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Attackers routinely compromise 
distributed systems



Recovery is manual and 
time-consuming

● Example: SourceForge.net attack
● A hosting site for open source projects (>300K)

Jan 28, 2011 Reset passwords of 2 million users

Jan 26, 2011 An operator detected a targeted attack

Shutdown CVS, SSH and WebVC services

Jan 29, 2011 Validate data such as commits and releases

Restore services after fixing the bug



Retro: automatic recovery 
in a single machine 

● Normal execution:
● Record information about the system execution
● Build a dependency graph of a system



Review: Action History Graph 
(AHG)
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● Objects: data (e.g., file) and actor (e.g., process)
● Checkpoint: snapshot of state at a particular time
● Action: unit of execution

● Each action has dependencies from/to objects
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Review: repair with selective 
re-execution
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Review: repair with selective 
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CVS
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● Need to specify the attack action (e.g., fork)
● Rollback objects affected by the attack
● Re-execute the rest of the actions
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Challenges
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1. How to record dependencies across machines?

2. How to replay network connections?

3. How to minimize re-exec. of long-lived process?



Overview of DARE's design
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Recording dependencies across 
multiple machines
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What if same IP and port used multiple times?



Approach: assign unique id to 
sockets
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Repair network connections

Send rollback(id) request to the receiver
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Repair long-lived processes

● Repairing shell2 requires re-execution of shell1
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Repair long-lived processes

● Strawman: process checkpoint
● Problem: poor performance

● DMTCP 
● Linux-CR

SSHD

She
ll2

fork()

She
ll1

fork()

(e.g., 0.6s w/ 4 MB log)



Approach: mark quiescent state

● Long-lived processes (e.g., daemon)
● Designed to be stateless

● Introduce mark_quiescent() syscall
● Application needs modification to use the syscall
● Re-running application rolls back state



Implementation

● Early prototype of DARE on Linux
● Extend Retro's logger / repair controller
● Add mark_quiescent() syscall
● GUI Tools

Component Lines of code

Logging kernel module 3,300 lines of C

AHG GUI Tool 2,000  lines of Python

Repair controller, managers 5,300 lines of Python

System library managers    800 lines of C



Evaluation

● Does it recover from a synthetic attack?
● SSH attack with multiple users involved

● Does it effectively minimize re-execution?
● mark_quiescent() works efficiently?



Experiment setup
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Experiment results
● DARE recovers a synthetic attack

● 8,953 objects in AHG (two VMs)
● Restore the attack and rerun 10 legitimate users



Experiment setup: using 
mark_quiescent()
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Experiment results
● DARE effectively minimizes re-execution

● Modify SSHD to use mark_quiescent()
● Restore the attack and rerun 5 legitimate users
● Repair time: 3.7 s → 0.44 s



Open problems

● Missing dependencies
● What if password or SSH key are stolen?

● Repair across trust domains
● Who is allowed to undo an action?
● How to trust undo requests?



Related work
● Record-and-reexecute:

● Retro: initial design of repair controller, OS-level
● Warp: retroactive patching, repairing web app

● Restoring network connections:
● DMTCP: checkpoint and restore distributed processes
● Set/getsockopt: TCP repair mode on Linux 3.5

● Detecting attacks in distributed systems
● Vigilante: containment of internet worms
● Heat-ray: preventing identity snowball attacks



Conclusion

● Efficient recovery mechanism in distributed 
systems using selective re-execution

● Three new techniques:
● Record dependencies across multiple machines
● Repair network connections
● Repair long-lived processes
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