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Prevalence of Cloud Computing Today
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Concerns with Cloud: Data Security
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(e.g., memory snooping)
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External memory access

• Enclave: Isolated memory region
• Strict memory access control
• Memory encryption

• Remote attestation
• Allows for attesting code/data

inside a remote enclave
Access Deny

Intel SGX 101
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Achilles’ Heel of SGX: Side-Channel Attacks
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Cloud providers as attackers (with root privilege)
• Side-channel inference with low-noise, high-resolution
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• Shared resources as side channels
• Page table [SP’15, Security’17]
• Cache [WOOT’17, ATC’17, CHES’17]
• Branch predictor [Security’17, ASPLOS’18]
• TLB [CCS’17, Security’18]
• CPU pipelines [Security’18, EuroSP’19, SP’20, SP’21]

• Allow the attacker to infer fine-grained information inside the enclave
→ Break the security guarantees of SGX
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Question: How to address the side-channel attacks against SGX?

Side-Channel Attacks Against SGX
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Side Channel Mitigation Schemes

Scheme Mitigation Target

SGX-Shield [NDSS’17] Fine-grained ASLR
Varys [ATC’18] High-frequent interrupt-based attacks

T-SGX [NDSS’17] Page-fault attacks
Cloak [Security’17] Cache attacks

HyperRace [DSC’19] Hyperthread-based attacks
Retpoline & Qspectre [2018] Spectre attacks

Similar design choices
• Require no hardware modification
• Minimum manual efforts (instrumentation-based)
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Each Scheme Targets Limited Types of Attacks

Local

Problem: Multiple side channels can co-exist

Solution: Compose multiple mitigation schemes
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Composing Multiple Mitigation Schemes

That’s it?
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Problems with Naïve Scheme Composition
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When Can We Make the Best Decisions?

As Close to the Final Execution as Possible!
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Requirements
• Detection of hardware configurations
• Selective enforcement of schemes
• Validation of enforcement

Post-Deployment Scheme Enforcement
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PRIDWEN
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Enclave PRIDWEN Loader
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PRIDWEN Overview

• cpuid, syscall are not allowed
• OS is untrusted

• Target binary is dynamically generated
• Only the static part (loader) is attestableChallenges in SGX
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• Approach: Load-time synthesis
• Take the intermediate representation (IR) of a program as input
• Support compilation and instrumentation of the IR
• Provide APIs for implementing schemes as instrumentation passes
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Selective Enforcement of Schemes



• Advantages over native binary
• Friendly for code analysis and instrumentations
• Platform independent

• IR selection: WebAssembly (WASM)
• Lightweight (small instruction set), small TCB
• Supports multiple high-level languages (e.g., C/C++, Rust)
• Straightforward compilation
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Line of Code Binary Size (MiB)

PRIDWEN backend 8,166 1.26
LLVM x86 backend 80,449 1,026.00

Use IR as Input



int foo(int x) {
if (x != 0) {
return x * x;

}
return 0;

}

(func (;0;) (param i32)
result i32)
local.get 0
local.get 0
i32.mul
local.set 1
local.get 0
if (result i32)
local.get 1

else
i32.const 0

end)

C Language WASM IR

Compilation Decoding1011
0100

WASM
binary
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Supported by opensource compiler
Require no source-code modifications

Supported by PRIDWEN

C to WebAssembly



(func (;0;) (param i32)
result i32)
local.get 0
local.get 0
i32.mul
local.set 1
local.get 0
if (result i32)
local.get 1

else
i32.const 0

end)

IR-level

+local.get 0

+i32.add

Hook before

Hook after

test edi, edi
je $1 ; else

$1: xor eax, eax
$2: mov rsp, rbp

pop rbp
ret

push rbp
mov rbp, rsp
sub rsp, 0x10

jmp $2

mov eax, edi
imul eax, edi Hook before

Hook after

+mov r15, $1

+lfence

Native-level
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Flexible Instrumentation



• IR-level
onFunctionStart(CompilerContext *ctx) 
onFunctionEnd(CompilerContext *ctx) 
onControlStart(CompilerContext *ctx) 
onControlEnd(CompilerContext *ctx) 
onInstrStart(CompilerContext *ctx) 
onInstrEnd(CompilerContext *ctx) 

• Native-level
onMachineInstrStart(CompilerContext *ctx, MachineInstr *mi) 
onMachineInstrEnd(CompilerContext *ctx, MachineInstr *mi) 
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PRIDWEN Instrumentation APIs
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PRIDWEN In Action

PRIDWEN Loader
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Evaluation: Overhead of PRIDWEN Loader

• The performance of synthesizing small and large programs
• Small program (~50 kB): 50 - 60 ms
• Large program (~500 kB): < 500 ms

Paid only once



• Relative runtime performance of PRIDWEN-synthesized 
applications compared to native versions
• Lighttpd: 1.5x
• SQLite: 1.3x
• libjpeg: 1.4x
• Recent study shows in-browser WASM JITs on SPEC: 1.45x – 1.55x
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Evaluation: Baseline Runtime Performance
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Evaluation: Overhead of Mitigation Schemes

• The performance of libjpeg and SQLite
• HW-assisted: 1.9x
• SW-only: 3.4x

Comparable to the original implementations



• SGX side-channel attacks can co-exist
• Existing model for deploying mitigation schemes is limited
• We propose PRIDWEN to achieve scheme composition
• Detect hardware configurations
• Adaptively enforce mitigation schemes with an in-enclave loader
• Extensible framework to support more schemes
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Conclusion

https://github.com/sslab-gatech/Pridwen

https://github.com/sslab-gatech/Pridwen
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