
MetaSync: File Synchronization Across Multiple Untrusted
Storage Services

Seungyeop Han, Haichen Shen, Taesoo Kim†, Arvind Krishnamurthy, Thomas Anderson, and David Wetherall

University of Washington, †MIT CSAIL

University of Washington Technical Report UW-CSE-14-05-02

Abstract
Cloud-based file synchronization services, such as Drop-
box and OneDrive, are a worldwide resource for many
millions of users. However, individual services often
have tight resource limits, varying performance in re-
gions of the world, temporary outages or even shut-
downs, and sometimes silently corrupt or leak user data.

We design, implement, and evaluate MetaSync, a se-
cure and reliable file synchronization service that uses
multiple cloud synchronization services as untrusted
storage providers. To make MetaSync work correctly,
we devise a novel variant of Paxos that provides lineariz-
able updates on top of the unmodified APIs exported by
existing services. Our system automatically redistributes
files upon adding, removing, or resizing a provider with
a novel deterministic replication scheme.

Our evaluation shows MetaSync provides low update
latency and high update throughput, close to the perfor-
mance of commercial services, but is more reliable and
available. For synchronization, MetaSync outperforms
its underlying cloud services by 1.2X-10X on three real-
istic workloads.

1 Introduction
Cloud-based file synchronization services have become
tremendously popular. Dropbox reached 200M users in
November 2013, doubling its customer base over the pre-
vious year [8]. Many competing providers offer similar
services, including Google Drive, Microsoft OneDrive,
Box, and Baidu in China. With such resources, mostly
for free, users are likely to upload ever larger amounts of
personal and private data.

Unfortunately, not all services are trustworthy or reli-
able. Storage services routinely lose data due to inter-
nal faults [2], and can leak users’ personal data [22].
They may block access to content, e.g., DMCA take-
downs [29] to comply with the law. From time to
time, entire clouds may go out of business, e.g., Ubuntu
One [5]. Some storage services, e.g., OneDrive [3], even
intentionally alter private user data in violation of the ba-
sic storage contract.

Our work is based on the premise that users want
file synchronization and the storage that existing cloud
providers offer, but without the exposure to fragile, unre-
liable, or insecure services. In fact, there is no fundamen-
tal need for users to trust cloud providers, and given the
above incidents our position is that users are best served
by not trusting them. Clearly, data can be encrypted by
a user before being stored in the cloud for confidential-
ity. More generally, research such as Depot [19] and
SUNDR [18] shows how to design systems from scratch
in which users of the cloud storage obtain data confiden-
tiality, integrity, or availability without trusting the un-
derlying storage provider.

Our work differs from prior work in two ways. First,
we build a synchronization service on top of existing
cloud storage (Figure 1) to leverage resources that are
mostly well-provisioned and managed, normally reli-
able, and inexpensive (free!). This is challenging be-
cause we must work correctly using only their unmod-
ified APIs. Second, we combine multiple providers not
only for larger storage space, but also for a system that
is more reliable (via replication), consistent (via our
client-driven Paxos protocol), and faster (via splitting or
combining file objects optimized for current services).
Putting it all together, MetaSync can serve users better in
all aspects as a file synchronization service; users need
trust only the software that runs on their own computers.

Our contributions, beyond MetaSync itself as a ready-
to-use open source project, are twofold: 1) pPaxos, a
client-based Paxos algorithm that provides a consistent
global state across multiple (and passive) storage back-
ends, and 2) a novel deterministic replication algorithm
that provides stable mapping schemes for file objects
upon re-configurations of services, such as increasing ca-
pacity or adding/removing a service. MetaSync strictly
maintains global consistency among backend services,
assuming a user’s computers function correctly.

The rest of this paper is organized as follows. We
state our goals and threat model (§2), and explain our
design (§3). We describe our implementation (§4), eval-
uate (§5). Finally, we compare MetaSync to related work

1

Google Drive

Baidu

2GB

15GB

7GB

2TB

...
MetaSync

MetaSync

A variety of sync. services

- reliable
- secure
- performant
- larger free space

A better sync. service
built on top of all?

...

file
file

file

file
file

file

Figure 1: Overview of MetaSync for end-users. MetaSync provides
reliable, secure, and performant synchronization services on top of un-
trusted commercial services, along with larger storage space for free.

(§6) and conclude (§7).

2 Goals and Assumptions
The usage model of MetaSync matches that of existing
synchronization services such as Dropbox. The user con-
figures MetaSync with account information for the un-
derlying storage services, sets up one or more directories
to be managed by the system, and shares each directory
with zero or more other users. Local updates are auto-
matically reflected to all connected hosts; conflicting up-
dates are flagged for manual resolution.

For users desiring explicit control over the merge pro-
cess, we also provide a manual git-like push/pull inter-
face. In this case, the user creates a set of updates and
runs a script to apply the set atomically. The system ac-
cepts an update only if it has been merged with the latest
version pushed by any user. Any user can pull the latest
version, or, as with git, the user can revert to any previ-
ously committed version.

In terms of security, we assume that the backend ser-
vices are curious, incompetent, but not actively mali-
cious. The storage services may try to discover which
files are stored by which user along with the content of
the files, and they may accidentally corrupt or delete
files. However, we assume that services do not col-
lude, service failures are independent, services imple-
ment their own APIs correctly (except for losing and cor-
rupting user data), and communications between client
and server machines are protected. Finally, we assume
that clients sharing directories and running MetaSync are
trusted.

With this threat model, the goals of MetaSync are:

• Availability: User files are always available for both
read and update despite any predefined number of ser-
vice outages, even if a provider completely stops pro-
viding any access to its previously stored data.

• Integrity: Any corruption of files should be detectable

MetaSync MetaSyncd

MetaSync Core

(command line) (sync daemon)

Synchronization
manager

Storage service
manager Translators

(e.g., encryption)(e.g., pPaxos) (e.g., replication)

Local storage

OneDrive Dropbox Google Drive

Remote services

...

(e.g., object store)
Backend abstractions

Sync. abstraction
Storage abstraction

Figure 2: Overview of design. MetaSync has three main compo-
nents: storage service manager to coordinate replication; synchroniza-
tion manager to orchestrate cloud services; and translators to support
data encryption and integrity. The components are implemented on top
of an abstract cloud storage API, which provides a uniform interface to
storage backends such as Dropbox and Google Drive. MetaSync sup-
ports two front-end interfaces: a command line interface for users and
a synchronization daemon for automatic monitoring and check-in.

provided that a majority of services do not collude.
• Confidentiality: Neither user data nor the file hierar-

chy is revealed to any of the storage services. Users
may opt out of confidentiality for better performance.

• Performance: The system should benefit from the
combined capacity of the underlying services. We aim
to provide faster synchronization service than any in-
dividual service.

• Reconfiguration: Adding a service into our system
does not require significant extra work.

• No direct client-client communication: All clients
should be able to synchronize without any direct com-
munication among them. In particular, they never need
to be online at the same time.

3 System Design
This section describes the design of MetaSync as illus-
trated by Figure 2. The core library defines abstractions
for cloud storage services, and all components are im-
plemented on top of those abstractions, making it easy to
incorporate a new storage service into the system (§3.5).
MetaSync consists of three major components: storage
service manager, synchronization manager, and transla-
tors. The storage service manager maintains the repli-
cation of file objects by mapping those objects to stor-
age services in a deterministic way, making our system
resilient to tear-down of services and allows for user’s
reconfiguration of services (§3.2). The synchronization
manager provides support to make sure that every client
has a consistent view of the user’s synchronized files, by
orchestrating storage services with pPaxos (§3.3). The
translators implement optional modules for encryption
and decryption of file objects in services, and these mod-

2

objects/D
.metasync/

/F
/C

master
config

head_client1
head_client2
...

†

†

†
 shared files
owned files

‡

‡ object store

1a..
ab..

b2..

/D
/F
/C

Type Dir: Dab..

Prev
Date

: Dcf ..
: 04/14/14

dir1 : Dac..
dir2 : Dad..

: F1b..file1

File: F1b..

Prev
Date

: Fce ..
: 04/13/14

00.. : C3c..
10.. : Cbc..

: Cdc..20..

dir1
dir2
file1

File names Offsets

00..
10..
20..

Blob: C3c..

0x ...

0x ...

...

Clients' view

...

Blob: Cbc..

Figure 3: File management in a client’s local directory. The object
store maintains user files and directories with content-based address-
ing, in which the name of each object is based on the hash of its content.
Each client also maintains two kinds of files: shared, which all clients
update; and owned, for which the owner client is the only writer. There-
fore, while the object store and owned files can be updated without syn-
chronization, updates to the shared files require coordinated updates of
the backend stores; this is done by the synchronization manager (§3.3).

ules can be transparently composed to enable flexible ex-
tensions (§3.6).

3.1 File Management

MetaSync has a similar underlying file structure to that
of git [14] in managing files and their versions: objects,
units of storing files, are identified by the hash of their
content to avoid redundant use of storage; directories
form hash trees, similar to Merkle trees [21], where the
root directory’s hash is the root of the tree. Unlike git,
MetaSync divides and stores each file into chunks, called
Blob objects, to maintain and synchronize large files ef-
ficiently.

Object store. In MetaSync’s object store, there are
three kinds of objects—Dir, File and Blob—each
uniquely identified by the hash of its content (annotated
with an object type as a prefix in Figure 3). A File object
contains hash values of Blob objects and their offsets. A
Dir object contains hash values of File objects and their
names. File and Dir objects keep track of hash chains of
their old versions as well (Prev in Figure 3).

Each client also maintains two kinds of metafiles to
provide a consistent view of the global state: shared files,
which all clients can update; and owned files, which only
the single owner (writer) client can update.

Shared files. MetaSync has two shared files: config
and master. config keeps the configuration of back-
end services like capacities, authenticators, and encryp-
tion keys. master keeps the hash value of the root direc-
tory, representing the consistent view of the global state.
When updating these shared files, we invoke a synchro-
nization protocol built from the APIs provided by exist-
ing cloud storage providers (as described in §3.3).

Owned files. Unlike shared files, updating owned files
does not require a synchronization protocol across stor-
age services (by design). For example, a client can

objects/D
/F
/C

...

1a..
ab..

b2..
/F 1a..

/F cb..

Storage services

R=2 (replication)

F1a..

Dab.. Cb2.. F2a..

Dab.. F1a..

Cb2.. Fcb..

Fcb..

deterministic
mapping

Dropbox:

F1a..

F1a..

(§Algorithm 1)

Google:

OneDrive:

(e.g., S=3)
Object store

Figure 4: Example of replicating objects (R = 2) to the backend stor-
age services (S = 3). Each object deterministically maps into a group
of storage services for replications (Figure 5).

check-in a file to the object store, upload to the back-
end services, and update its local head (head client *)
without requiring any coordinated updates to the back-
end storage providers.

For initiation, a user sets up a directory to be managed
by MetaSync; files and directories under the directory
should be synchronized. This is equivalent to a reposi-
tory in version control systems. Then, MetaSync creates
a directory containing the files as shown in Figure 3 and
starts synchronization over backend services based on
user configuration. Each managed directory has a name
(called namespace) in the system to be used in synchro-
nizing with other clients. MetaSync creates a folder with
the name in each backend. The folder at the backend
storage stores the same set of files as clients, along with
a subset of objects based on the mapping we explain next.
A user can maintain multiple directories having different
configuration and composition of backends to synchro-
nize only necessary files for each client.

3.2 Replication

MetaSync replicates objects (in the object store) redun-
dantly across R storage providers (typically R = 2) to
provide higher availability even when a service is tem-
porarily inaccessible. This also provides potentially bet-
ter performance over wide area networks. However repli-
cation comes at the cost of maintaining shared informa-
tion regarding the mapping of objects to services. In
our settings, where the storage services passively partic-
ipate in the coordination protocol, providing a consistent
view of this shared information is particularly expensive.
Not only that, MetaSync requires a mapping scheme that
takes into account storage space limits imposed by each
storage service; if handled poorly, lack of storage at a sin-
gle service can block the entire operation of MetaSync,
and typical storage services vary in the storage space they
provide, ranging from 2GB in Dropbox to 2TB in Baidu.

Goals. We desire an efficient mapping scheme that
maps each object to a group of services over which it
is replicated. Given a hash of an object (modulo H), the
mapping should return a replication set, as indicated be-
low:

3

map : H→{s : |s|= R,s⊂ S}

where

• H is the hash space.
• S is the set of services.
• R is the number of replicas.

The mapping scheme in MetaSync has to satisfy fol-
lowing requirements:

R1 Share minimal information amongst services.
R2 Support variation in storage size limits across differ-

ent services and across different users.
R3 Minimize realignment of objects upon removal or

addition of a service. (Though we assume that this
would happen rarely, the impact should be minimal
when it happens.)

One option to perform this mapping is to use consis-
tent hashing, which maps both storage providers and ob-
jects onto an identifier circle and then assigns objects to
storage providers based on their positions on the iden-
tifier circle. While this mechanism minimizes realign-
ment of objects upon service changes and supports ar-
bitrarily large numbers of objects and storage providers,
it does not support user-specific storage limits at differ-
ent providers nor does it achieve optimal or tight bounds
on load balance across different providers [27]. Another
option is to maintain a mapping at the granularity of in-
dividual objects. For example, it is possible to build a
mapping table that tracks which services store an object
and share this table amongst clients sharing a set of direc-
tories. However, it is expensive to share such a mapping
as the table can be large and is frequently updated (which
is against R1). Thus, instead of building a table, we de-
vise a deterministic mapping which can be reconstructed
from a small amount of shared information. Our scheme
is similar in spirit to consistent hashing [16] (R3), but
modified not to rely on random positioning of the nodes.
Our deterministic mapping scheme is unique in that it
can reflect the space limits at each service (R2). The H
parameter can be used to adjust the extent to which we
satisfy R2—a bigger value for H is likely to produce a
better-balanced mapping that achieves storage utilization
in proportion to the imposed storage limits.

Algorithm. Our deterministic mapping scheme is for-
mally described in Figure 5. For each backend stor-
age provider, the mapper utilizes multiple virtual storage
nodes, where the number of virtual nodes per provider is
proportional to the storage capacity limit imposed by the
provider for a given user. (The concept of virtual nodes
is similar to that used in systems such as Dynamo [9].)
Then it divides the hash space into H partitions. H is
configurable, but remains fixed even as the service con-

1: procedure INIT(Services, HashSpace)
2: H← HashSpace
3: . H: bigger values produce better mappings
4: N←{(sId,vId) : sId ∈ Services,0≤ vId < Cap(sId)}
5: . Cap: normalized capacity of the service
6: for all i < H do
7: map[i] = Sorted(N, key = md5(i,sId,vId))
8: return map
9: procedure GETMAPPING(ob ject,R)

10: i← hash(ob ject) mod H
11: return Uniq(map[i], R)
12: . Uniq: the first R distinct services from the given list
13: . R: the number of replications

Figure 5: The deterministic mapping algorithm.

figuration changes. H can be arbitrary large, with larger
values producing better-balanced mappings for hetero-
geneous storage limits. During initialization, the map-
ping scheme associates differently ordered lists of vir-
tual nodes with each of the H partitions. The ordering
of the virtual nodes in the list associated with a partition
is determined by hashing the index of the partition, the
service ID, and the virtual node ID. Given an object hash
n, the mapping returns the first R distinct services from
the list associated with the (n mod H)th partition, similar
to Rendezvous hashing [28]. These are then the storage
services over which MetaSync replicates the object.

Note that this mapping function takes as input the set
of storage providers, the capacity settings, value of H,
and a hash function. Thus, it is necessary to share only
these small pieces of information in order to reconstruct
this mapping across different users sharing a set of files.
The list of services and the capacity limits (see S in Fig-
ure 6) is part of the service configuration and is shared
through the config file. The virtual node list is popu-
lated proportionally to service capacity, and the ordering
inside each list is determined by a uniform hash func-
tion. Thus, the resulting mapping of objects onto ser-
vices should be proportional to service capacity limits
for large values of H (R2 holds). Finally, when N nodes
are removed from or added to the service list, an object
needs to be newly replicated into at most N nodes.

Example. Figure 6 illustrates an example of how our
mapping scheme works with four services (|S|= 4) pro-
viding 1GB or 2GB of free spaces–for example, A(1)
means that service A provides 1GB of free space. Given
the replication requirement (R = 2) and the hash space
(H = 20), we can populate the initial mapping as in Fig-
ure 6. Subfigures (a) and (b) illustrate the realignment
of objects upon the removal of service B(2) and the in-
clusion of a new service E(3). The gray-marked services
in the replication set indicates the realignment of objects
producing the same hash value in the hash space.

4

S = {A(1), B(2), C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
m[1] = [B2, B1, C1, C2, A1, D1] = [B, C
m[2] = [D1, A1, B2, C1, C2, B1] = [D, A
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20

]
]

]

S = {A(1), C(2), D(1)}
N = {A1, C1, C2, D1}

m[0] = [A1, C2, D1, C1] = [A, C]
m[1] = [C1, C2, A1, D1] = [C, A
m[2] = [D1, A1, C1, C2] = [D, A
...
m[19] = [C2, D1, A1, C1] = [C, D

]
]

]

A]

D]

S = {A(1), C(2), D(1), E(3)}
N = {A1, C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1, C1,E3] = [A, E C]
m[1] = [C1, E1, E3, C2, A1, E2, D1] = [C, A
m[2] = [D1, A1, E3, E1, C1, C2, E2,] = [D, A
...
m[19] = [C2, E3, E2, D1, E1, A1, C1] = [C, E D

]
]

]

E(3)

(a) New mapping after service B(2) is removed

(b) New mapping after service E(3) is added

E

E

R=22
D(1)}

Service D has 1GB storage

: Service config
: Normalized config
: Hash space
: Replication

S
N
H
R

Figure 6: An example of deterministic mapping and its reconfigura-
tions, where a service is removed in (a) and then a service is newly
added in (b). The initial mapping is deterministically generated by Fig-
ure 5, given the configuration of four services, A(1),B(2),C(2),D(1)
where the number in a parenthesis represents the storage capacity of
each service. (a) shows a new mapping after service B is removed from
the initial service configuration, and (b) shows a new mapping after ser-
vice E (with 3GB) is added after (a). The grayed mappings indicate the
new replication upon reconfiguration, and the dotted rectangle in (b)
represents redundant replications that will be garbage collected later.

3.3 Synchronization: pPaxos

The file structure allows MetaSync to minimize synchro-
nization barriers. Each object in the object store can be
independently uploaded as it uses content-based address-
ing. Each owned file (e.g., head client *) is also inde-
pendent since we ensure that only the owner client modi-
fies the file. Thus, a potential race condition can only oc-
cur when a client wants to modify the shared files (e.g.,
master).

Challenges. In distributed settings with multiple
clients and storage providers, it is not straightforward to
create a synchronization barrier to coordinate updates.
This is particularly the case for MetaSync, where we as-
sume that backend storage services are passive, mean-
ing that protocols for synchronization are performed only
by clients, and direct communication between clients
are not allowed. Clients only communicate indirectly
through storage providers. Furthermore, a client should
be able to make progress even when some services are

Paxos Disk Paxos pPaxos

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

a register

...

disk blocks

Propose Accept Propose Check
① ② ① ②

append-only
list

Propose Check
① ②

(a) (b) (c)

Figure 7: Comparison of operations between a proposer and an ac-
ceptor in Paxos [17], Disk Paxos [13], and pPaxos. When proposed,
an acceptor in Paxos makes a decision and sends it to the proposer,
whereas proposed data is stored in per-client disk blocks in Disk Paxos
and in an append-only list in pPaxos. In Disk Paxos, the proposer needs
to check a block for every client to determine which proposal was ac-
cepted. In comparison, Paxos can be considered as having a register to
store the proposal.

down or slow.

pPaxos. Creating a synchronization barrier for shared
files can be reduced to the problem of having the clients
come to a consensus on which client can perform the
next update to the shared files. Since clients do not have
communication channels between each other, they need
to rely on storage services to achieve this consensus.
We devise a variant of Paxos [17], called pPaxos (pas-
sive Paxos). Using pPaxos, a client proposes that it will
change the shared files and gets a lease for performing
the update when the proposal is accepted.

We overview pPaxos by relating it to the classic Paxos
algorithm (see Figure 7(a)). Each client works as a pro-
poser and learner, and it relies on backend services as
acceptors. The major challenge here is that we can-
not assume that the backend services will implement the
Paxos acceptor algorithm and provide the correspond-
ing APIs. Instead, we require them to provide a sim-
ple storage API corresponding to that of an append-only
list (Figure 7(c)). The append-only list atomically ap-
pends an incoming message at the end of the list. This
abstraction is either readily available or can be layered on
top of the interface provided by existing storage service
providers, as all storage services we examine linearize
the order of API invocations. With this append-only list
abstraction, backend services can act as passive accep-
tors. While these acceptors cannot actively decide as to
which proposal is promised or accepted, clients who re-
trieve a set of messages stored on the list can determine
the “accepted” decisions, under the assumption that other
clients follow the pPaxos protocol as well. This is why
we refer to the storage providers as passive acceptors; ac-
ceptors delegate the decisions to clients and only respond
with what they have stored on the append-only list.

We note that this is possible due to the nature of
backend storage APIs. With a log, all clients see the

5

Proposer

1: procedure PROPOSEROUND(value, round, acceptors)
prepare:

2: concurrently
3: for all a← acceptors do
4: SEND(〈PREPARE,round〉 → a)
5: newlog← FETCHLOG(a)
6: CHECKIFACCEPTED(a,newlog)
7: if a.round > round then abort
8: wait until done by a majority of acceptors

accept:
9: accepted←{a.accepted|a ∈ acceptors}

10: if |accepted|> 0 then
11: p← argmax{p.round|p ∈ accepted}
12: value← p.value
13: proposal← 〈round,value〉
14: concurrently
15: for all a← acceptors do
16: SEND(〈ACCEPT, proposal〉 → a)
17: newlog← FETCHLOG(a)
18: CHECKIFACCEPTED(a,newlog)
19: if a.round > round then abort
20: wait until done by a majority of acceptors

done:
21: return proposal
22: procedure CHECKIFACCEPTED(acc, logs)
23: for all l ∈ logs do
24: switch l do
25: case 〈PREPARE,round〉
26: acc.round←max(l.round,acc.round)
27: case 〈ACCEPT, prop〉
28: if l.prop.round ≥ acc.round and
29: l.prop.round > acc.accepted.round then
30: acc.accepted← l.prop
31: procedure ONRESTARTAFTERFAILURE(round)
32: round← round +1
33: WAITEXPONENTAILLY

34: PROPOSEROUND(value,round,acceptors)

Passive Acceptor

35: procedure ONNEWMESSAGE(〈msg,round〉)
36: APPEND(〈msg,round〉 → log)

Figure 8: pPaxos Algorithm.

same order; thus they come to the same conclusion as to
which proposal is accepted. Since the underlying APIs
vary across services, we summarize the details of how
MetaSync provides the append-only list abstraction for
each provider in Table 3. Note that the set of pPaxos ac-
ceptors need not be the same as the set of storage service
backends. As future work, MetaSync can even use non-
storage services like Twitter as pPaxos acceptors in order
to provide the necessary synchronization operations.

Algorithm. With the availability of an append-only
list, the algorithm itself becomes a simple adaptation of
the classic Paxos, but one where the decision making is
performed by proposers. It mainly replaces acceptors’
responses by client actions to fetch the logs and make
decisions based on the contents of the logs. As Figure 8
shows, 1) when a client wants to acquire a lease, it sends
a PREPARE to all the acceptors with a round number (Line
3-4). Then, it fetches the logs from the acceptors and
checks whether the round number is promised by accep-
tors (Line 5-6, 25-26). It aborts this round of the pro-
posal if it sees an acceptor who has already promised a
round number which is larger than its current round num-
ber (Line 7). 2) If there are any accepted proposals, it
proposes the accepted proposal with the largest proposal
number to the acceptors; otherwise, it proposes the client
itself as the lease holder for the current round number
by sending ACCEPT REQ to all acceptors (Line 9-16). The
ACCEPT REQ will be accepted when a majority of accep-
tors have a smaller or equal round number (Line 17-20,
27-30). When it is accepted by the quorum, it can safely
commit that it has the lease (Line 21). In case it fails, it
does random exponential back-off and tries again (Line
31-34).

The lease is expired after a timeout or when the holder
releases it. If the holder wants to keep it beyond expira-
tion, it needs to extend the timeout by running the pPaxos
algorithm again. However, we assume that each client
does not require the lease to be long as updating master

takes a short amount of time, given that the shared file
is just a pointer to the root object. When the holder fin-
ishes its modifications, it sends a DONE message to each
acceptor.

Note that this setting and the following algorithm is
similar to that of Disk Paxos [13], and pPaxos can be
considered as an optimized version of Disk Paxos ((Fig-
ure 7(b)) as it uses fewer number of messages by taking
advantage of the append-only list abstraction.

pPaxos in action. When files in the system are
changed, an update happens as follows (see Figure 9):
1) the client updates the local objects and head client to
point to the current root. Again, note that both updates
do not require running pPaxos, 2) put the data blocks to
the appropriate backend services, and 3) it updates mas-
ter with its head client. As mentioned, the last oper-
ation requires MetaSync to run pPaxos and get a lease
as only one client can modify the master file at a time.
If it fails to get the lease, it needs to wait until the lease
holder finishes updating or the corresponding lease times
out. When it succeeds, it updates master, and stores it
on all connected backends. Note that it may update the
quorum (dn/2e) first, and then update the rest in back-
ground. Then, clients polling the master are notified, and
they fetch new objects from backend services in parallel,

6

Figure 9: pPaxos in action: a file check-in. À MetaSync converts the
file to an object, and updates its local copy of head to point to the newly-
updated root directory (§3.1). Á Then, MetaSync asynchronously puts
new objects redundantly into backend services, based on our mapping
scheme (§3.2). Â Finally, MetaSync runs pPaxos to update master,
providing a consistent view to the global state among clients accessing
multiple storage backends. Note that it may run garbage collection later
to remove unused objects (§3.8).

based on their replication sets. pPaxos may also be used
for proposing values of the shared files directly, instead
of proposing a lease holder.

Merging. Merging can happen under the following
conditions: (1) when a client synchronizes its local
head with the master; (2) when a client wants to up-
date the master. More specifically for the second con-
dition, before requesting a lease to update the master,
the client must merge the latest version of master into
its head client. After acquiring the lease, if the latest
version has been updated by others, the client needs to
release the lease and retry merging with the latest ver-
sion.

For merging master into head client, MetaSync em-
ploys three-way merging as in other version control sys-
tems. It allows many conflicts to be automatically re-
solved. Three-way merging cannot resolve all the con-
flicts, as two clients may change the same parts of a file.
In that case, it can delegate applications to make a de-
cision. In our current implementation of sync daemon,
for example, it generates a new version of the file with
.conflict.N extension, which allows for the users to re-
solve it later.

3.4 Fault Tolerance

To operate on top of multiple storage services that are
often unreliable (they are free!), faulty (they scan and
tamper with your files), and insecure (some are outside of
your country), MetaSync should be designed to tolerate

APIs Description

(a) Storage abstraction
get(path) Retrieve a file at path
put(path, data) Store data at path
delete(path) Delete a file at path
list(path) List all files under path directory
poll(path) Check if path was changed
share(path,email) Share path with email

(b) Synchronization abstraction
append(path, msg) Append msg to the list at path
fetch(path, index) Fetch a log at index from path

Table 1: Abstractions for backend storage services.

faults. MetaSync achieves fault-tolerance via replication
(§3.2) for data and via pPaxos for consistency control
(§3.3).

Data model. By replicating each object into multiple
backends (R in §3.2), MetaSync can tolerate loss of file
or directory objects, and tolerate temporal unavailability
or failures of R−1 concurrent services.

File integrity. Similarly with other version control sys-
tems [14], the hash tree ensures each object’s hash value
is valid from the root (master). Then, each object’s in-
tegrity can be verified by calculating the hash of the con-
tent and comparing with the name. The master file can
be signed to protect against tampering. When MetaSync
finds an altered object file, it can retrieve the data from
another replicated service through the deterministic map-
ping.

Consistency control. MetaSync runs pPaxos for seri-
alizing updates to the shared files, config and master.
The underlying pPaxos protocol requires 2 f + 1 accep-
tors to ensure correctness if f nodes may fail under the
fail-stop model. The shared files are stored across all the
backends. Assuming non-byzantine behavior, the shared
files can be stored in f +1 backends, and clients take the
most recent version by comparing the history.

3.5 Backend abstractions

Storage abstraction. Any storage service having an
interface to allow clients to read and write files can be
used as a storage backend of MetaSync. More specifi-
cally, it needs to provide the basis for the the functions
listed in Table 1(a). Many storage services provide a
developer toolkit to build a customized client accessing
user files [10, 15]; we use these APIs to build MetaSync.
Not only cloud services provide these APIs, it is also
straightforward to build these functions on user’s private
servers through SSH or FTP. MetaSync currently im-
plements storage backends with many different services:
Dropbox, GoogleDrive, OneDrive, Box.net, Baidu, and

7

local disk.

Synchronization abstraction. To build the primitive
for synchronization, an append-only log, MetaSync can
use any services that provide functions listed in Ta-
ble 1(b). How to utilize the underlying APIs to build
the append-only log varies across services. Note that the
set of services for synchronization abstraction does not
need to be the same with storage service backends. We
summarize how MetaSync builds it for each provider in
Table 3.

3.6 Translators

MetaSync provides a plugin system, called Translators,
for encryption. Translators is highly modular so can eas-
ily be extended to support a variety of other transforma-
tions such as compression. Plugins in Translators should
implement two interfaces, put and get, which will be in-
voked before storing to and after retrieving from back-
end services. Plugins are chained, so that when an object
is stored, MetaSync invokes a chain of put calls in se-
quence. Similarly, when an object is retrieved, it goes
through the same chain but in reverse.

3.7 Sharing

Sharing a folder for collaboration is one of the important
features in many synchronization services. As backend
services support sharing, MetaSync allows users to share
a folder and work on the folder. While not many backend
services have APIs for sharing functions—only Google
Drive and Box have it among services that we used—
others can be implemented through browser emulation.
The person who initiated sharing may also stop sharing
similarly. Once sharing invitation is sent and accepted,
synchronization works the same way as in the one-user
case. If files are encrypted, we assume that all collabora-
tors share the encryption key.

3.8 Other Issues

Collapsing directory All storage services manage in-
dividual files for uploading and downloading. As we see
later in Table 5, throughput for uploading and download-
ing small files are very low compared to those for larger
files. As an optimization, we collapse all files in a direc-
tory into a single object when the total file size is small
enough.

Garbage collection Each object is immutable, hence
modifying a file creates new objects and leaves the old
objects associated with the file obsoleted. To prevent
waste of space, we must perform garbage collection peri-
odically. A client doing garbage collection first retrieves
each client’s head from the backends. If there are dis-
tinct head files for a client, it finds the most up-to-date
version. Traversing through tress from the head files and
the master, objects not appearing in any client’s tree can

Component Lines of code

Synchronization Manager 320
Storage service 4,512
Translators 78
Mapping scheme 259
Etc 2,354
Total 7,523

Table 2: Components of our MetaSync prototype, and their estimated
complexity, in terms of lines of Python code.

be safely removed. Note that when user wants to keep
old versions, they can create a snapshot by storing a root
pointer of the snapshot, and objects used in the snapshots
would not be garbage collected.

Versioning. MetaSync keeps track of versions of en-
tire objects by default. It allows user to roll back to any
history version by checking out a particular head. Be-
sides, users can also custmoize the length of history as a
parameter to the garbage collection. Note that some stor-
age services already provide some form of versioning (or
revision) features. By integrating these existing features,
MetaSync can not only remove wasted storage for keep-
ing old versions in the object store, but also improve the
performance of the garbage collection.

4 Implementation
We have implemented a prototype of MetaSync in
Python, components of which are summarized in Ta-
ble 2. The current prototype supports five backend ser-
vices including Box, Baidu, Dropbox, Google Drive and
OneDrive, and works on all major OSes including Linux,
Mac and Windows. MetaSync provides two front-end in-
terfaces for users, a command line interface similar to git
and a synchronization daemon similar to Dropbox.

Abstractions. All storage services provide APIs
equivalent to MetaSync’s storage abstractions, like get()

and put(), defined in Table 1. Since each service varies
in supporting poll(), we summarize the implementa-
tion details of each service provider in Table 3. For im-
plementing synchronization abstractions, append() and
fetch(), we utilized the commenting features in Box,
Google and OneDrive, and versioning features in Drop-
box. If a service does not provide any efficient ways
to support synchronization APIs, MetaSync falls back to
the default implementation of those APIs that are built on
top of their storage APIs, described in Baidu on Table 3.

Front-ends. The MetaSync daemon monitors file
changes by using inotify in Linux, FSEvents and kQueue

in Mac and ReadDirectoryChangesW in Windows, all ab-
stracted by the Python library watchdog. Upon notifi-
cation, it automatically uploads detected changes into
backend services. It batches consecutive changes by
waiting 3 more seconds after notification so that all mod-

8

Service Synchronization API Storage API
append() fetch() poll()

Box
Google
OneDrive

Create an empty log file and post com-
ments to the log file.

Download the entire comments attached
on the log file. To reduce the overhead
of downloading the entire log, obsoleted
comments are deleted during a garbage
collection.

Use events API, allowing long polling.
But it monitors over all files rather
than a specific directory. (Google and
OneDrive: periodically get master and
see if any changes since the last fetch.)

Baidu Create a log directory, and consider
each file as a log entry. To order each log
entry (files), we assign a monotonically
increasing sequence number to each file
name. If the number is already taken,
we will get an ItemAlreadyExists er-
ror and try with a next sequence number.

List the log directory, and download
new log entries since last fetch (all files
with subsequent sequence numbers).

Use diff API to monitor if there is any
change over the user’s drive. But it mon-
itors all files in the account rather than a
specific directory.

Dropbox Create a log file, and overwrite the file
with a new log entry, relying on Drop-
box’s versioning (revisions).

Request a list of versions (revision his-
tory) of the log file.

Use longpoll delta, a blocked call,
that returns if there is a change under
path.

Disk† Create a log file, and append a new log
entry at the end of the file.

Read the new log entries from the log
file.

Emulate long polling with a condition
variable.

Table 3: Implementation details of synchronization and storage APIs for each service. Note that implementations of other storage APIs (e.g., put())
can be directly built with APIs provided by services, with minor changes (e.g., supporting namespace).

ified files are checked in as a single commit to reduce
synchronization overhead. It also polls to find changes
uploaded from other clients; if so, it merges them into
the local drive. The command line interface allows users
to manually manage and synchronize files, The usage of
MetaSync commands is similar to that of version con-
trol systems (e.g., metasync init, clone, checkin, push,
pull).

5 Evaluation
To evaluate MetaSync, this section answers the following
questions in turn:

• What are the performance characteristics of pPaxos?
• How quickly does MetaSync reconfigure mappings as

services are added or removed?
• What is the end-to-end performance of MetaSync?

Each evaluation is done on Linux servers connected to
gigabit LAN except for synchronization performance in
§5.4. Since most of services do not have native clients
for Linux, we compared synchronization time for native
clients and MetaSync on Windows desktops connected
to 100Mbps LAN.

5.1 Design constraints

We first estimate the economic value of MetaSync’s free
space, combining five commercial synchronization ser-
vices (see Table 4). The free space (2082 GB used in this
experiment) MetaSync provides is worth $750 of Ama-
zon S3. Users can also add more free or commercial ser-
vices, or even multiple accounts in the same service. In
addition to the economic value of the amount of storage,

Service Free space Cost
(GB) ($/GB/year)

Amazon S3 - $0.36
Box 10 GB $0.60
Baidu 2048 GB $0.80
Dropbox 2 GB $1.20
Google Drive 15 GB $0.24
OneDrive 7 GB $0.50

Table 4: Amount of free space provided by each service and costs for
additional space. For cost we listed cheapest prices per GB and year.

MetaSync’s goal is to build a reliable and performant ser-
vice on top of potentially fragile backend services. We
measured the performance variance of commercial ser-
vices in Table 5. One important observation is that all
services are slow in handling small files. This provides
MetaSync the opportunity to beat their performance by
combining small objects.

5.2 pPaxos performance

We design a micro-benchmark to measure how quickly
pPaxos reaches the consensus, varied on the number of
concurrent writers (clients). The results of the experi-
ment with 1-5 clients and single passive acceptor over 5
storage providers are summarized in Figure 10. A sin-
gle run of pPaxos took about 3.6 sec on average under a
single writer model to verify acceptance of the proposal.
This requires four round trips. It took about 6.5 sec with
5 competing clients. One important thing to emphasize
is that, even with a slow connection to Baidu, pPaxos can
quickly be completed with a single winner of that round.
Although the fastest client would likely win each round

9

Services 1 KB 1 MB 10 MB 100 MB
U.S. China U.S. China U.S. China U.S. China

Baidu 0.7 / 0.8 1.8 / 2.6 0.21 / 0.22 0.12 / 1.48 0.22 / 0.94 0.13 / 2.64 0.24 / 1.07 0.13 / 3.38
Box 1.4 / 0.6 0.8 / 0.2 0.73 / 0.44 0.11 / 0.12 4.79 / 3.38 0.13 / 0.68 17.37 / 15.77 0.13 / 1.08

Dropbox 1.2 / 1.3 0.5 / 0.5 0.59 / 0.69 0.10 / 0.20 2.50 / 3.48 0.09 / 0.41 3.86 / 14.81 0.13 / 0.68
Google 1.4 / 0.8 - 1.00 / 0.77 - 5.80 / 5.50 - 9.43 / 26.90 -

OneDrive 0.8 / 0.5 0.3 / 0.1 0.45 / 0.34 0.01 / 0.05 3.13 / 2.08 0.11 / 0.12 7.89 / 6.33 0.11 / 0.44

KB/s MB/s MB/s MB/s

Table 5: Upload and download bandwidths of four different file sizes on each service from U.S. and China. This preliminary experiment explains
three design constrains of MetaSync. First, all services are extremely slow in handling small files, 7k/34k times slower in uploading/downloading
1 KB files than 100 MB on Google storage service. Second, the bandwidth of each service approaches its limit at 100 MB. Third, performance
varies with locations, 30/22 times faster in uploading/downloading 100 MB when using Dropbox in U.S. compared to China.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

L
at

en
cy

(s
ec

)

#Clients

Google
Dropbox

OneDrive
Box

Baidu
All

Figure 10: Latency (sec) to run a single pPaxos round with combina-
tions of backend services and competing clients: when using 5 different
storage providers as backend nodes (all), the common path of pPaxos at
a single client takes 3.6 sec, and the slow path with 5 competing clients
takes 6.5 sec on average.

(unfair), we believe this situation is not a problem at all
in practice. We also measured the latency of running
pPaxos over multiple storage providers. Figure 10 shows
the result of 1-5 clients runs over all 5 storage providers.
Compared with results of the single storage provider, the
latency doesn’t degrade with increase of the number of
storage providers.

5.3 Deterministic mapping

We then evaluate how fairly our deterministic mapping
distributes objects into storage services with different ca-
pacity requirements, in three replication settings (R =
1,2,3). We tested our scheme by synchronizing source
tree of Linux kernel 3.10.38, consisting of a large num-
ber of small files (464 MB), to five storage services, as
detailed in Table 6. In R = 1, where we upload each
object once, MetaSync locates objects in balance to all
services—it uses 0.02% of each service’s capacity con-
sistently. However, since Baidu provides 2TB (98% of
MetaSync’s capacity in this configuration), most of ob-
jects will be allocated into Baidu, to satisfy the storage
requirement of each service. This situation improves for

R = 2, since objects will be placed into other services be-
yond Baidu where a large number of copies are already
stored. Baidu gets 6.2 MB of more storage when in-
creasing R = 2→ 3, and our mapping scheme preserves
the capacity requirements for the rest of services (using
1.3%). Even for the challenging case, S = 5,R = 3 where
an object should be stored in more than majority of ser-
vices, MetaSync’s mapping scheme produces distribu-
tion of objects that uses close to even fraction of each
storage, yet deterministic and resilient to reconfiguration,
which we cover next.

The entire mapping plan is deterministically derived
from the shared config. The size of information to be
shared is small (less than 50B for the above example),
and after calculating the mapping once it is stored locally
as a cache, which is packed as 3MB.

The relocation scheme is resilient to its changes as
well, meaning that redistribution of objects should be
minimal. As in Table 6, when we increased the con-
figured replication by one (R = 2→ 3) with 4 services,
MetaSync replicated 193 MB of objects in about half
minute. When we removed a service from the configura-
tion, MetaSync redistributed 96.5 MB of objects in about
20 sec. After adding and removing a storage backend,
MetaSync needs to garbage collect redundant objects
from the previous configuration, which took 40.6/14.7
sec for removing/adding OneDrive in our experiment.
However, the garbage collection will be asynchronously
initiated on idle time.

5.4 End-to-end performance

We selected three kinds of workloads to demonstrate per-
formance characteristics of MetaSync. First, Linux ker-
nel source tree (2.6.1) represents the most challenging
workload for all storage services due to its large volume
of files and directory (920 directories and 15k files, total
166 MB). Second, MetaSync’s paper represents a causal
use of synchronization service for users (3 directories
and 70 files, total 1.6 MB). Third, sharing photos is for
maximizing the throughput of each storage service with
bigger files (50 files, total 193 MB).

10

Repl. Dropbox Google Box OneDrive Baidu Total
(2 GB) (15 GB) (10 GB) (7 GB) (2048 GB) (2082 GB)

R = 1 77 (0.09%) 660 (0.75%) 475 (0.54%) 179 (0.20%) 86,739 (98.42%) 88,130 (100%)
0.34 MB (0.02%) 2.87 MB (0.02%) 2.53 MB (0.02%) 0.61 MB (0.01%) 463.8 MB (0.02%) 470.1 MB (0.02%)

R = 2 5,297 (3.01%) 39,159 (22.22%) 25,332 (14.37%) 18,371 (10.42%) 88,101 (49.98%) 176,260 (100%)
27.4 MB (1.34%) 206.4 MB (1.34%) 138.2 MB (1.35%) 98.3 MB (1.37%) 470.0 MB (0.02%) 940.3 MB (0.04%)

R = 3 13,039 (4.93%) 66,964 (25.33%) 54,505 (20.62%) 41,752 (15.79%) 88,130 (33.33%) 264,390 (100%)
67.2 MB (3.28%) 355.7 MB (2.32%) 294.8 MB (2.88%) 222.7 MB (3.11%) 470.1 MB (0.02%) 1410.4 MB (0.07%)

Table 6: Replication results generated by our deterministic mapping scheme (§3.2) for Linux kernel 3.10.38 (Table 8) on 5 different services with
various storage space, given for free. We synchronized total 470 MB of files, consisting of 88k objects, and replicated (R = 2,R = 3) them across all
storage backends. Note that for this mapping test, we turned off the optimization of collapsing directories. Our deterministic mapping distributed
objects in balance: for example, in R = 2, Dropbox, Google, Box and OneDrive used consistently 1.35% of their space, even with 2-15 GB of
capacity variation. Also, R = 1 approaches to the perfect balance, using 0.02% of storage space in all services, and R = 3 provides the strongest
fault-tolerance (f = 2), resilient against simultaneous failures of two services.

Workload Dropbox Google Box OneDrive Baidu MetaSync
S = 5,R = 1 S = 5,R = 2 S = 4,R = 1 S = 4,R = 2

Linux kernel source 2h 45m > 3hrs > 3hrs 2h 03m > 3hrs 1h 8m 13m 51s 18m 57s 12m 18s
MetaSync paper 48 42 148 54 143 55 50 27 26
Photo sharing 415 143 536 1131 1837 1185 180 137 112

Table 8: Synchronization performance (sec) of 5 native clients provided by each storage service, and with four different settings of MetaSync.
For S = 5,R = 1, using all of 5 services without replication, MetaSync provides comparable performance to native clients–median speed for
MetaSync paper and photo sharing, but outperforming for Linux kernel workloads. However, for S = 5,R = 2 where replicating objects two times,
MetaSync outperform >10 times faster than Dropbox in Linux kernel and 2.3 times faster in photo sharing; we can finish the synchronization right
after uploading a single replication set (but complete copy) and the rest replication will be scheduled in background. To understand how slow
straggler (Baidu) affects MetaSync’s performance (R = 1), we also measured synchronization time on S = 4 without Baidu, where MetaSync vastly
outperforms all of commodity services

Reconfiguration #Objects Time (sec)
Added / Removed Replication / GC

S = 4,R = 2→ 3 101 / 0 33.7 / 0.0
S = 4→ 3,R = 2 54 / 54 19.6 / 40.6
S = 3→ 4,R = 2 54 / 54 29.8 / 14.7

Table 7: Time to relocate 193 MB amount of objects (photo-sharing
workloads in Table 8) on increasing the replication ratio, removing an
existing service, and adding one more service. MetaSync quickly re-
balances its mapping (and replication) based on its new config. We
used four services, Dropbox, Box, GoogleDrive, and OneDrive (S = 4)
for experimenting with the replication, including (S = 3→ 4) and ex-
cluding OneDrive (S = 4→ 3) for re-configuring storage services.

Table 8 summarizes our experimental results of end-
to-end synchronization performance for all workloads,
comparing native clients provided by each service with
MetaSync. Each workload was copied into one client’s
synchronized directory before synchronization started.
The synchronization time was measured as the length of
interval between one desktop starts uploading files and
the creation time of the last file synced on the other desk-
top. We also measured the synchronization time for all
workloads by using MetaSync with four different set-
tings. MetaSync outperforms any individual service for
all three workloads. Especially for Linux kernel source,
it took only 12 minutes when using 4 services (exclud-

ing Baidu located outside of the country) compared to
more than 2 hrs with native clients. This improvement
is possible due to using concurrent connections to multi-
ple backends, and optimizations like collapsing directo-
ries. Although those clients from the services may not
be optimized for the highest possible throughput con-
sidering that they may run as a background service, it
would be beneficial for users to have a faster option. It is
also worth to note, replication helps sync time, especially
when there is a slower service as shown in the case with
S=5,R=1,2; a downloading client can use faster services
while an uploading client can upload a copy on back-
ground.

Clone. Storage services often limit its throughput of
downloading: for example, Dropbox is saturated its
bandwidth at 5.1 MB/s and Google Drive is similarly
saturated at 3.4 MB/s, shown in Figure 11. By using
multiple storage services, MetaSync can fully exploit the
bandwidth of local connection of users, not limited by
the allowed throughput of each services. For example, if
Dropbox took 38.0 sec and Google Drive took 57.2 sec
to download 193 MB data, then the ideal download speed
of using both can be computed, 1/(1/38.0+1/57.2) =
22.8. In comparison, MetaSync with (S=2, R=2) took
25.5 sec, which we believe it approximately reaches to

11

0

10

20

30

40

50

60

70

Dropbox Google OneDrive S=2
(R=1)

S=2
(R=2)

S=3
(R=1)

S=3
(R=2)

Ti
m

e
(s

ec
)

Figure 11: Time (sec) to clone an entire storage of 193 MB photos.
When using individual services, Dropbox, Google, and OneDrive, it
took 40-70 sec to clone, but MetaSync could improve the performance
of cloning, 25-30 sec (30%) by leveraging the distributions of objects
across multiple services.

the theoretical limit, considering all the extra bookkeep-
ing in MetaSync.

6 Related Work
MetaSync borrows many ideas from prior systems. We
maintain file objects similar to a distributed version
control system like [14], or Ori file system [20], but
MetaSync can combine or split each file object for effi-
cient store and retrieval. Content-based addressing is not
a new idea, used by existing file systems [4, 18, 20, 26],
or by deduplication [7]. However, MetaSync utilized
content-based addressing for a unique purpose, asyn-
chronously uploading or downloading objects to backend
services. While algorithms for distributing or replicating
objects have also been proposed and explored by past
systems [6, 24, 25], MetaSync devised our replication
scheme for deterministic way to minimize sharing, and
also to satisfy space restrictions of multiple backends.

A major line of work, starting with SUNDR [18] but
carrying through SPORC [12], Frientegrity [11], and De-
pot [19], is how to provide tamper resistance and privacy
on untrusted storage nodes. These systems develop var-
ious methods of detecting and resolving equivocations
after the fact, but ultimately they have a weaker con-
sistency model than MetaSync’s linearizable updates. A
MetaSync user knows that when a push completes, that
set of updates is visible to all other users and no conflict-
ing updates will be later accepted. We make a stronger
assumption about storage system behavior – that failures
across multiple storage providers are independent, and
this allows us to provide a simpler and more familiar
model to applications and users.

Syndicate [23] provides applications with a storage
layer by composing existing storage systems. Compared
to MetaSync, it is designed as storage APIs for applica-
tions rather than synchronization services for end users.
Thus, they mostly delegate design choices like how to

manage files and replicate to application policy. Further-
more it needs to run a separate metadata service. Re-
cent studies propose combining multiple cloud services
as storage backend [1, 30] for the goal such as minimiz-
ing cost and provide better reliability. These systems rely
on server-side solutions as well.

The coupling between user’s local disk and cloud stor-
age may cause the data loss and inconsistency in the
cloud due to the local data corruption and crashes dur-
ing synchronization. Even worse, such data corruption
may pollute all copies on other devices. ViewBox [31]
detects corrupt data through data checksumming and en-
sures the consistency by adopting view-based synchro-
nization. MetaSync can also guarantee data integrity
through the hash-based file objects and provide lineariz-
able updates by using pPaxos.

7 Conclusion
MetaSync provides a secure and reliable file synchro-
nization service on top of cloud storage providers in
which the user trusts only open-source software running
on their own computers. By combining multiple existing
services, it provides a highly available service during the
outage or even shutdown of a provider. To achieve a con-
sistent update among cloud services without modifying
their APIs, we devised a client-based form of Paxos. To
let users easily resize the storage of services, add a new
service or move out from a service, we developed a repli-
cation scheme that deterministically duplicates and re-
distributes file objects with minimal sharing among ser-
vices. We prototyped MetaSync with five commercial
storage backends, and our benchmark shows it outper-
forms the fastest individual service in synchronization
and cloning.

We plan a number of extensions to our system as fu-
ture work. We are working on techniques to automate
the proof of correctness of the pPaxos algorithm. We
would like to support resilience against Byzantine behav-
ior of backend services; because clients are trusted in our
model, we believe that this can be done efficiently at the
cost of increasing the replication factor among partici-
pating services. Another feature is to use more efficient
storage replication techniques, such as RAID, to reduce
replication overhead. Most services automatically com-
press related objects stored by the same user; we would
like to do something similar. Finally, we would like to
be able to integrate other sequencing services, such as
Twitter, as a pPaxos acceptor.

References
[1] A. Bessani, M. Correia, B. Quaresma, F. André, and

P. Sousa. DepSky: Dependable and secure storage in a
cloud-of-clouds. In Proceedings of ACM EuroSys confer-
ence, pages 31–46, 2011.

12

[2] C. Brooks. Cloud Storage Often Results in Data
Loss. http://www.businessnewsdaily.com/1543-
cloud-data-storage-problems.html, October 2011.

[3] S. Byrne. Microsoft OneDrive for business modifies files
as it syncs. http://www.myce.com/news/microsoft-
onedrive-for-business-modifies-files-as-it-
syncs-71168, Apr. 2014.

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-
tri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure storage:
A highly available cloud storage service with strong con-
sistency. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 143–157,
2011.

[5] Canonical Ltd. Ubuntu One: Shutdown notice. https:
//one.ubuntu.com/services/shutdown.

[6] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ouster-
hout, and M. Rosenblum. Copysets: Reducing the fre-
quency of data loss in cloud storage. In Proceedings of
the 2013 USENIX Conference on Annual Technical Con-
ference (ATC), pages 37–48, 2013.

[7] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. De-
centralized deduplication in SAN cluster file systems. In
Proceedings of the 2009 USENIX Conference on Annual
Technical Conference (ATC), 2009.

[8] J. Constine. Dropbox hits 200m users, unveils new
“for business” client combining work and personal files.
http://techcrunch.com/2013/11/13/dropbox-
hits-200-million-users-and-announces-new-
products-for-businesses, Nov. 2013.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP),
pages 205–220, 2007.

[10] Dropbox API. https://www.dropbox.com/
static/developers/dropbox-python-sdk-1.6-
docs/index.html, Apr. 2014.

[11] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W.
Felten. Social networking with Frientegrity: Privacy and
integrity with an untrusted provider. In Proceedings of the
21st USENIX Conference on Security Symposium, 2012.

[12] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group collaboration using untrusted
cloud resources. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion (OSDI), 2010.

[13] E. Gafni and L. Lamport. Disk Paxos. Distributed Com-
puting, 16(1):1–20, Feb. 2003.

[14] Git Internals - Git Objects. http://git-scm.com/
book/en/Git-Internals-Git-Objects.

[15] Google Drive API. https://developers.google.
com/drive/v2/reference/, Apr. 2014.

[16] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of
the Twenty-ninth Annual ACM Symposium on Theory of
Computing (STOC), pages 654–663. ACM, 1997.

[17] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[18] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of
the 6th Conference on Symposium on Operating Systems
Design and Implementation (OSDI), pages 1–9, 2004.

[19] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI), pages 1–12, 2010.

[20] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and
D. Mazières. Replication, history, and grafting in the Ori
file system. In Proceedings of the 24th Symposium on Op-
erating Systems Principles (SOSP), pages 151–166, 2013.

[21] R. C. Merkle. A digital signature based on a conven-
tional encryption function. In In Proceedings of the 7th
Annual International Cryptology Conference (CRYPTO),
pages 369–378, Santa Barbara, CA, 1987.

[22] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Hu-
ber, and E. Weippl. Dark clouds on the horizon: Using
cloud storage as attack vector and online slack space. In
USENIX Security, 2011.

[23] J. Nelson and L. Peterson. Syndicate: Democratizing
cloud storage and caching through service composition.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, pages 46:1–46:2, 2013.

[24] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. How-
ell, and Y. Suzue. Flat datacenter storage. In Proceedings
of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI), pages 1–15, 2012.

[25] D. A. Patterson, G. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks (RAID). In Proceed-
ings of the 1988 ACM SIGMOD International Conference
on Management of Data, pages 109–116, 1988.

[26] S. Quinlan and S. Dorward. Venti: A new approach to
archival data storage. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST),
2002.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of the
2001 Conference on Applications, Technologies, Archi-

13

http://www.businessnewsdaily.com/1543-cloud-data-storage-problems.html
http://www.businessnewsdaily.com/1543-cloud-data-storage-problems.html
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
https://one.ubuntu.com/services/shutdown
https://one.ubuntu.com/services/shutdown
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
http://git-scm.com/book/en/Git-Internals-Git-Objects
http://git-scm.com/book/en/Git-Internals-Git-Objects
https://developers.google.com/drive/v2/reference/
https://developers.google.com/drive/v2/reference/

tectures, and Protocols for Computer Communications
(SIGCOMM), pages 149–160, 2001.

[28] D. Thaler and C. V. Ravishankar. Using name-based map-
pings to increase hit rates. IEEE/ACM Transactions on
Networking, 6(1):1–14, 1998.

[29] Z. Whittaker. Dropbox under fire for ‘DMCA
takedown’ of personal folders, but fears are vastly
overblown. http://www.zdnet.com/dropbox-under-
fire-for-dmca-takedown-7000027855, Mar. 2014.

[30] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-effective geo-
replicated storage spanning multiple cloud services. In
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 292–308, 2013.

[31] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Viewbox: integrating local file systems
with cloud storage services. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies
(FAST), pages 119–132. USENIX, 2014.

14

http://www.zdnet.com/dropbox-under-fire-for-dmca-takedown-7000027855
http://www.zdnet.com/dropbox-under-fire-for-dmca-takedown-7000027855

