
System-Level Protection Against
Cache-Based Side Channel

Attacks in the Cloud

Taesoo Kim, Marcus Peinado, Gloria Mainar-Ruiz

MIT CSAIL Microsoft Research

Security is a big concern
in cloud adoption

Why are cache-based side
channel attacks important?

● CPU cache is the most fine-grained shared
resource in the cloud environment

● Cache-based side channel attacks:
● 2003 DES by Tsunoo et al. (with 226.0 samples)
● 2005 AES by Bernstein et al. (with 218.9 samples)
● 2005 RSA by Percival et al. (-)
● …
● 2011 AES by Gullasch et al. (with 26.6 samples)

Background: CPU & Memory

L1L2

Background: cache structure

Core1

L3

Core2 Core3 Core4

RAM

~50 ~240

Cache missCache hit

16G

8M

>x 2046

Background: cache terminologies

L3

RAM

● Pre-image set: set of memory mapped into the
same cache line

Pre-image set

Background: cache terminologies

L3

RAM

● Pre-image set: set of memory mapped into the
same cache line

● Cache line set: set of cache lines mapped by
the same pre-image set

...
Cache line set

Pre-image set

Cache line

Different class of colored pages

(Colored pages)

Background: cache-based side
channel

L3

RAM

 Victim Attacker

Core1 Core2 Core3 Core4

~50 ~240

Cache missCache hit

16G

8M

Cache-based side channel attacks
(cache attacks)

while(1) {
 beg = rdtsc()
 access memory
 diff = rdtsc() - beg
}

diff

t
Core1

L3

Core2

RAM

 Victim Attacker

S-Box?

Types of cache attacks

● Time-driven attacks

: measure access time depending on states of cache

● Passive time-driven attacks

: measure total execution time of victim
● Active time-driven attacks

: manipulate states of cache

● Trace-driven attacks
: probe which cache lines victim has accessed

→ Attackers should co-locate with a victim

Goal

To provide cloud tenants a protection
mechanism against cache attacks:

● Active time-driven attacks

● Trace-driven attacks

● Minimal performance overhead

● Compatible with commodity hardware

But our solution still provides:

Idea: protect only sensitive data

● Give a private page to each cloud tenant
● No other tenants can cause cache interference

● Load sensitive data to the private page

void *sm_alloc(size_t size)

void sm_free(void *ptr)

Strawman: construct a private
page

L3

RAM

...

Core1

M1
VM1

M1

Core2

VM2

● Do not assign pre-image sets of the private
pages (same colored pages) to other VMs

M1 A private page of VM1

Reserved pages

~1%
Reserved

Strawman: assign a private page
to each VM

L3

RAM

Core1

M1
VM1

M1

Core2

VM2
M2

M2

VM3
M3

M3

VM4
M4

VM5
M5

M4 M5

...

1. How to make sure that a private page stays
 in the cache?

Strawman: assign a private page
to each VM

L3

RAM

Core1

M1
VM1

M1

Core2

VM2
M2

M2

VM3
M3

M3

VM4
M4

VM5
M5

M4 M5

...

2. How to make it scalable if we increase
 the number of VMs?

Strawman: assign a private page
to each VM

L3

RAM

Core1

M1
VM1

M1

Core2

VM2
M2

M2

VM3
M3

M3

VM4
M4

VM5
M5

M4 M5

...

3. How to utilize the reserved regions?

~1 % x 5

Three challenges

1. How to make sure that a private page stays
 in the cache?

 → Lock cache lines

2. How to make it scalable if we increase
 the number of VMs?

 → Assign a private page per core

3. How to utilize the reserved regions?

 → Mediate accesses on reserved regions

1. Locking cache lines

● Locked: never evicted from the cache

● Inertia property of cache (shared LLC):
● An eviction only can happen when there is an

attempt to add another item into the cache
● Cache lines will stay still until we access an

address that is not in the cache

Cache interference

L3

CPU

L1C

L2

L1D

 VM1

VM2

waiting

Context switches

L3

CPU (Hyperthread)

L1C

L2

L1D

 VM1 VM2

Hyperthread

Core1

L1C

L2

L3

L1D

Core2

L1C

L2

L1D

 VM1 VM2

Simultaneous execution

Keep cache lines locked

● Context switch:
● Reload locked cache lines

● Hyperthread:
● Force gang schedule

(no two VMs run on the same core simultaneously)

● Simultaneous execution:
● Never map pages that collide with private pages

2. Assign a private page per core

L3

RAM

Core1 Core2

...

M1

M2

M3 M4

VM3
M3

VM4
M4

VM5
M5

M5

M1
VM1

M1

VM2
M2

M2

● Load a private page of active VM onto the
private page of the core

2. Assign a private page per core

L3

RAM

Core1 Core2

...

M1

M2

M3 M4

VM3
M3

VM4
M4

VM5
M5

M5

M1
VM1

M1

VM2
M2

M2

● No cache interference between running VMs

No cache interferece

Save / load private pages on
context switch

L3

RAM

Core1 Core2

...

M1

M2

M4

VM2
M2

VM4
M4

VM5
M5

M5

M1
VM1

M1

VM3
M3

M2M3

M3

3. Utilize reserved regions

L3

RAM

Core1 Core2

...

M1

M2

M3 M4
M5

M1
VM1

M1

VM2
M2

M2

● Assign pages to VMs
● Mediate their accesses

Page Table Alert (PTA)

L3

RAM

Core1

...

M1
VM1

M1

HPA

EPT

V
I
I
I
I
I

...

Hypervisor

VM2

Core2

● Mark invalid on reserved pages (pre-image sets)
● Mediate their accesses in the page fault handler

...

③

②①

②①

Handle Page Table Alert (PTA)

Access ① ③

...

①

②

③

④

PTA

①

Reload

...

①

②

③

④

PTA

②

Locked

①

②

Reload

PTA

...

①

②

③

④

③

②

Reload

③

②

...

①

②

③

④

Mark invalid

valid pages + locked
= Set-associativity

Set-associativity
(w=3)

Cache

Cache line set

①

②

③

④

...

Memory
Private
page

Pre-image set

Mark
invalid

Summary of design

● Tenants use a private page for sensitive data

● Assign a private page per core
● Use fixed amount of reserved memory
● Load a private page of VM on one of the core

● Utilize reserved regions
● Assign reserved regions to VMs as usual
● Mediate their accesses with PTA

Implementation: StealthMem

● Host OS: Windows Server 2008 R2
● bcdedit: configure reserved area as bad pages

● Hypervisor: HyperV
● Disable large pages (2MB/4MB)
● Mediate invd, wbinv instructions from VMs
● Expose a single private page to VM

Component Modified lines of code

Bootmgr/Winloader 500 lines of C

HyperV 5,000 lines of C

Evaluation

● How much overhead?
● How does it compare with the stock HyperV?
● How does it compare with other mechanisms?
● How to understand overhead characteristics?

● How easy to adopt in existing applications?
● How to secure popular block ciphers?

Overhead without large pages

Run Spec2006

Average

w/o large pages -4.9%

StealthMem -5.9%

Compare with PageColoring

● PageColoring: statically divide caches per VM
● Run SPEC2006 with various #VM

StealthMem PageColoring

Microbench: overheads with
various working sets

● Microbench:
● Working set: vary array size between 1~12 MB
● Read array in quasi-linear fashion
● Measure execution time

● Settings:
● Each VM has a private page
● 7 VMs: one VM runs microbench while others idle

– Baseline, PageColoring
– StealthMem (w/o PTA): do not utilize reserved regions
– StealthMem (w/ PTA) : utilize reserved regions with PTA

Microbench: overheads with
various working sets

TLB: 2MB = 4KB x 512 L3: 8MB

Microbench: overheads with
various working sets

Modifying existing applications

● e.g., modify Blowfish to use StealthMem

Encryption Size of S-box LoC changes

DES 256 * 8 = 2 kB 5 lines

AES 1024 * 4 = 4 kB 34 lines

Blowfish 1024 * 4 = 4 kB 3 lines

static unsigned long S[4][256];

original

typedef unsigned long ULA[256];
static ULA *S;

<@initialization function>
S = sm_alloc(4*4*256);

modified

Overhead of secured ciphers

● Encryption throughput of DES / AES / Blowfish
● Baseline: unmodified version
● Stealth: secured S-Box with StealthMem

A small buffer (50,000 bytes) A large buffer (5,000,000 bytes)

Cipher Baseline Stealth Baseline Stealth

DES 60 MB/s 58 -3% 59 MB/s 57 -3%

AES 150 MB/s 143 -5% 142 MB/s 135 -5%

Blowfish 77 MB/s 75 -2% 75 MB/s 74 -2%

Related work
● Initial abstraction of StealthMem (by Erlingsson and Abadi)

● Hardware-based:

● Obfuscating access patterns: PLcache, RPcache ...
● Dynamic cache partitioning
● App. specific hardware: AES encryption instruction

→ StealthMem works on commodity hardware

● Software-based:

● Static partitioning: PageColoring
● App. specific mitigation: reducing timing channels

→ StealthMem provides flexible, better performance

Conclusion

● StealthMem: an efficient system-level
protection mechanism against cache-based
side channel attacks

● Implement the abstraction of StealthMem
● Three new techniques:

● Locking cache lines
● Assigning a private page per core
● Mediating access on the private pages with PTA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

