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Security is a big concern
in cloud adoption



Why are cache-based side 
channel attacks important?

● CPU cache is the most fine-grained shared 
resource in the cloud environment

● Cache-based side channel attacks:
● 2003 DES by Tsunoo et al. (with 226.0 samples)
● 2005 AES by Bernstein et al. (with 218.9 samples)
● 2005 RSA by Percival et al. (-) 
● …
● 2011 AES by Gullasch et al. (with 26.6 samples)
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Background: cache terminologies 
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Background: cache terminologies 
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Background: cache-based side 
channel
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Cache-based side channel attacks 
(cache attacks)

while(1) {
    beg = rdtsc()
    access memory
    diff = rdtsc() - beg
}
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Types of cache attacks

● Time-driven attacks

: measure access time depending on states of cache

● Passive time-driven attacks

: measure total execution time of victim
● Active time-driven attacks

: manipulate states of cache

● Trace-driven attacks
: probe which cache lines victim has accessed

→ Attackers should co-locate with a victim



Goal

To provide cloud tenants a protection 
mechanism against cache attacks:

● Active time-driven attacks

● Trace-driven attacks

● Minimal performance overhead

● Compatible with commodity hardware

But our solution still provides:



Idea: protect only sensitive data

● Give a private page to each cloud tenant
● No other tenants can cause cache interference

● Load sensitive data to the private page

void *sm_alloc(size_t size)

void sm_free(void *ptr)



Strawman: construct a private 
page 
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Strawman: assign a private page 
to each VM
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1. How to make sure that a private page stays  
    in the cache?



Strawman: assign a private page 
to each VM
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2. How to make it scalable if we increase 
    the number of VMs?



Strawman: assign a private page 
to each VM
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3. How to utilize the reserved regions?

~1 % x 5



Three challenges

1. How to make sure that a private page stays  
    in the cache?

    → Lock cache lines

2. How to make it scalable if we increase 
    the number of VMs?

    → Assign a private page per core

3. How to utilize the reserved regions?

    → Mediate accesses on reserved regions



1. Locking cache lines

● Locked: never evicted from the cache

● Inertia property of cache (shared LLC):
● An eviction only can happen when there is an 

attempt to add another item into the cache
● Cache lines will stay still until we access an 

address that is not in the cache



Cache interference
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Keep cache lines locked

● Context switch: 
● Reload locked cache lines

● Hyperthread: 
● Force gang schedule

(no two VMs run on the same core simultaneously)

● Simultaneous execution: 
● Never map pages that collide with private pages



2. Assign a private page per core
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2. Assign a private page per core
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Save / load private pages on 
context switch
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3. Utilize reserved regions
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Page Table Alert (PTA)
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Summary of design

● Tenants use a private page for sensitive data

● Assign a private page per core
● Use fixed amount of reserved memory
● Load a private page of VM on one of the core

● Utilize reserved regions
● Assign reserved regions to VMs as usual
● Mediate their accesses with PTA



Implementation: StealthMem

● Host OS: Windows Server 2008 R2
● bcdedit: configure reserved area as bad pages

● Hypervisor: HyperV
● Disable large pages (2MB/4MB)
● Mediate invd, wbinv instructions from VMs
● Expose a single private page to VM

Component Modified lines of code

Bootmgr/Winloader    500 lines of C

HyperV 5,000 lines of C



Evaluation

● How much overhead?
● How does it compare with the stock HyperV?
● How does it compare with other mechanisms?
● How to understand overhead characteristics?

● How easy to adopt in existing applications?
● How to secure popular block ciphers?



Overhead without large pages

Run Spec2006

Average

w/o large pages -4.9%

StealthMem -5.9%



Compare with PageColoring

● PageColoring: statically divide caches per VM
● Run SPEC2006 with various #VM

StealthMem PageColoring



Microbench: overheads with 
various working sets

● Microbench:
● Working set: vary array size between 1~12 MB 
● Read array in quasi-linear fashion
● Measure execution time

● Settings:
● Each VM has a private page
● 7 VMs: one VM runs microbench while others idle

– Baseline, PageColoring
– StealthMem (w/o PTA): do not utilize reserved regions
– StealthMem (w/ PTA)  : utilize reserved regions with PTA



Microbench: overheads with 
various working sets

TLB: 2MB = 4KB x 512 L3: 8MB 



Microbench: overheads with 
various working sets



Modifying existing applications

● e.g., modify Blowfish to use StealthMem

Encryption Size of S-box LoC changes

DES   256 * 8 = 2 kB        5 lines

AES 1024 * 4 = 4 kB      34 lines

Blowfish 1024 * 4 = 4 kB        3 lines

static unsigned long S[4][256];

original

typedef unsigned long ULA[256];
static ULA *S;

<@initialization function>
S = sm_alloc(4*4*256);

modified



Overhead of secured ciphers

● Encryption throughput of DES / AES / Blowfish
● Baseline: unmodified version
● Stealth: secured S-Box with StealthMem

A small buffer (50,000 bytes) A large buffer (5,000,000 bytes)

Cipher Baseline Stealth Baseline Stealth

DES   60 MB/s   58 -3%   59 MB/s   57 -3%

AES 150 MB/s 143 -5% 142 MB/s 135 -5%

Blowfish   77 MB/s   75 -2%   75 MB/s   74 -2%



Related work
● Initial abstraction of StealthMem (by Erlingsson and Abadi)

● Hardware-based:

● Obfuscating access patterns: PLcache, RPcache ...
● Dynamic cache partitioning
● App. specific hardware: AES encryption instruction

→ StealthMem works on commodity hardware

● Software-based:

● Static partitioning: PageColoring
● App. specific mitigation: reducing timing channels

→ StealthMem provides flexible, better performance



Conclusion

● StealthMem: an efficient system-level 
protection mechanism against cache-based 
side channel attacks

● Implement the abstraction of StealthMem
● Three new techniques:

● Locking cache lines
● Assigning a private page per core
● Mediating access on the private pages with PTA
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