
Automatic intrusion recovery
with system-wide history

Taesoo Kim

MIT CSAIL

2

Current focus of system security:
preventing attacks

● System hardening tools/techniques
– (e.g.,) Firewall, AntiVirus …

3

My work on preventing attacks
(proactive security)

● StealthMem [Security '12]
● Morula [Oakland '14]
● UserFS [Security '10]
● Mbox [ATC '13]
● VMsec [APSys '13]

4

My work on preventing attacks
(proactive security)

● StealthMem [Security '12]
● Morula [Oakland '14]
● UserFS [Security '10]
● Mbox [ATC '13]
● VMsec [APSys '13]

Cloud
(HyperV)

Mobile
(Android)

5

My work on preventing attacks
(proactive security)

● StealthMem [Security '12]
● Morula [Oakland '14]
● UserFS [Security '10]
● Mbox [ATC '13]
● VMsec [APSys '13]

Cloud
(HyperV)

Mobile
(Android)

Linux

6

Attackers routinely compromise
computer systems

7

Attackers routinely compromise
computer systems

8

Attackers routinely compromise
computer systems

9

Attackers routinely compromise
computer systems

10

Compromises inevitable

● Programmers write buggy code
– A single bug can lead to system compromises

● Admins mis-configure policies
● Users choose weak, guessable passwords

11

Compromises inevitable

● Programmers write buggy code
– A single bug can lead to system compromises

● Admins mis-configure policies
● Users choose weak, guessable passwords

Need both proactive security mechanism
and reactive recovery mechanism!

Recovering integrity is required to
continue operating!

12

Existing recovery tools are
limited

● Anti-virus tools
– Only repair from predictable attacks

● Backup tools
– Attack may be detected days or weeks later
– Restoring from backup discards all changes

13

Existing recovery tools are
limited

● Anti-virus tools
– Only repair from predictable attacks

● Backup tools
– Attack may be detected days or weeks later
– Restoring from backup discards all changes

Admins spend days or weeks manually
tracking down all effects of the attack

with no guarantee that everything is cleaned up!

14

Example: kernel.org

● A main repository of code for the Linux kernel
– Also host open source projects like Git and Android

15

Example: kernel.org attack
● Detected that kernel.org had been compromised

– Noticed error messages from a program that
administrators never installed themselves

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

Detected
the attack

16

Example: kernel.org attack
● Investigated the attack for three days

– The initial break-in likely happened a month ago
(Trojaned SSHD was modified around that time)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

InvestigationLikely
initial break-in

17

Example: kernel.org attack
● Fully re-installed all servers with the latest backup

– Rollback is only safe option (too many suspects to clean up)
– Took a month for security experts to fully recover

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

Only safe opt is rollback:

Trojaned SSHD
 → everything suspicious

18

Example: kernel.org attack
● Fully re-installed all servers with the latest backup

– Rollback is only safe option (too many suspects to clean up)
– Took a month for security experts to fully recover

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

Site down
for recovery!

Only safe opt is rollback:

Trojaned SSHD
 → everything suspicious

19

Problems in today's repair
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming

● Manual analysis & recovery is time consuming

20

Problems in today's repair
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

● Manual analysis & recovery is time consuming
● Rollback ends up losing changes

21

Problems in today's repair
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)
3. No guarantees
(safe to rollback?)

...?

● Manual analysis & recovery is time consuming
● Rollback ends up losing changes
● No guarantees of complete removal of attack

22

Problems in today's repair
strategies

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...?

How can we design automate recovery system
that preserves legitimate changes and

provides guarantees?

23

Idea: keep complete history
of computations

Inputs Outputs

Time

● Inputs/outputs on time-line

24

Idea: keep complete history
of computations

Time

● Represent computer in fine-grained details

25

Idea: keep complete history
of computations

Time

● Represent objects and dependencies
New opportunities to track down attacks!

Attack

26

Approach: change our past with
history of computations

● Recovery cancel the initial attack input→

Time

Attack

Cancel?

27

Approach: change our past with
history of computations

● Recovery cancel the initial attack input→

● Reconstruct states as if attack never happened!
Time

Attack

Cancel?

28

Approach: change our past with
history of computations

● Recovery cancel the initial attack input→

● Reconstruct states as if attack never happened!
Time

Attack

Cancel?

Turn problem of manual recovery into
problem of manipulating history!

29

● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Challenges in real systems

30

Contribution:
built real-world systems

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

31

Today's talk

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

● Future research agenda

32

Today's talk

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

● Future research agenda

33

Example attack scenario

Attacker

Admin

Alice

34

Example attack scenario
● Adds new account for himself

(modifies → /etc/passwd)
● Installs trojaned pdflatex

Attacker

Admin

Alice

35

Example attack scenario
● Adds new account for himself

(modifies → /etc/passwd)
● Installs trojaned pdflatex

● Adds new account for Alice
(modifies → /etc/passwd)

Attacker

Admin

Alice

36

Example attack scenario
● Adds new account for himself

(modifies → /etc/passwd)
● Installs trojaned pdflatex

● Logs in via SSH
(SSHD reads → /etc/passwd)

● Runs trojaned pdflatex

● Adds new account for Alice
(modifies → /etc/passwd)

Attacker

Admin

Alice

37

History strawman 1:
Taint tracking

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

38

● Track dependencies between processes & files

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

History strawman 1:
Taint tracking

39

● Given attack, track down all afected files →
restore those files from earlier backup

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

Attack

History strawman 1:
Taint tracking

40

● Given attack, track down all afected files →
restore those files from earlier backup

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

Attack

History strawman 1:
Taint tracking

41

● Given attack, track down all afected files →
restore those files from earlier backup

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

History strawman 1:
Taint tracking

42

Problem with taint tracking:
false positives

● Lost Alice's account and files that are not
actually afected by attacker!

…

Attacker
process

passwd
file

pdflatex
binary

... adduser
alice

Alice's
login

LaTeX
process

Alice's
shell

Admin's
shell

Alice's
paper

Alice's
PDF file

Lost Alice account

43

History strawman 2:
VM replay

Virtual machine

Time

44

History strawman 2:
VM replay

Virtual machine

Inputs

Outputs

Time

45

Periodic VM checkpoints

Inputs

Outputs

Virtual machine

Time

46

Step 1: identify attack input

Inputs

Outputs
Attack input

Virtual machine

Time

47

Step 2: rollback to the latest
checkpoint

Inputs

Outputs
Attack input

Virtual machine

Time

48

Step 3: replay non-attack inputs

Inputs

Outputs
Attack input X

Virtual machine

Time

49

Problems with VM replay

● VM replay is expensive
– Repairing a week-old attack needs a week for replay

● Past inputs are meaningless to new system
– Non-determinism: new SSH crypto keys ...
– Deterministic replay won't work

50

Retro's approach:
Action history graph

● Represent fine-grained history
– Includes kernel objects, system calls, function calls, …
– Assume tamper-proof kernel, storage

51

Retro's approach:
Action history graph

● Represent fine-grained history
– Includes kernel objects, system calls, function calls, …
– Assume tamper-proof kernel, storage

● Rollback objects directly afected by attack
– Avoid the false positives of Taint tracking

● Selectively re-execute indirectly afected actions
– Avoid the expensive VM replay

52

Action history graph:
Objects represent files, processes

Attacker's
process

password
file

adduser
Alice

Admin's
shell Time

53

Action history graph:
Actions represent execution (syscall)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

54

Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

55

exec

(prog, args, ..)

Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

56

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Action history graph:
Actions have dependencies

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

57

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Action history graph:
Objects have checkpoints

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

58

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 1: find attack action

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

59

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 2: rollback affected objects

write(ofset, data)

Time
Attacker's
process

password
file

adduser
Alice

Admin's
shell

60

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 3: skip attack action

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

61

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Step 4: redo non-attack actions

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

62

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 2: rollback objects

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

63

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Key advantage over
VM replay:

Re-run only adduser,
not entire VM.

64

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

65

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Repeat step 3: redo actions

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Key advantage over
Taint tracking:

Attacker removed,
Alice account preserved

66

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Challenge: how to avoid
re-executing everything?

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

Exit status affects shell,
which affects sshd, and so on…

Naïve process-level re-execution
still re-executes entire system!

67

Observation: Admin's shell
 was not affected

● “Adduser alice” succeed as before
– This is what Admin wanted to do
– If failed, need to re-execute Admin's shell

68

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Example 1:
exit status to shell unchanged

write(ofset, data)

Time

 X

Attacker's
process

password
file

adduser
Alice

Admin's
shell

69

exec

(prog, args, ..)

exit
(status)

write

(ofset, data)

read(ofset, data)

Predicates:
avoid equivalent re-execution

write(ofset, data)

Time

 X
Check if adduser

succeed as before?

Skip the re-run
of admin's shell

Attacker's
process

password
file

adduser
Alice

Admin's
shell

70

read
(ofset, data)

Example 2:
user's password unchanged

write(ofset, data)

Time

 X

Attacker's
process

password
file

Alice's
SSHD

71

Observation: Alice's SSHD
was not affected

● Alice's SSHD checked only Alice's account
– This is what Alice's SSHD wanted to do

– If Alice's account changed, need to re-execute SSHD

72

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

 X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

73

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

 X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Get username,
return passwd entry

74

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

 X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

75

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

 X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Rerun getpwnam()
instead of SSHD

76

read(ofset, data)

return(Alice's password)

call

getpwnam(“alice”)

Refinement:
exploits high-level semantics

write(ofset, data)

Time

 X

Attacker's
process

password
file

getpwnam()
function

Alice's
SSHD

Predicate:
Check if return

same Alice's passwd?

Skip the re-run
of Alice's SSHD

77

Quick summary:
Retro's approach

● Action history graph: represent history in detail

● Two techniques to minimize re-execution:
– Predicates: skips equivalent computations
– Refinement: re-executes fine-grained actions

78

 Challenge:
external dependencies

● What if the attack was externally-visible?
– Spam sent out ...
– Hard in general case ask for user's decision→

● Help users to understand repaired state
– (e.g.) notify user spam email was sent out ...

79

Compensating action:
notify changes in terminal output

...
[redo] cat ~/.ssh/authorized_keys
...
! --- old
! +++ new
! @@ -1,3 +1,2 @@
! ssh-rsa AAAAB3NzaC1yc2EAAAABIw... vagrant
! -ssh-rsa AAAAB3NzaC1yc2EAAAADAQ... attacker
! ssh-rsa AAAAB3NzaC1yc2EAAAAAao... new pubkey
...

You should not have
seen this output!

80

Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Kernel

Userspace

Runtime:
Record action
history graph

81

Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Repair
Managers

Repair
Controller (e.g., fs, terminal ..)

Kernel

UserspaceRecovery:
repair logic/mgr

82

Action history graph

Retro implementation

Linux kernel

Retro module

Processes

File system
(checkpts)

Repair
Managers

Repair
Controller (e.g., fs, terminal ..)

Kernel

Userspace

Application specific mgrs
using well-defined API

83

Demo: recovering from
inadvertently installed virus

● Backtracking tool
● Selective re-execution
● Compensating action

84

Problem: detecting an entry
point of attacks is hard

● How to find one-month-old attack?

● Too much information
– Manual analysis is time-consuming

85

Observation: security patch
renders attack harmless

● Escape URL arguments for firefox

// slider.c
- sprintf(cmd, “firefox %s”, evt->uri);
+ sprintf(cmd, “firefox %s”, escape(evt->uri));

vs

Unpatched

slider sh
firefox virus

Patched

slider sh
firefox virus

x

86

Approach: comparing both
histories to detect past attacks

● How can we get history of patched execution?
– Replay inputs after applying security patches
– Diferent history potential threats→

vs

slider sh
firefox virus

slider sh
firefox virus

x
Unpatched Patched

87

Approach: comparing both
histories to detect past attacks

● How can we get history of 'secure' execution?
– Replay one more after applying security patches
– Diferent history potential threats→

vs

slider sh
firefox virus

slider sh
firefox virus

x

Turn manual effort of auditing process
into computational problem!

(patch-based auditing)

Unpatched Patched

88

Challenge: performance

● Re-executing is costly for busy computer
– Auditing requests re-executes all requests again→

– Auditing one month takes another month!→

89

Three techniques developed for
partial re-execution

● Control flow filtering
– Audit possibly afected executions

● Function-level auditing
– Compare function-level executions

● Memoized re-execution
– Avoid duplicated executions while replaying

90

Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...?

91

Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...? x

● Automatic detection

92

Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...? x

● Automatic detection

● Preserve changes

x

93

Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...? x

● Automatic detection

● Preserve changes

● Strong guarantees

xx

94

Putting all together:
fixing our past & future with patch

Patch from upstream
(fixing a bug in SSHD)

Sept. 1st 2011 Aug. 28st Aug. ?? Oct. 3rd

1. Manual and
time consuming2. Lost changes

(a month!)

...

3. No guarantees
(safe to rollback?)

...? x

● Automatic detection

● Preserve changes

● Strong guarantees

xx
Whenever new patches are released,

not only prevent future attacks,
but also detect and repair past attacks for free!

95

● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

96

● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

 → Action history graph & re-execution techniques

97

● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

 → Action history graph & re-execution techniques

 → Patch-based auditing

98

● Existing systems are not designed for history
– Implicit dependencies and time-line

● Attacks can be anywhere in the history
– Attacks are often detected days or weeks later

● History can not be changed in some cases
– External dependencies: spam sent out

Summary of our approach:
building real systems

 → Action history graph & re-execution techniques

 → Patch-based auditing

 → (Not solved) compensating actions in some cases
(see our recent work, Aire [SOSP'13] in this direction of research)

99

Evaluation questions
● Automatic intrusion recovery

– How much better than manual repair?

– How much runtime overhead?

● Patch-based auditing
– What attacks can be detected?
– How fast is re-execution?

100

Experimental setup for Retro
(automatic recovery)

● 2.8 GHz Intel Core i7, 8 GB RAM
● 64-bit Linux 2.6.35

● Tested with
– 2 real-world attacks from Honeypot
– 8 synthetic attacks

101

Retro recovers from
 real-world and synthetic attacks

● 2 real-world attacks from Honeypot
– Remove log entries, add accounts, run botnet

● 8 synthetic attacks
– 2 examples: LaTeX and SSHD trojan

– 6 scenario: File sharing, Web servers ...

102

Retro's runtime overheads
in realistic workloads

Workload CPU cost
Storage

overhead
HotCRP conference web site 35% 4GB / day

103

Retro's runtime overheads
in challenging workloads

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

Workload CPU cost
Storage

overhead
HotCRP conference web site 35% 4GB / day

Apache, small static files 127% 100GB / day

Continuous kernel recompile 89% 150GB / day

104

Retro imposes acceptable
overheads in practice

Workload
CPU
cost

w/ 2nd
core

Storage
overhead

HotCRP conference web site 35% 2% 4GB / day

Apache, small static files 127% 33% 100GB / day

Continuous kernel recompile 89% 18% 150GB / day

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

● Can of-load CPU overhead to dedicated core

105

Retro imposes acceptable
overheads in practice

Workload
CPU
cost

w/ 2nd
core

Storage
overhead

HotCRP conference web site 35% 2% 4GB / day

Apache, small static files 127% 33% 100GB / day

Continuous kernel recompile 89% 18% 150GB / day

● Can store 2 weeks of logs on 2TB disk ($100)
even for worst-case workloads

● Can of-load CPU overhead to extra core

For systems where recovery is critical,
Retro's overheads can be acceptable

106

Experimental setup for Poirot
(patch-based auditing)

● 3.07 GHz Core i7-950, 12GB RAM
● PHP 5.3.6
● No application changes required

● Tested with
– Security patches in Wikipedia and HotCRP
– Under real Wikipedia traces

107

Poirot efficiently audits attacks
● 34 real patches in Wikipedia
● Auditing 3.4h of executions

– 29 patches → <0.2 sec (rarely executed code)

– 5 patches → ~9.2 min (commonly executed code)

Poirot can re-execute 12-51x faster
than the original execution
even for worst-case patches

108

Poirot detects real attacks

● Wikipedia: detected 5 different types of attacks

(e.g., Stored XSS, CSRF …)

● HotCRP: detected 4 info. leak vulnerabilities

(e.g., accepted papers ...)

109

Poirot imposes reasonable
runtime overheads

● Testing with real Wikipedia traces
– 14.1% latency overhead
– 15.3% throughput overhead

– 5.4 KB/req storage overhead

For systems where integrity is critical,
Poirot's overheads can be acceptable

110

Related work

● Tracking down attacks: BackTracker, IntroVirt
– Not for recovery, but only for analyzing attacks

● Taint tracking for recovery: Taser, Polygraph
– False positives: recovering too conservatively

● Selective undo/redo: Undoable mail store
– Fixing configuration errors in email server

111

Today's talk

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

● Future research agenda

112

Research agenda

Can undoability be part of our daily computing life?
 ① Undoable OS

– New design of components / interfaces in OS
– Usable / intuitive user interface

Idea: use history for everything

114

Research agenda

 ② Haskell Kernel

Idea: protect history from adversaries

Can kernel be secure by design?

– Track and keep history safe?
– Purely functional better undo/redo-ability→

116

Research agenda

 ③ Security Analytics

Idea: connect history of all computers

Can we understand security for larger systems?

– Better understand security with concrete histories
– Leverage recent tools for Big Data

118

Summary: building secure systems
with system-wide history

● Big step toward “undo computing”

● Automatic recovery
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Automatic detection of attacks
– Web application: Poirot [OSDI'12]

119

Summary: building secure systems
with system-wide history

● Big step toward “undo computing”

● Automatic recovery in real-world systems
– Operating system: Retro [OSDI'10]
– Web application: Warp [SOSP'11]
– Distributed web services: Aire [SOSP'13]

● Patch-based auditing system
– Web application: Poirot [OSDI'12]

Thank you!

Work in collaboration with:
Ramesh Chandra, Meelap Shah, Neha Narula, Xi Wang,

Nickolai Zeldovich, M. Frans Kaashoek

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 114
	Slide 116
	Slide 118
	Slide 119

