve changes
(fixing a bug in SSHD)
* Strong guarantees

Whenever new patches are released,
not only prevent future attacks,
but also detect and repair past attacks for free!



Summary of our approach:
building real systems

* Existing systems are not designed for history

- Implicit dependencies and time-line

* Attacks can be anywhere in the history

- Attacks are often detected days or weeks later

* History can not be changed in some cases

- External dependencies: spam sent out

95



Summary of our approach:
building real systems

* Existing systems are not designed for history

— Action history graph & re-execution techniques

* Attacks can be anywhere in the history

- Attacks are often detected days or weeks later

* History can not be changed in some cases

- External dependencies: spam sent out

96



Summary of our approach:
building real systems

* Existing systems are not designed for history

— Action history graph & re-execution techniques

* Attacks can be anywhere in the history
— Patch-based auditing

* History can not be changed in some cases

- External dependencies: spam sent out



Summary of our approach:
building real systems

* Existing systems are not designed for history

— Action history graph & re-execution techniques

* Attacks can be anywhere in the history
— Patch-based auditing

* History can not be changed in some cases

— (Not solved) compensating actions in some cases
(see our recent work, Aire [SOSP'13] in this direction of research)



Evaluation questions

* Automatic intrusion recovery

- How much better than manual repair?

- How much runtime overhead?

* Patch-based auditing
- What attacks can be detected?

- How fast is re-execution?

99



Experimental setup for Retro
(automatic recovery)

e 2.8 GHz Intel Core i/, 8 GB RAM
e 64-bit Linux 2.6.35

e Tested with

- 2 real-world attacks from Honeypot

- 8 synthetic attacks

100



Retro recovers from
real-world and synthetic attacks

2 real-world attacks from Honeypot

- Remove log entries, add accounts, run botnet

* 8 synthetic attacks
- 2 examples: LaTeX and SSHD trojan

- 6 scenario: File sharing, Web servers ...

107



Retro's runtime overheads
in realistic workloads

Storage
overhead

HotCRP conference web site 35% 4GB / day

Workload CPU cost



Retro's runtime overheads
in challenging workloads

Workload CPU cost Storage
overhead
HotCRP conference web site 35% 4GB / day

Apache, small static files 127% 100GB / day

Continuous kernel recompile 89% 150GB/da

* Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads



Retro imposes acceptable
overheads in practice

Workload CPU Storage
cost overhead
HotCRP conference web site 35% 4GB / day
Apache, small static files 127% 100GB / day
Continuous kernel recompile  89% 150GB / day

* Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

e Can off-load CPU overhead to dedicated core



Retro imposes acceptable
overheads in practice

Workload CPU Storage
cost overhead
HotCRP conference web site 35% 4GB / day
Apache, small static files 127% 100GB / day
Continuous kernel recompile  89% 150GB / day

For systems where recovery is critical,
Retro's overheads can be acceptable



Experimental setup for Poirot
(patch-based auditing)

* 3.0/ GHz Core i1/-950, 12GB RAM
* PHP 5.3.0

* No application changes required

* Tested with
- Security patches in Wikipedia and HotCRP

- Under real Wikipedia traces

106



Poirot efficiently audits attacks

* 34 real patches in Wikipedia
* Auditing 3.4h of executions

- 29 patches = <0.2 sec (rarely executed code)

- 5 patches =» ~9.2 min (commonly executed code)

Poirot can re-execute 12-51x faster
than the original execution
even for worst-case patches



Poirot detects real attacks

* Wikipedia: detected 5 different types of attacks
(e.g., Stored XSS, CSRF ..))

* HotCRP: detected 4 info. leak vulnerabilities
(e.g., accepted papers ...)

108



Poirot imposes reasonable
runtime overheads

* Testing with real Wikipedia traces

- 14.1% latency overhead
- 15.3% throughput overhead
- 5.4 KB/req storage overhead

For systems where integrity is critical,
Poirot's overheads can be acceptable



Related work

* Tracking down attacks: BackTracker, IntroVirt

- Not for recovery, but only for analyzing attacks

* Taint tracking for recovery: Taser, Polygraph

- False positives: recovering too conservatively

e Selective undo/redo: Undoable mail store

- Fixing configuration errors in email server

110



Today's talk

* Automatic recovery

— Operating system: Retro [OSDI'10]

« Automatic detection of attacks
- Web application: Poirot [OSDI'1 2]

{- Future research agenda

117



Research agenda

Idea: use history for everything

® Undoable OS
Can undoability be part of our daily computing life?

- New design of components / interfaces in OS

- Usable / intuitive user interface

112



Research agenda

ldea: protect history from adversaries

@ Haskell Kernel
Can kernel be secure by design?

- Track and keep history safe?

- Purely functional = better undo/redo-ability

114



Research agenda

ldea: connect history of all computers

3 Security Analytics
Can we understand security for larger systems?

- Better understand security with concrete histories

- Leverage recent tools for Big Data

116



Summary: building secure systems
with system-wide history

* Big step toward “undo computing”

* Automatic recovery
— Operating system: Retro [OSDI'10]
- Web application: Warp [SOSP'11]
- Distributed web services: Aire [SOSP'13]

« Automatic detection of attacks
- Web application: Poirot [OSDI'12]

118



Summary: building secure systems
with system-wide history

* Big step toward “undo computing”

Thank you!

Work in collaboration with:
Ramesh Chandra, Meelap Shah, Neha Narula, Xi Wang,
Nickolai Zeldovich, M. Frans Kaashoek



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 114
	Slide 116
	Slide 118
	Slide 119

