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Current focus of system security:
preventing attacks

● System hardening tools/techniques
– (e.g.,) Firewall, AntiVirus …
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My work on preventing attacks 
(proactive security)

● StealthMem [Security '12]
● Morula  [Oakland '14]
● UserFS [Security '10]
● Mbox [ATC '13]
● VMsec [APSys '13]
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My work on preventing attacks 
(proactive security)

● StealthMem [Security '12]
● Morula  [Oakland '14]
● UserFS [Security '10]
● Mbox [ATC '13]
● VMsec [APSys '13]

Cloud
(HyperV)

Mobile
(Android)

Linux
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Attackers routinely compromise 
computer systems
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Compromises inevitable

● Programmers write buggy code
– A single bug can lead to system compromises

● Admins mis-configure policies
● Users choose weak, guessable passwords
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Compromises inevitable

● Programmers write buggy code
– A single bug can lead to system compromises

● Admins mis-configure policies
● Users choose weak, guessable passwords

Need both proactive security mechanism 
and reactive recovery mechanism!

Recovering integrity is required to
continue operating!
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Existing recovery tools are
limited

● Anti-virus tools
– Only repair from predictable attacks

● Backup tools
– Attack may be detected days or weeks later
– Restoring from backup discards all changes
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Existing recovery tools are
limited

● Anti-virus tools
– Only repair from predictable attacks

● Backup tools
– Attack may be detected days or weeks later
– Restoring from backup discards all changes

Admins spend days or weeks manually 
tracking down all effects of the attack 

with no guarantee that everything is cleaned up!
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Example: kernel.org

● A main repository of code for the Linux kernel
– Also host open source projects like Git and Android
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Example: kernel.org attack
● Detected that kernel.org had been compromised

– Noticed error messages from a program that 
administrators never installed themselves

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

Detected 
the attack
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Example: kernel.org attack
● Investigated the attack for three days

– The initial break-in likely happened a month ago
(Trojaned SSHD was modified around that time)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

InvestigationLikely
initial break-in
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Example: kernel.org attack
● Fully re-installed all servers with the latest backup

– Rollback is only safe option (too many suspects to clean up)
– Took a month for security experts to fully recover

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

Only safe opt is rollback:

Trojaned SSHD 
 → everything suspicious
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Example: kernel.org attack
● Fully re-installed all servers with the latest backup

– Rollback is only safe option (too many suspects to clean up)
– Took a month for security experts to fully recover

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

Site down
for recovery!

Only safe opt is rollback:

Trojaned SSHD 
 → everything suspicious
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Problems in today's repair 
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming

● Manual analysis & recovery is time consuming
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Problems in today's repair 
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)

● Manual analysis & recovery is time consuming
● Rollback ends up losing changes
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Problems in today's repair 
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)
3. No guarantees
(safe to rollback?)

...?

● Manual analysis & recovery is time consuming
● Rollback ends up losing changes
● No guarantees of complete removal of attack
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Problems in today's repair 
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...?

How can we design automate recovery system
that preserves legitimate changes and

provides guarantees? 
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Idea: keep complete history
of computations

Inputs Outputs

Time

● Inputs/outputs on time-line
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Idea: keep complete history
of computations

Time

● Represent computer in fine-grained details
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Idea: keep complete history
of computations

Time

● Represent objects and dependencies
New opportunities to track down attacks! 

Attack
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Approach: change our past with 
history of computations

● Recovery  cancel the initial attack input→

Time

Attack

Cancel?
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Approach: change our past with 
history of computations

● Recovery  cancel the initial attack input→

● Reconstruct states as if attack never happened!
Time

Attack

Cancel?

Turn problem of manual recovery into
problem of manipulating history!
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● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Challenges in real systems
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Contribution:
built real-world systems

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]
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Today's talk

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

● Future research agenda
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– Web application: Warp [SOSP'11]
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– Web application: Poirot [OSDI'12]
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Example attack scenario

Attacker

Admin

Alice
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Example attack scenario
● Adds new account for himself

(  modifies → /etc/passwd)
● Installs trojaned pdflatex

Attacker

Admin

Alice
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Example attack scenario
● Adds new account for himself

(  modifies → /etc/passwd)
● Installs trojaned pdflatex

● Adds new account for Alice
(  modifies → /etc/passwd)

Attacker

Admin

Alice
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Example attack scenario
● Adds new account for himself

(  modifies → /etc/passwd)
● Installs trojaned pdflatex

● Logs in via SSH
(  SSHD reads → /etc/passwd)

● Runs trojaned pdflatex

● Adds new account for Alice
(  modifies → /etc/passwd)

Attacker

Admin

Alice
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History strawman 1: 
Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file
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● Track dependencies between processes & files

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

History strawman 1: 
Taint tracking
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● Given attack, track down all afected files  →
restore those files from earlier backup

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

Attack

History strawman 1: 
Taint tracking
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● Given attack, track down all afected files  →
restore those files from earlier backup

…
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file
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binary
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login

LaTeX
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Alice's
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● Given attack, track down all afected files  →
restore those files from earlier backup

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

History strawman 1: 
Taint tracking
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Problem with taint tracking:
false positives

● Lost Alice's account and files that are not 
actually afected by attacker!

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

Lost Alice account
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History strawman 2:
VM replay

Virtual machine

Time
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History strawman 2:
VM replay

Virtual machine

Inputs

Outputs

Time
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Periodic VM checkpoints

Inputs

Outputs

Virtual machine

Time
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Step 1: identify attack input

Inputs

Outputs
Attack input  

Virtual machine

Time
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Step 2: rollback to the latest 
checkpoint

Inputs

Outputs
Attack input  

Virtual machine

Time
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Step 3: replay non-attack inputs

Inputs

Outputs
Attack input       X

Virtual machine

Time
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Problems with VM replay

● VM replay is expensive 
– Repairing a week-old attack needs a week for replay

● Past inputs are meaningless to new system
– Non-determinism: new SSH crypto keys ...
– Deterministic replay won't work
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Retro's approach:
Action history graph

● Represent fine-grained history
– Includes kernel objects, system calls, function calls, …
– Assume tamper-proof kernel, storage
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Retro's approach:
Action history graph

● Represent fine-grained history
– Includes kernel objects, system calls, function calls, …
– Assume tamper-proof kernel, storage

● Rollback objects directly afected by attack
– Avoid the false positives of Taint tracking

● Selectively re-execute indirectly afected actions
– Avoid the expensive VM replay
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Action history graph:
Objects represent files, processes

Attacker's
process

password
file

adduser
Alice

Admin's
shell Time
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Action history graph:
Actions represent execution (syscall)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Action history graph:
Objects have checkpoints

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 1: find attack action

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 2: rollback affected objects

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 3: skip attack action

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 4: redo non-attack actions

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 2: rollback objects

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Key advantage over
VM replay:

Re-run only adduser,
not entire VM.
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Key advantage over
Taint tracking:

Attacker removed,
Alice account preserved
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Challenge: how to avoid
re-executing everything?

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Exit status affects shell,
which affects sshd, and so on…

Naïve process-level re-execution
still re-executes entire system!
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Observation: Admin's shell
 was not affected

● “Adduser alice” succeed as before
– This is what Admin wanted to do
– If failed, need to re-execute Admin's shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Example 1:
exit status to shell unchanged

write(ofset, data)

Time

             X

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Predicates:
avoid equivalent re-execution

write(ofset, data)

Time

             X
Check if adduser 

succeed as before?

Skip the re-run
of admin's shell

Attacker's
process

password
file

adduser
Alice

Admin's
shell
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read
(ofset, data)

Example 2:
user's password unchanged

write(ofset, data)

Time

             X

Attacker's
process

password
file

Alice's
SSHD
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Observation: Alice's SSHD
was not affected

● Alice's SSHD checked only Alice's account
– This is what Alice's SSHD wanted to do

– If Alice's account changed, need to re-execute SSHD



72

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

             X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD
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read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

             X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Get username,
return passwd entry



74

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

             X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD
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read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

             X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Rerun getpwnam()
instead of SSHD
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read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

             X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Predicate:
Check if return 

same Alice's passwd?

Skip the re-run
of Alice's SSHD
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Quick summary: 
Retro's approach

● Action history graph: represent history in detail

● Two techniques to minimize re-execution:
– Predicates: skips equivalent computations
– Refinement: re-executes fine-grained actions
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 Challenge:
external dependencies

● What if the attack was externally-visible?
– Spam sent out ...
– Hard in general case  ask for user's decision→

● Help users to understand repaired state
– (e.g.) notify user spam email was sent out ...
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Compensating action:
notify changes in terminal output

...
[redo] cat ~/.ssh/authorized_keys
...
! --- old
! +++ new
! @@ -1,3 +1,2 @@
!  ssh-rsa AAAAB3NzaC1yc2EAAAABIw... vagrant
! -ssh-rsa AAAAB3NzaC1yc2EAAAADAQ... attacker
!  ssh-rsa AAAAB3NzaC1yc2EAAAAAao... new pubkey
...

You should not have
seen this output!
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Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Kernel

Userspace

Runtime:
Record action
history graph
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Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Repair
Managers

Repair
Controller (e.g., fs, terminal ..)

Kernel

UserspaceRecovery: 
repair logic/mgr



82

Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Repair
Managers

Repair
Controller (e.g., fs, terminal ..)

Kernel

Userspace

Application specific mgrs
using well-defined API



83

Demo: recovering from 
inadvertently installed virus

● Backtracking tool  
● Selective re-execution
● Compensating action



84

Problem: detecting an entry 
point of attacks is hard

● How to find one-month-old attack?

● Too much information
– Manual analysis is time-consuming
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Observation: security patch 
renders attack harmless

● Escape URL arguments for firefox

// slider.c
- sprintf(cmd, “firefox %s”, evt->uri); 
+ sprintf(cmd, “firefox %s”, escape(evt->uri)); 

vs

Unpatched

slider sh
firefox virus

Patched

slider sh
firefox virus

x
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Approach: comparing both 
histories to detect past attacks

● How can we get history of patched execution?
– Replay inputs after applying security patches
– Diferent history  potential threats→

vs

slider sh
firefox virus

slider sh
firefox virus

x
Unpatched Patched
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Approach: comparing both 
histories to detect past attacks

● How can we get history of 'secure' execution?
– Replay one more after applying security patches
– Diferent history  potential threats→

vs

slider sh
firefox virus

slider sh
firefox virus

x

Turn manual effort of auditing process
into computational problem!

(patch-based auditing)

Unpatched Patched
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Challenge: performance

● Re-executing is costly for busy computer
– Auditing requests  re-executes all requests again→

– Auditing one month  takes another month!→
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Three techniques developed for 
partial re-execution 

● Control flow filtering
– Audit possibly afected executions

● Function-level auditing
– Compare function-level executions

● Memoized re-execution
– Avoid duplicated executions while replaying
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Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...?
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Putting all together:
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(a month!)
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Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)
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Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd 

1. Manual and 
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...? x

● Automatic detection

● Preserve changes

● Strong guarantees

xx
Whenever new patches are released, 

not only prevent future attacks, 
but also detect and repair past attacks for free!
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● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems
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– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

                 → Action history graph & re-execution techniques
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● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

                 → Action history graph & re-execution techniques
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● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

                 → Action history graph & re-execution techniques

                 → Patch-based auditing

                 → (Not solved) compensating actions in some cases
(see our recent work, Aire [SOSP'13] in this direction of research)
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Evaluation questions
● Automatic intrusion recovery

– How much better than manual repair?

– How much runtime overhead?

● Patch-based auditing
– What attacks can be detected?
– How fast is re-execution?
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Experimental setup for Retro
(automatic recovery)

● 2.8 GHz Intel Core i7, 8 GB RAM
● 64-bit Linux 2.6.35

● Tested with 
– 2 real-world attacks from Honeypot
– 8 synthetic attacks
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Retro recovers from
 real-world and synthetic attacks 

● 2 real-world attacks from Honeypot
– Remove log entries, add accounts, run botnet

● 8 synthetic attacks
– 2 examples: LaTeX and SSHD trojan

– 6 scenario: File sharing, Web servers ...
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Retro's runtime overheads
in realistic workloads

Workload CPU cost
Storage 

overhead
HotCRP conference web site 35% 4GB / day  
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Retro's runtime overheads
in challenging workloads

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

Workload CPU cost
Storage 

overhead
HotCRP conference web site 35% 4GB / day  

Apache, small static files 127% 100GB / day  

Continuous kernel recompile 89% 150GB / day  
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Retro imposes acceptable 
overheads in practice

Workload
CPU 
cost

w/ 2nd 
core

Storage 
overhead

HotCRP conference web site 35% 2% 4GB / day  

Apache, small static files 127% 33% 100GB / day  

Continuous kernel recompile 89% 18% 150GB / day  

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

● Can of-load CPU overhead to dedicated core
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Retro imposes acceptable 
overheads in practice

Workload
CPU 
cost

w/ 2nd 
core

Storage 
overhead

HotCRP conference web site 35% 2% 4GB / day  

Apache, small static files 127% 33% 100GB / day  

Continuous kernel recompile 89% 18% 150GB / day  

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

● Can of-load CPU overhead to extra core

For systems where recovery is critical,
Retro's overheads can be acceptable
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Experimental setup for Poirot
(patch-based auditing)

● 3.07 GHz Core i7-950, 12GB RAM
● PHP 5.3.6
● No application changes required

● Tested with
– Security patches in Wikipedia and HotCRP
– Under real Wikipedia traces
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Poirot efficiently audits attacks
● 34 real patches in Wikipedia
● Auditing 3.4h of executions

– 29 patches  → <0.2 sec (rarely executed code)

–   5 patches  → ~9.2 min (commonly executed code)

Poirot can re-execute 12-51x faster 
than the original execution
even for worst-case patches
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Poirot detects real attacks

● Wikipedia: detected 5 different types of attacks

(e.g., Stored XSS, CSRF …)

● HotCRP: detected 4 info. leak vulnerabilities

(e.g., accepted papers ...)
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Poirot imposes reasonable 
runtime overheads

● Testing with real Wikipedia traces
– 14.1% latency overhead
– 15.3% throughput overhead

– 5.4 KB/req storage overhead

For systems where integrity is critical,
Poirot's overheads can be acceptable
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Related work

● Tracking down attacks: BackTracker, IntroVirt
– Not for recovery, but only for analyzing attacks

● Taint tracking for recovery: Taser, Polygraph
– False positives: recovering too conservatively

● Selective undo/redo: Undoable mail store
– Fixing configuration errors in email server
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Today's talk

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

● Future research agenda
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Research agenda

Can undoability be part of our daily computing life?
 ① Undoable OS

– New design of components / interfaces in OS
– Usable / intuitive user interface

Idea: use history for everything
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Research agenda

 ② Haskell Kernel

Idea: protect history from adversaries

Can kernel be secure by design?

– Track and keep history safe?
– Purely functional  better undo/redo-ability→
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Research agenda

 ③ Security Analytics

Idea: connect history of all computers

Can we understand security for larger systems?

– Better understand security with concrete histories
– Leverage recent tools for Big Data



118

Summary: building secure systems 
with system-wide history

● Big step toward “undo computing”

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12] 
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Summary: building secure systems 
with system-wide history

● Big step toward “undo computing”

● Automatic recovery in real-world systems
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Patch-based auditing system
– Web application: Poirot [OSDI'12] 

Thank you!

Work in collaboration with: 
Ramesh Chandra, Meelap Shah, Neha Narula, Xi Wang, 

Nickolai Zeldovich, M. Frans Kaashoek
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