
Recovering from intrusions in
distributed systems with Dare

Taesoo Kim

Ramesh Chandra, Nickolai Zeldovich

MIT CSAIL

Attackers routinely compromise
distributed systems

Recovery is manual and
time-consuming

● Example: SourceForge.net attack
● A hosting site for open source projects (>300K)

Jan 28, 2011 Reset passwords of 2 million users

Jan 26, 2011 An operator detected a targeted attack

Shutdown CVS, SSH and WebVC services

Jan 29, 2011 Validate data such as commits and releases

Restore services after fixing the bug

Retro: automatic recovery
in a single machine

● Normal execution:
● Record information about the system execution
● Build a dependency graph of a system

Review: Action History Graph
(AHG)

CVS

SSHD

She
ll

fork()

write()

read()

● Objects: data (e.g., file) and actor (e.g., process)
● Checkpoint: snapshot of state at a particular time
● Action: unit of execution

● Each action has dependencies from/to objects

dependency

objects

tim
e

checkpoint

Review: repair with selective
re-execution

CVS

SSHD

She
ll

fork()

write()

read()

● Need to specify the attack action (e.g., fork)

checkpoint

dependency

objects

tim
e

Review: repair with selective
re-execution

CVS

SSHD

She
ll

fork()

write()

read()

● Need to specify the attack action (e.g., fork)
● Rollback objects affected by the attack

checkpoint

dependency

objects

tim
e

Review: repair with selective
re-execution

CVS

SSHD

She
ll

fork()

write()

read()

● Need to specify the attack action (e.g., fork)
● Rollback objects affected by the attack

checkpoint

dependency

objects

tim
e X

CVS

SSHD

She
ll

fork()

write()

read()

● Need to specify the attack action (e.g., fork)
● Rollback objects affected by the attack

checkpoint

dependency

objects

tim
e X

Review: repair with selective
re-execution

CVS

SSHD

She
ll

fork()

write()

read()

● Need to specify the attack action (e.g., fork)
● Rollback objects affected by the attack
● Re-execute the rest of the actions

checkpoint

dependency

objects

tim
e X

Review: repair with selective
re-execution

Challenges

AHG

Machine

AHG

Machine

1. How to record dependencies across machines?

2. How to replay network connections?

3. How to minimize re-exec. of long-lived process?

Overview of DARE's design

AHG

Machine A

Logs
Replayer

Logger

Distributed
Repair Ctrl

User

Kernel

Machine B

D-ctrl

Machine C

D-ctrl

Requests:
 - Rollback(checkpoint)
 - Re-execute(action)

Recording dependencies across
multiple machines

SSH

connect()

send()

Machine A

AHG

Soc
ke

t

SSHD

accept()

recv()

Machine B

AHG

Soc
ke

t

What if same IP and port used multiple times?

Approach: assign unique id to
sockets

SSH

connect()

send()

Machine A

SSHD

accept()

recv()

Machine B

Distributed
Repair Ctrl

AHG AHG

Distributed
Repair Ctrl

Send socket's unique id to the receiver

Soc
ke

t

Soc
ke

t

Repair network connections

Send rollback(id) request to the receiver

SSH

connect()

send()

Machine A

SSHD

accept()

recv()

Machine B

Distributed
Repair Ctrl

AHG AHG

Distributed
Repair Ctrl

Soc
ke

t

Soc
ke

t

Repair long-lived processes

● Repairing shell2 requires re-execution of shell1
SSHD

She
ll2

fork()

She
ll1

fork()

Repair long-lived processes

● Strawman: process checkpoint
● Problem: poor performance

● DMTCP
● Linux-CR

SSHD

She
ll2

fork()

She
ll1

fork()

(e.g., 0.6s w/ 4 MB log)

Approach: mark quiescent state

● Long-lived processes (e.g., daemon)
● Designed to be stateless

● Introduce mark_quiescent() syscall
● Application needs modification to use the syscall
● Re-running application rolls back state

Implementation

● Early prototype of DARE on Linux
● Extend Retro's logger / repair controller
● Add mark_quiescent() syscall
● GUI Tools

Component Lines of code

Logging kernel module 3,300 lines of C

AHG GUI Tool 2,000 lines of Python

Repair controller, managers 5,300 lines of Python

System library managers 800 lines of C

Evaluation

● Does it recover from a synthetic attack?
● SSH attack with multiple users involved

● Does it effectively minimize re-execution?
● mark_quiescent() works efficiently?

Experiment setup

SSH

VM A

SSHD

VM B

shared.c

Attacker

She
ll5 Users

Attacker

5 Users

User0
...

User4

User5
…

User9

User5
...

User9

Experiment results
● DARE recovers a synthetic attack

● 8,953 objects in AHG (two VMs)
● Restore the attack and rerun 10 legitimate users

Experiment setup: using
mark_quiescent()

SSH

VM A

SSHD

VM B

She
ll5 Users

Attacker

5 Users

shared.c

Attacker

User0
...

User4

User5
…

User9

Experiment results
● DARE effectively minimizes re-execution

● Modify SSHD to use mark_quiescent()
● Restore the attack and rerun 5 legitimate users
● Repair time: 3.7 s → 0.44 s

Open problems

● Missing dependencies
● What if password or SSH key are stolen?

● Repair across trust domains
● Who is allowed to undo an action?
● How to trust undo requests?

Related work
● Record-and-reexecute:

● Retro: initial design of repair controller, OS-level
● Warp: retroactive patching, repairing web app

● Restoring network connections:
● DMTCP: checkpoint and restore distributed processes
● Set/getsockopt: TCP repair mode on Linux 3.5

● Detecting attacks in distributed systems
● Vigilante: containment of internet worms
● Heat-ray: preventing identity snowball attacks

Conclusion

● Efficient recovery mechanism in distributed
systems using selective re-execution

● Three new techniques:
● Record dependencies across multiple machines
● Repair network connections
● Repair long-lived processes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

