
PRIDWEN
Universally Hardening SGX Programs

via Load-Time Synthesis
Fan Sang*,1, Ming-Wei Shih*,3, Sangho Lee4, Xiaokuan Zhang1,

Michael Steiner2, Mona Vij2, Taesoo Kim1

1Georgia Institute of Technology, 2Intel Labs, 3Microsoft, 4Microsoft Research
*Authors contributed equally to this work.

Prevalence of Cloud Computing Today

2

PC

Mobile
Internet of Things

Database

Network

3

Data in transit
Data at restData in use

User

Cloud Provider

Concerns with Cloud: Data Security

4

TLS/SSL

Disk EncryptionIntel SGX (*)

*Intel Software Guard Extension (SGX)

Cloud Provider

User

Existing Security Solutions

5

Code

Data

Privileged software
(e.g., OS, hypervisor)

SGX-capable CPU
Decrypt

Encrypt

Physical attacks
(e.g., memory snooping)

Enclave

External memory access

• Enclave: Isolated memory region
• Strict memory access control
• Memory encryption

• Remote attestation
• Allows for attesting code/data

inside a remote enclave
Access Deny

Intel SGX 101

6

Achilles’ Heel of SGX: Side-Channel Attacks

Code

Data

Privileged software
(e.g., OS, hypervisor)

SGX-capable CPUSGX Enclave

Shared Stateful Resources
(e.g., Cache, Page table, etc.)

Cloud providers as attackers (with root privilege)
• Side-channel inference with low-noise, high-resolution

Cloud Provider

Side-channel A
tta

cks

• Shared resources as side channels
• Page table [SP’15, Security’17]
• Cache [WOOT’17, ATC’17, CHES’17]
• Branch predictor [Security’17, ASPLOS’18]
• TLB [CCS’17, Security’18]
• CPU pipelines [Security’18, EuroSP’19, SP’20, SP’21]

• Allow the attacker to infer fine-grained information inside the enclave
→ Break the security guarantees of SGX

7

Question: How to address the side-channel attacks against SGX?

Side-Channel Attacks Against SGX

8

Side Channel Mitigation Schemes

Scheme Mitigation Target

SGX-Shield [NDSS’17] Fine-grained ASLR
Varys [ATC’18] High-frequent interrupt-based attacks

T-SGX [NDSS’17] Page-fault attacks
Cloak [Security’17] Cache attacks

HyperRace [DSC’19] Hyperthread-based attacks
Retpoline & Qspectre [2018] Spectre attacks

Similar design choices
• Require no hardware modification
• Minimum manual efforts (instrumentation-based)

9

Enclave

Remote

C/C++

Program

1011
0100

Protected
binary

Customized
compiler

SGX-capable CPU

Protected
code/data

Mitigation
scheme

Deployment of a Mitigation Scheme

Local

10

Enclave

Remote

C/C++

Program

1011
0100

Protected
binary

Customized
compiler

SGX-capable CPU

Protected
code/data

Mitigation
scheme

Each Scheme Targets Limited Types of Attacks

Local

Problem: Multiple side channels can co-exist

Solution: Compose multiple mitigation schemes

11

Enclave

Local Remote

C/C++

Program

1011
0100

Protected
binary

SGX-capable CPU

Protected
code/data

…

Cache
attacks

Page-fault
attacks

Compiler

Mitigation schemes

HT-based
attacks

Composing Multiple Mitigation Schemes

That’s it?

12

Problems with Naïve Scheme Composition

Local Remote

SRC

Program

1011
0100

Protected
binary

No TSX
supportCompiler

Cache
attacks

Page-fault
attacks

Target attacks

HT-based
attacks

Static
Enforcement

Require TSX
supportIncompatible

Undeployable

Redundant

HT disabled

Enclave

Enclave

Enclave

13

When Can We Make the Best Decisions?

As Close to the Final Execution as Possible!

14

Enclave

Local Remote

C/C++

Program

1011
0100

Protected
binary

SGX-capable CPU

Protected
code/data

…

Cache
attacks

Page-fault
attacks

Compiler

HT-based
attacks

Local Scheme Enforcement

Target attacks

15

Enclave

SRC

Program

Local Remote

1011
0100

Binary

1011
0100

Binary

Protected
code/data

No TSX support
HT Disabled

Requirements
• Detection of hardware configurations
• Selective enforcement of schemes
• Validation of enforcement

Post-Deployment Scheme Enforcement

16

PRIDWEN

17

Enclave PRIDWEN Loader

1011
0100

User
Binary

Protected
code/data

Prober

Synthesizer Validator

Pass Manager

TSGX Varys ASLR CoTest

Detection of hardware configurations
Selective enforcement of schemes

Validation of enforcement

PRIDWEN Overview

• cpuid, syscall are not allowed
• OS is untrusted

• Target binary is dynamically generated
• Only the static part (loader) is attestableChallenges in SGX

18

Enclave PRIDWEN Loader

1011
0100

User
Binary

Protected
code/data

Prober

Synthesizer Validator

Pass Manager

TSGX Varys ASLR CoTest

Detection of hardware configurations
Selective enforcement of schemes

Validation of enforcement

PRIDWEN Overview

Challenges in SGX

• Approach: Load-time synthesis
• Take the intermediate representation (IR) of a program as input
• Support compilation and instrumentation of the IR
• Provide APIs for implementing schemes as instrumentation passes

19

Selective Enforcement of Schemes

• Advantages over native binary
• Friendly for code analysis and instrumentations
• Platform independent

• IR selection: WebAssembly (WASM)
• Lightweight (small instruction set), small TCB
• Supports multiple high-level languages (e.g., C/C++, Rust)
• Straightforward compilation

20

Line of Code Binary Size (MiB)

PRIDWEN backend 8,166 1.26
LLVM x86 backend 80,449 1,026.00

Use IR as Input

int foo(int x) {
if (x != 0) {
return x * x;

}
return 0;

}

(func (;0;) (param i32)
result i32)
local.get 0
local.get 0
i32.mul
local.set 1
local.get 0
if (result i32)
local.get 1

else
i32.const 0

end)

C Language WASM IR

Compilation Decoding1011
0100

WASM
binary

21

Supported by opensource compiler
Require no source-code modifications

Supported by PRIDWEN

C to WebAssembly

(func (;0;) (param i32)
result i32)
local.get 0
local.get 0
i32.mul
local.set 1
local.get 0
if (result i32)
local.get 1

else
i32.const 0

end)

IR-level

+local.get 0

+i32.add

Hook before

Hook after

test edi, edi
je $1 ; else

$1: xor eax, eax
$2: mov rsp, rbp

pop rbp
ret

push rbp
mov rbp, rsp
sub rsp, 0x10

jmp $2

mov eax, edi
imul eax, edi Hook before

Hook after

+mov r15, $1

+lfence

Native-level

22

Flexible Instrumentation

• IR-level
onFunctionStart(CompilerContext *ctx)
onFunctionEnd(CompilerContext *ctx)
onControlStart(CompilerContext *ctx)
onControlEnd(CompilerContext *ctx)
onInstrStart(CompilerContext *ctx)
onInstrEnd(CompilerContext *ctx)

• Native-level
onMachineInstrStart(CompilerContext *ctx, MachineInstr *mi)
onMachineInstrEnd(CompilerContext *ctx, MachineInstr *mi)

23

PRIDWEN Instrumentation APIs

24

Enclave

1011
0100

WASM
Binary

Protected
code/data

Prober

Synthesizer Validator

Pass Manager

TSGX Varys ASLR CoTest

TSX is available
HT is disabled
TSX is not available
HT is enabled

PRIDWEN In Action

PRIDWEN Loader

25

Evaluation: Overhead of PRIDWEN Loader

• The performance of synthesizing small and large programs
• Small program (~50 kB): 50 - 60 ms
• Large program (~500 kB): < 500 ms

Paid only once

• Relative runtime performance of PRIDWEN-synthesized
applications compared to native versions
• Lighttpd: 1.5x
• SQLite: 1.3x
• libjpeg: 1.4x
• Recent study shows in-browser WASM JITs on SPEC: 1.45x – 1.55x

26

Evaluation: Baseline Runtime Performance

27

Evaluation: Overhead of Mitigation Schemes

• The performance of libjpeg and SQLite
• HW-assisted: 1.9x
• SW-only: 3.4x

Comparable to the original implementations

• SGX side-channel attacks can co-exist
• Existing model for deploying mitigation schemes is limited
• We propose PRIDWEN to achieve scheme composition
• Detect hardware configurations
• Adaptively enforce mitigation schemes with an in-enclave loader
• Extensible framework to support more schemes

28

Conclusion

https://github.com/sslab-gatech/Pridwen

https://github.com/sslab-gatech/Pridwen

Q&A

Fan Sang†,1, Ming-Wei Shih3, Sangho Lee4, Xiaokuan Zhang1,

Michael Steiner2, Mona Vij2, Taesoo Kim1

1Georgia Institute of Technology, 2Intel Labs, 3Microsoft, 4Microsoft Research

†fsang@gatech.edu

Thank You!

Systems Software & Security Lab

