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Abstract

Kernel synchronization primitives are the backbone of
any OS design. Kernel locks, for instance, are crucial for
both application performance and correctness. However, un-
like application locks, kernel locks are far from the reach
of application developers, who have minimal interpolation
of the kernel’s behavior and cannot control or influence the
policies that govern kernel synchronization behavior. This
disconnect between the kernel and applications can lead to
pathological scenarios in which optimizing the kernel syn-
chronization primitives under one context, such as high con-
tention, leads to adversarial effects under a context with no
lock contention. In addition, rapid-evolving heterogeneous
hardware makes kernel lock development too slow for mod-
ern applications with stringent performance requirements
and frequent deployment timelines.

This paper addresses the above issues with application-
informed kernel synchronization primitives. We allow appli-
cation developers to deploy workload-specific and hardware-
aware kernel lock policies to boost application performance,
resolve pathological usage of kernel locks, and even enable
dynamic profiling of locks of interest. To showcase this idea,
we design SYNCORD, a framework to modify kernel locks
without recompiling or rebooting the kernel. SYNCoRD ab-
stracts key behaviors of kernel locks and exposes them as
APIs for designing user-defined kernel locks. SYNCoRD pro-
vides the mechanisms to customize kernel locks safely and
correctly from the user space. We design five lock policies
specialized for new heterogeneous hardware and specific
software requirements. Our evaluation shows that SYNCorRD
incurs minimal runtime overhead and generates kernel locks
with performance comparable to that of the state-of-the-art
locks.

1 Introduction

With the ending of Moore’s Law and Dennard scaling, the ex-
ponential growth of single-processor performance has come
to a standstill. Hence, application developers now resort to
customization, rather than generalization, to further squeeze
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out the performance from the hardware. For instance, differ-
ent applications work best with changing underlying system
mechanisms. Although a generic mechanism often provides
acceptable performance, it rarely matches the performance
of a specialized mechanism, whose performance difference
often is an order of magnitude or more [10, 34, 59, 70].
Such a major improvement stems from the fact that spe-
cialization bridges the semantic gap between applications
and the underlying system [23, 63]: It establishes the con-
text under which an application requests functionality from
the system. Thus, the underlying system can provide the
most suitable implementation or even allow applications to
provide their own implementation. The method of special-
ization is not new. For instance, prior works have targeted
the widely used Linux OS that has become a major perfor-
mance bottleneck for applications [29, 33, 47, 53, 61]. As a
result, kernel customization has been extensively studied in
the context of scheduling [34], networking [49], storage [70],
and accelerators [10]. Although such works mostly focus on
the scheduling aspect of the IO, they do not expose one of
the basic building blocks of today’s software design: concur-
rency control. Hence, this work takes a step in that direction
by enabling the customization of the kernel synchronization
primitives that have never been exposed to applications.
Kernel synchronization primitives, especially locks, are of
paramount importance to ensuring correctness, achieving
good performance, and scalability for applications [8, 9, 35, 37,
52]. Traditionally, kernel developers bake these primitives as
a part of the OS implementation. Since it is difficult to change
these primitives dynamically, the kernel developers favor
supporting common scenarios and make all the decisions
regarding their design and implementation. Thus, all these
primitives are invisible and are out of reach of applications.
Given evolving hardware and changing software require-
ments, this static approach of lock design raises two issues:
missing hardware and software contexts. From the hardware
perspective, applications using kernel components, which
rely on such generic primitives, suffer from regression issues
in pathological cases [8, 37, 52]. In particular, these primitives



suffer from a high level of contention with increasing core
count [8], which requires further optimization for the under-
lying hardware [11, 21, 51]. In addition, increasing hardware
heterogeneity in modern systems further exacerbates this
issue [4, 5, 16, 41]. Second, from the software perspective,
these baked generic primitives lack application context. As
a result, it can lead to pathological cases, such as missing
readers-writer context [11], priority inversion [35, 38, 52],
scheduler subversion [58], and lock-holder preemption [36].

The current practice of addressing these issues involves
developing synchronization primitives for specific scenar-
ios [12, 21, 26, 39, 42, 45, 46, 51]. However, designing, im-
plementing, and verifying new synchronization primitives
is challenging. In addition, developers need a huge amount
of effort to upstream and maintain them. To satisfy fast-
evolving scenarios and requirements, synchronization primi-
tives should be easily changeable and even on the fly instead
of providing point-solutions as in previous works.

This paper proposes the idea of application-informed ker-
nel synchronization primitives that enables users to develop
custom lock policies to maximize performance or resolve
pathological cases. For example, with an asymmetric mul-
ticore processor machine, in which processors operate at a
different speed [4, 5, 16], application developers may want
to prioritize lock waiters on fast cores to maximize perfor-
mance. To demonstrate this idea, we design and implement
SYNCORD, a framework built to safely modify kernel locks on
the fly without recompiling or rebooting the kernel. We ab-
stract and modularize the semantics of the locking primitives
and expose them in the form of APIs. A developer uses these
APIs for implementing policies, such as NUMA-awareness,
priority boosting, readers-writer preference [11, 21, 37] etc.
SyNCoRrbp then verifies these policies and safely patches the
running kernel in the end. It provides the capability to de-
ploy custom code for a wide range of lock instances: from
a single lock instance to a set of locks, or every lock in the
kernel. Besides deploying lock policies, SYNCorp further al-
lows users to profile locks at fine granularity. Our approach
departs from the conventional tools profiling a fixed set of
statistics for all kernel locks [73]. Instead, a user can now
collect any lock statistic on arbitrary locks.

The ultimate goal of SYNCORD is to completely realize the
idea of contextual concurrency control [57], which enables
users to modify any synchronization primitives from the
user space in a safe manner. As a first step in kernel lock
customization, our SYNCORD prototype currently supports
non-blocking locks. In particular, SYNCorp allows users to
write their own logic for reordering lock waiters, setting pri-
orities between competing threads to acquire a lock. We sup-
port three existing non-blocking primitives: SHFLLock [37],
CNA [19], and the stock readers-writer lock in Linux. We
further demonstrate the generality of SYNCorD by adapting
four different locking algorithms to the kernel and optimiz-
ing them based on our evaluation platform. In addition, we

provide a case study of lock profiling using SYNCorp and
show how it simplifies the performance analysis of a lock
algorithm. Our evaluation shows that the custom algorithms
developed with SyNCorp increase the application perfor-
mance by up to three orders of magnitude compared to the
generic locks.

This paper makes the following contributions:

« Application-defined concurrency. We propose the
idea of on-the-fly modification of lock design. To realize
that, we design and implement the SyNCorD frame-
work.

APIs for non-blocking locks. We provide a set of
APIs that exposes the key decisions of non-blocking
locks to implement various lock algorithms.

Lock algorithms. We implement four lock algorithms
and optimize them based on the platform. The optimized
versions outperform generic locks up to three orders of
magnitude.

Custom fine-granularity profiling. SYNCOrD pro-
vides custom, fine-granularity lock profiling that simpli-
fies locks’ performance analysis with smaller overhead.

2 Background And Motivation

Modifying kernel locking primitives without recompiling
and rebooting the OS spans various domains of concurrent
OS design. We first discuss the evolution of locks, followed
by various mechanisms for kernel customization and the
specific need for dynamic patching for kernel locks.

2.1 Lock evolution

Locks are widely used and heavily influenced by hardware.
For example, queue-based locks minimize cache-line con-
tention [51] among CPUs by forming a queue of waiters who
spin on private cache lines. Hierarchical locks [11, 17, 21]
improve application throughput for non-uniform memory
access (NUMA) architecture, in which local memory is faster
than remote NUMA memory. Such locks exploit the NUMA
characteristic by batching requests from the same NUMA
node at the cost of higher memory use and lower throughput
in non-contended scenarios. CNA [19] and SurLLock [37] ad-
dress these limitations by dynamically reordering the queue.
SurLLock enforces policies given by hardware characteris-
tics and software behaviors through shuffling. Although both
locks allow designing new lock algorithms by abstracting
both hardware and software requirements in the form of pol-
icy, their approach is insufficient for changing kernel locks
on the fly. A developer still needs to recompile and reboot the
kernel to test a new policy. SYNCorb allows users to develop
custom policies and safely deploy them to a live kernel.

2.2 Kernel customization

With the introduction of fast IO devices, hardware accel-
erators and hundreds of cores, customizing the kernel on
the fly is the new norm for improving application perfor-
mance. However, this idea is not new, as Exokernel [22] is
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Figure 1: Impact of locks on throughput with different write
ratios. The workload is a hashtable benchmark in the ker-
nel [69] where a global lock guards the hashtable.

the first kernel design that enables customization by safely
exporting hardware resources to untrusted library OSes and
downloading application code to the kernel. Another promi-
nent one that enables customization is the split-level I/O
scheduling [70], which enables users to deploy custom I/O
scheduling mechanisms across various layers of the storage
stack.

Recently, Linux has been allowing user-level applications
to customize the kernel by handling page faults in user
space [14] or using the eBPF framework [23]. eBPF has seen
wide deployment at various places in the kernel. For example,
EXTFUSE speeds up user-level file systems with eBPF [6].
eXpress Data Path (XDP) [63] introduces a programmable
network data path that allows a user-supplied eBPF pro-
gram to control network packets. Moreover, recent work
proposed delegating kernel operations to user space. For ex-
ample, Syrup [34], ghOSt [28] and Scheduler BPF [15] allow
users to specify scheduling policy and deploy it in the kernel
networking stack and thread schedulers. Snap [49] enables
the development of networking features in user space, while
DPDK [61] and SPDK [29] provide libraries to accelerate
packet processing and develop storage features. Compared
to these works, SYNCoRp takes a step further in customiz-
ing the kernel: it allows users to control the concurrency
mechanisms in the underlying kernel.

2.3 Application-defined locking matters

Figure 1 illustrates the fact that one lock design cannot per-
form the best in all scenarios. For example, when the work-
load is read-dominant, rwlock outperforms spinlock because
spinlock requires mutual exclusion even between read op-
erations. In particular, per-CPU rwlock works better than a
centralized one by avoiding cache traffic caused by a reader
indicator across cores. However, with a write-dominant work-
load, the per-CPU rwlock performs the worst. In addition to
the application semantics, underlying hardware also requires
a different lock [17]. The NUMA-aware spinlock performs
better than the MCS spinlock when threads execute across
multiple sockets, but MCS can be a better choice on a single
socket machine for the first few threads.

One might solve this problem by designing and implement-
ing a special kernel lock. However, developing and maintain-
ing kernel locks customized for each application and hard-
ware is difficult, time-consuming, and costly. Meanwhile,
SYNCoORD eases the development of new lock algorithms.
First, unlike other subsystems, synchronization primitives
are not well isolated in the kernel. Hence, changes to syn-
chronization primitives require understanding the surround-
ing details that impact a lot of other kernel codes. SYNCORD
provides modularity for synchronization primitives. Second,
SyNCoRD APIs serve as an abstraction layer. These APIs hide
the underlying tricky implementation details of lock, such
as concurrency, memory model, and atomic instructions use.
Instead, developers implement policies for scheduling wait-
ers, such as what to do before and after acquiring a lock, and
which type of waiters should be prioritized (§5). Moreover,
locks designed with SYNCoORD require no changes to the ker-
nel’s components and achieve similar speed up with only a
few lines of code (Table 5).

2.4 The need for dynamic lock patching

Apart from the difficulty of designing and implementing new
lock algorithms in the kernel, installing a modified kernel
requires a system reboot. However, there are common sce-
narios where applications or underlying hardware change
during execution, requiring live kernel lock changes. In terms
of application changes, applications whose performance mat-
ters might change over runtime. This case is possible in a
cloud environment, as multiple applications execute in a par-
ticular order. In addition to performance, applications try to
maintain some form of service level agreements in the form
of latency or fairness. Besides this, a scenario of runtime
hardware modification is virtual machine (VM) live migra-
tion [2]. For example, if a cloud provider migrates a VM from
a single socket machine to a multi-socket NUMA machine,
users should modify their kernel locks’ policies to handle the
NUMA behavior. Moreover, with increasing hardware het-
erogeneity, applications require policies incorporating both
hardware and software policies for better performance. One
might argue that the traditional approach of kernel patching
is sufficient. In this case, the conventional static kernel patch-
ing approach cannot efficiently handle such scenarios, moti-
vating the need for the SyNCorp dynamic approach, which
allows developers to implement specific APIs and patch a
set of locks, while generally ensuring safety properties.

3 The SYyNCorp Framework

SYNCoRD is a framework for customizing kernel locks on
the fly without recompiling or rebooting the kernel. To mod-
ify kernel locks, a user writes custom lock algorithms in
user space, and SYNCoRD safely deploys them in the kernel.
SYNCORD can patch individual lock instances or every lock
in the kernel. In addition, SYNCORD enables fine-grained
profiling of kernel locks, helping users better understand
the impact the kernel has on their application. We design



Type Group API Description

@ void lock_to_acquire(lock) Invoked before acquiring the lock.
General ® void lock_acquired(lock) Invoked after acquiring the lock.
® void lock_to_release(lock) Invoked before releasing the lock.
Safe @ void lock_released(lock) Invoked after releasing the lock.
Fast path ® void lock_to_enter_slowpath(lock, node) Invoked before entering the slow path.
P ® bool lock_enable_fastpath(lock) If true, allow acquiring the lock by the fast path.
Waiter @ bool should_reorder(lock, anchor, curr) If true, move thread curr forward in the queue.
reordering bool skip_reorder(lock, anchor) If true, skip the current reordering operation.
©® bool lock_bypass_acquire(lock) If true, bypass lock aquisition.

Unsafe Lock bypass

bool lock_bypass_release(lock) If true, bypass lock release.

Table 1: A summary of SYNCoRrD APIs. General APIs intercept the entry and exit points of the lock acquire and release phase.
Today most of the lock algorithms have at least two paths to enter the critical section: fast path and slow path. Here, the fast
path APIs intercept the fast path access to acquire the lock. Meanwhile, the slow path provides waiter reordering APIs that
control the reordering of waiters for lock acquisition. Lock bypass APIs allow threads to bypass locks. The lock bypass APIs

allow expert developers to design their algorithm, which comes at their own risk.

SYNCorD to modify kernel locks as a sandbox that adds new
policies on top of existing locks.

Design goals. SYNCoRD has three main design goals:

« Correct lock patching. SYNCORD must maintain the mu-
tual exclusion of the lock instances being patched and
should not introduce any correctness bugs through the
process of patching.

« Sandboxed user’s code. Users may provide unsafe code
that leads to mutual exclusion violation. SYNCORD aims
to prevent such code from corrupting the kernel as long
as they use SYNCoRD safe APIs, so that relieves users’
concerns about the correctness of their lock design.

« Usability and expressiveness. SYNCORD aims to provide
APIs expressive enough to tune kernel locks for various
platforms or requirements.

To strike a balance between expressiveness and sandboxed
impact, we design two sets of APIs. A set of safe APIs (D-
in Table 1) guarantees mutual exclusion for general use,
and the other set of unsafe APIs (9, ) grant expert kernel
developers full control of locks at their own risk.

Moreover, we envision that a single organization uses
SYNCorp to modify kernel locking primitives. In particu-
lar, the sysadmins of that organization, with root privileges,
handle the conflicting policies for various applications con-
tending on the same lock or a set of locking instances. We
follow this model because unlike other subsystems, locking
primitives guard shared resources, which an unprivileged
user should not change. In addition, we assume that such
kernel changes do not occur frequently. Thus, a single policy
optimized for underlying hardware or applications’ usage
patterns may last several minutes.

3.1 SyYNCORD overview

Figure 2 illustrates SYNCoRD’s key components and work-
flow. SYNCoRD exposes a set of APIs (Table 1) to abstract
underlying lock implementation and allows users to write

@ A user creates custom code with the target point o

N bool lock _enable_fastpath (gspinlock *lock) {
return true;

}
AN
v
SynCord
L

@ Compile
user's code

tify the user
failure

@ Notify the us
on patch comple

i Succeed
Bytecode (NG Verifier L) oot
Patcher

- spin_lock (&inode->i_lock)
+ custom_spin_lock (&inode->i_lock)

bool lock_enable fastpath (gspinlock *lock) {
- return default func (lock);
+ return custom_func (lock);

}

@ Patch

Figure 2: Overview of SYNCorD’s key components and
workflow. (1) A user writes custom lock code and specifies
lock instances to patch; (2) SYNCorD compiles the user’s
lock code (e.g., eBPF) and (3) verifies basic properties of the
compiled bytecode. (4) SYNCorbD notifies the user if the veri-
fication fails, (5) otherwise loads the program into the kernel
and generates a patch. (6) The lock patching module patches
the kernel to call compiled bytecode on predefined hook
points.

custom kernel locks in the abstracted layer. These APIs are
the pre-defined hooking points that developers use for in-
serting their custom code to control the logic of underlying
locks. To use SYNCORD, a privileged user first specifies the
lock instance they want to patch and writes the custom lock-
ing code in C with SyNCorD APIs in a separate file (@).
SYNCORD processes this file in a semi-interactive fashion. It
first reads the file and compiles the custom code (@). It then
passes the compiled program to the verifier that performs
static analysis to validate the safety requirements (@). The
verification process usually takes a few milliseconds. If the
verification fails, SYNCORD notifies the user (@). Otherwise,
it loads the policy into the kernel and gets a unique ID of the
policy (@). With the ID, SYNCorbp patches the locking func-



def spin_lock(lock):
lock_to_acquire(lock) # (D Hook the start of lock acquire

1
2
3
4 if lock_bypass_acquire(lock): # (9 bypass lock acquire
5 # lock acquisition is bypassed: used by lock experts
6 return

7

8

9

# If fastpath is enabled, first try to acquire the lock
# instead of going into the wait queue
10 if lock_enable_fastpath(lock) and # (& can steal lock?
1 CAS(&lock.state, UNLOCK, LOCKED):
12 lock_acquired(lock) # @ lock is acquired
13 return

15 node = Node() # A node to join the queue

16 lock_to_enter_slowpath(lock, node) # (5 Hook before enqueuing
17 queued_spin_lock_slowpath(lock, node) # Time to join the queue
18 lock_acquired(lock) # @ Hook the start of critical section

20 def spin_unlock(lock):
21 lock_to_release(lock) # (3 Hook the end of critical section

23 if lock_bypass_release(lock): # bypass lock release
24 # lock release is bypassed; used along with (9
25 return

27 lock.state = UNLOCK # Lock released; critical section ends
28 lock_released(lock) # @ Hook right after critical section

Figure 3: Pseudocode of spin_lock and spin_unlock
with SYyNCorp APIs. We place the waiter reorder-
ing APIs in the slow path of the existing gspinlock
(queued_spin_lock_slowpath) function [13].

tions to execute the policy at pre-defined hooking points (@).
The patching process is time-consuming, as the patching
module (Livepatch) has to find a quiescence period, i.e., no
task is executing the locking functions to patch. This period
can last a few seconds. Finally, SYNCorp notifies the user
after the patch completes (@).

3.2 Programming with SYNCorD

To design a custom kernel lock with SYNCoRD, a developer
first specifies a set of lock instances to patch and implements
a new policy by writing code blocks for each API. At a high
level, there are two main purposes for developers to write
code in the APIs: to enforce user-defined policies on schedul-
ing waiters, and fine-grained profiling. From the scheduling
perspective, a lock algorithm ensures the mutual exclusion
property while scheduling a set of waiters based on user re-
quirements e.g., FIFO. Thus, SYNCORD exposes various means
to schedule lock waiters, such as queue ordering and backoff
schemes. In addition, both custom lock design and profiling
often record extra information. Thus, we also provide auxil-
iary data structures (refer to §3.2.2) that serve as the extra
storage space for the custom code.

3.2.1 SyYNCorp APIs

Table 1 summarizes the APIs in the current SYNCORD pro-
totype. The APIs expose several key behaviors of queue-
based non-blocking locks, especially the ordering between
lock waiters. We design SYNCoRrD APIs to be general across
many existing lock designs and safe enough to use in user

space. Most locks have well-known interfaces: acquire()
and release(). Hence, the first category of our APIs (D-@)
hooks these interfaces. Figure 3 shows the pseudo-code of
spin_lock and spin_unlock with the hooking points for
SYNCoRrD APIs. The General APIs allow users to intercept
the entry and exit points of the acquire and release phase.
These APIs are particularly useful for lock profiling as their
hooking points are inspired by Linux’s lockstat to profile
every kernel lock. For example, users can use these APIs to
record the time spent in acquiring the lock or the time spent
in the critical section.

The second set of APIs—the Fast path—hooks the entry
of a slow path (®) or controls the fast path of the lock (©).
The fast path uses test-and-set-based lock for low contention
scenarios [13, 19, 37]. For example, in gspinlock, CNA and
SurLLOCK, a thread first tries to issue a test-and-set instruc-
tion to grab the lock, and only enqueues itself on failure.
The fast path optimizes performance but may impact fair-
ness, which now can be easily controlled with APIs. The
slow path involves queue maintenance when the lock is
in use, which applies to almost all queue-based lock algo-
rithms [13, 44, 54, 55].

To design policies controlling the order to acquire a
lock, we rely on a queue-based lock design that provides
a powerful abstraction to reorder the waiting queue on the
fly without using extra memory. Both CNA and SHFLLoCK
allow arbitrary dynamic queue ordering to achieve user-
defined policies. Thus, we provide two waiter reordering APIs
(@D—-®). should_reorder() moves a waiter in front of the
queue by comparing the current node with an anchor node.
skip_reorder() skips the reordering procedure. When the
reordering is skipped, the waiting queue goes back to the
first-in-first-out policy to maintain waiting threads. This is
useful to enforce fairness for specific scenarios or purposes.

Although these APIs can implement several queue-based
lock algorithms, they cannot change the basic mechanism
of the underlying kernel locks. However, an experienced
lock developer may want to redesign the kernel lock com-
pletely [17, 20, 21]. Thus, SYNCoRrbD introduces a set of APIs
that allow the custom code to bypass the lock acquire and
release phase (@—). These APIs grant users complete con-
trol of the kernel lock and thus allow users to design arbitrary
lock algorithms. Since these APIs bypass underlying locks, it
is the user’s responsibility to correctly maintain the mutual
exclusion property.

A point to note is that most of the APIs only introduce
performance bugs with incorrect usage. Although the re-
ordering API might affect the fairness, SYNCORD prevents
threads from starvation with runtime checks. Meanwhile,
our APIs are designed not to introduce correctness bugs (e.g.,
infinite loops, mutual exclusion violations) except for the
lock bypass APIs.



3.2.2 Auxiliary data structures

Sometimes, designing new lock algorithms or profiling exist-
ing locks might require extra information. For example, to
implement a NUMA-aware lock scheduling algorithm (§5.1),
each waiter needs to record its socket ID. Hence, we support
auxiliary data structures to save some semantic information.
In particular, we support three such types: per-node data,
per-lock data, and global data. Per-node data is associated
with a thread (node) that waits to acquire the lock. Its lifetime
starts when a thread joins the waiting queue and ends when
the thread acquires the lock. Per-lock data is associated with
a lock instance, and global data plays the identical role as
global variables in the kernel. Both per-lock and global data
structures are created and destroyed explicitly by SYNCorD
and follow the lifetime of the associated policy in most cases.
The user, while implementing custom code, also defines the
required types of auxiliary data structures, which get com-

piled along with the lock.
3.3 SyYNCoRrbD properties for lock design

Unlike current kernel customization approaches that localize
resources within a process model, exposing dynamic lock
modification requires reasoning about the mutual exclusion
properties, minimizing the impact of starvation and ensuring
that we patch the lock code correctly.

Sandboxed impact. If the user provides buggy code,
SYNCoRD should prevent such code from corrupting the ker-
nel. SYNCORD guarantees code safety: memory safety (no
access to illegal memory address), termination (no infinite
loop), liveness (no deadlock) and mutual exclusion. The cur-
rent verifier, which relies on the eBPF verifier, uses static
analysis to enforce code safety. In particular, SYNCorD APIs
pass a lock instance as a read-only argument to prevent
arbitrary changes to the lock state during the lock acquisi-
tion and release phases. For instance, SYNCORD APIs (except
the bypass ones) do not modify the functioning of the ex-
isting lock algorithm, such as atomic instruction, barriers,
and concurrent executions. Because of this, SYNCorD does
not introduce any new deadlock situation, meanwhile main-
taining the liveness of the underlying lock even after adding
the user logic. Our APIs only provide suggestions/hints to
existing locks, as we do not change their underlying working.
Hence, it is impossible to incur mutual exclusion violation.
Meanwhile, we advise only lock experts to use the bypass
APIs for complete access to the lock state.

Avoiding starvation. The reordering of waiters by
SYNCoRrbp introduces starvation that can severely affect the
kernel response. We address this issue with bounded runtime
checks. For example, if a custom lock uses backoff, we ensure
that a waiter only waits for a maximum amount of time. To
ensure this behavior, SYNCorp disables the custom logic for
the respective APIs if the thread is suffering from starvation.
We currently set the bounded time to 10 ms.

Correct lock patching. If a user provides the correct

code, SYNCorD must address three issues: 1) only patch the
required code, 2) apply the patch when the system is in a
quiescence state to avoid any inconsistency, and 3) resolve
the lock patch if multiple conflicting policies exist. We ad-
dress these issues by using the mature patching service in
Linux: Livepatch [32], which works as follows. Livepatch
first generates a difference between the changed code. It then
compiles the diff as a kernel module. Now, Livepatch inserts
the module once the system reaches a quiescent state, i.e.,
when a thread leaves the kernel space or CPUs are in idle
mode.

In the case of SYNCORD, Livepatch can fail to insert the
code if a user patches the same lock instances with multiple
policies. We address this issue as follows: Before applying a
patch, SYNCoRD checks for an existing patch on the lock. If so,
it aborts and reports the conflict to the system administrator.
We also support re-patching the same locking call site by
bypassing the previous check. Thus, SYNCorD provides the
flexibility to resolve patch conflicts. For example, the user
can completely override the old patch with the new one.
Alternatively, they can develop and apply a new patch by
manually merging those two patches.

4 SYNCoRD Implementation

We now discuss the implementation of SYNCoRp. First we
present a summary of SYNCoRD’s implementation and then
the two existing mature Linux kernel tools SYNCorp builds
upon: eBPF (§4.1) and Livepatch (§4.2).

The current SYNCORD prototype targets non-blocking
locks and supports both exclusive locks (e.g., spinlocks)
and readers-writer locks. For spinlocks, we implemented
SYyNCorDp with the stock Linux spinlock, CNA [19] and
SurLLOCK [37]. For readers-writer locks, we implemented
SyNCogrbp with the readers-writer locks in SHFLLock and the
Linux kernel. Our current prototype uses Linux v5.4.

SYNCORD requires a one-time kernel modification to ex-
pose APIs (§3.2.1), extra eBPF helper functions, and run-
time checks. Exposing the current SYNCorDp APIs is rel-
atively straightforward. Except for the waiter reordering
APIs, we exposed all the other APIs by inserting a dummy
function. We expose the waiter reordering for SHFLLock
and CNA in the form of a comparison function and also
support the case for skipping the comparison with the
skip_reorder() function. In total, we modify 143 lines of
code in the Linux kernel. Our code is publicly available at
https://github.com/rs3lab/SynCord.

4.1 eBPF for SYNCORD

eBPF allows applications to run custom code at specific
points in the kernel (called hook points or target points).
To use eBPF, a user first writes a program in C and compiles
it into the eBPF bytecode. The kernel then loads the byte-
code, verifies the memory safety, and then deploys it at the
specified hook points. The eBPF verifier uses static analysis
to check any illegal memory access in the program and also
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verifies if the program terminates. To guarantee the termina-
tion of a program, the verifier only allows bounded loops [65]
and rejects unreachable instructions or out-of-bound jumps.
eBPF further tries to ensure safety by only whitelisting a
set of safe functions (called helper functions), so that appli-
cations can obtain system state, such as the current time,
CPU ID, etc. SYNCoRD exploits the eBPF safety guarantees
to enforce several safety requirements (§3.3).

Several lock algorithms require threads to spin until they
satisfy a set of specific conditions. However, the eBPF verifier
does not allow loops since it cannot guarantee termination.
To address this issue, SYNCORD introduces a new eBPF helper
function: backoff(). With this helper function, a thread ter-
minates its spinning either by meeting the defined condition
or the specified time is over. SYNCoRD further sets an upper
limit on the timeout value (10 ms) to avoid starvation. We
designed backoff() as an eBPF helper function so users can
use these functions in any SYNCorD APIs.

4.2 Kernel livepatching for SyYNCorD

Kernel livepatch [32, 56, 60, 66] modifies the kernel on the
fly without rebooting the system. While eBPF alone can de-
ploy user-defined code into the kernel (§4.1), the effect is
global and thus affects all the lock instances in the kernel.
To support a finer deployment granularity (§3) and auxiliary
data structures (§3.2.2), SYNCORD uses Livepatch, specifi-
cally Kpatch [60] to deploy the custom code.

Implementing auxiliary data structures. We expose
three types of auxiliary data structures: per-node data, per-
lock data, and global data. Per-node data stores additional
information when a thread joins a waiting queue in a queue-
based lock design. Currently, the per-node data is 16 bytes
but it is aligned at a cache-line boundary (64 bytes) to avoid
false sharing. Thus, SYNCORD uses the remaining 48 bytes to
store extra information. Presently, the current spinlock size
is fixed at 4 bytes, and modifying the lock itself increases
the memory footprint of any lock instance. Hence, for per-
lock data, we use shadow variables [40] to allocate extra
memory only for the target lock instances. In particular, we
store the auxiliary data inside an in-kernel key-value store
created by Livepatch. The address of a target lock instance
serves as the key, while the value is per-lock auxiliary data.
In addition to the per-lock data, global data such as per-CPU
data can be also stored in that key-value store. SYNCORD
frees the extra memory allocated as shadow variables when it
removes the corresponding policy. In other words, SYNCorD
does not modify the structure of the lock itself, instead it
stores the additional per-lock data separately from the parent
lock object. Hence, our design choice does not increase the
memory footprint of all locks in the kernel. SYNCorp only
allocates memory for the target locks, thereby having no
additional memory footprint without an installed policy.

Workload Lock: Usage

MWRL [52] rename_lock: Rename files within a directory
lock1 [7] files_struct.file_lock: fcntl and fd allocation
page_fault1 [7] mmap_sem: Anonymous memory page-fault
LevelDB [25] futex contention on futex hash bucket

Metis (wrmem) [48]  reader side of mmap_sem on page-fault
SCL-Victim [58] rename_lock: Rename files from/to an empty directory
rename_lock: Rename files from an empty directory

SCL-Bully (58] to a directory with 1M files

Table 2: Lock usage in each benchmark.

1 # per-node auxiliary data structures
2 class node:

3 “ee
4 + int socket_id # Store socket ID for the thread

5
¢ def lock_enable_fastpath(lock): # Allow lock stealing
7 return True

8
9 def lock_to_enter_slowpath(lock, node):
10 node.socket_id = get_numa_id() # Record socket ID for waiter

12 # Return true if anchor and curr are in the same socket
13 # Applicable to both SuFLLock and CNA

14 def should_reorder(lock, anchor, curr):

15 return anchor.socket_id == curr.socket_id

17 # randomly skip reordering to pass the lock to another socket
18 def skip_reorder(lock, anchor):
19 return random() & Oxffff

Figure 4: Pseudocode of a NUMA-aware lock with SYNCorbp.

5 Use Cases

We discuss the design and evaluation of various use cases
enabled by SYNCorp. We first cover lock scheduling algo-
rithms that manipulate the ordering of the lock acquisition.
SYNCoRD provides the means to define a custom lock ac-
quisition order either by reordering the waiting queue or
by blocking specific threads from joining the queue. We
classify the lock scheduling algorithms into two types: (1)
acquisition-aware scheduling, which considers the charac-
teristics of lock waiters to enter the critical section, such
as NUMA-awareness (§5.1) or biased readers-writer (§5.4);
(2) occupancy-aware scheduling, which involves schedul-
ing based on the time a thread spends in the critical section
(§5.2, §5.3). The second use case focuses on customized fine-
grained profiling (§5.5). Finally, we discuss our experience
of using SYNCoRD to implement these use cases (§5.6). Note
that every lock implemented with SYNCoRD is marked with
“” in figures. “-static” represents Linux kernel compiled with
a static implementation of the equivalent locking strategy.
Experimental setup. We evaluate SYNCORD on an 8-socket,
224-core machine equipped with Intel Xeon Platinum 8276L
CPUs. The machine runs Ubuntu 20.04 with Linux kernel
5.4.0 with disabled hyperthreading. Table 2 lists the bench-
marks we use for the evaluation.

5.1 NUMA-aware spinlock

Motivation. Modern servers have non-uniform memory
access (NUMA) architectures, with multiple sockets, multi-
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Figure 5: Comparison between kernel locks (stock, SHFLLock, CNA) and their SYNCorp equivalent for NUMA-aware scenario.

ple cores, locally attached memories, and shared last-level
caches. In such a server, accessing local memory is faster
than accessing remote NUMA memory [21, 62]. NUMA-
aware locks improve application throughput by batching
lock acquisitions from the same socket together [19, 37].

Design. SyNCorp adopts the dynamic reordering mech-
anism for NUMA-aware locking from SHFLLock and CNA,
and batches requests from the same socket. NUMA locks
ensure long-term fairness by periodically passing the lock to
another socket. Figure 4 shows the implementation of this al-
gorithm with SyNCorp. We add a per-node auxiliary integer:
socket_id to record the socket ID of each waiting thread
(line 4). The pseudocode denotes it inside Class, while the ac-
tual implementation is the struct of C code. We also enabled
the fast path (lines 6-7) for lock stealing. If the fast path fails,
the waiter enters the slow path after recording the socket
ID (lines 9-10). The reordering process occurs in the slow
path, and the underlying lock decides a reordering strategy.
For example, in the case of SHFLLOCK, the shuffler (S) first
checks whether it should skip reordering by invoking the
skip_reorder (lines 18-19) APL If not, S iterates the queue
starting from itself; it invokes should_reorder (lines 14-15)
with itself being the anchor and a waiting thread as curr.
For all the waiting threads that make should_reorder return
true, S moves that waiter forward, which groups waiters from
the same socket. If skip_reorder returns true, S assigns the
next waiter as the new shuffler, which ensures long-term
fairness. The CNA lock also applies the same approach of
grouping, but with a queue-splitting mechanism.

Evaluation. Figure 5 compares the stock version and two
versions of SHFLLock and CNA. The first is a static imple-
mentation requiring kernel re-install and reboot, while the
other is the SYNCorD-based (marked ). Since SHFLLock and
CNA have a NUMA-aware policy on default, the evaluation
shows how much overhead is introduced by SYNCorp’s dy-
namic approach compared to the static implementation of
the identical policy. We evaluate two microbenchmarks that
contend on a single lock, and LevelDB’s readrandom, which
contends on the lock guarding the futex bucket. We find that
the SYNCoRD-based locks enforce a NUMA-aware policy on
the fly without any significant overhead. Their performance

is similar to their static counterparts and outperforms the
stock version present in the Linux kernel, without having to
compile or reboot the kernel. LevelDB’s performance drops
can be attributed to its use of a global database lock, which
is not NUMA-aware.

5.2 Asymmetric multicore lock

Motivation. Asymmetric multicore processors (AMP) [4, 5,
16] consist of heterogeneous cores with different computing
powers: energy-efficient slow cores and power-hungry fast
cores. By combining both fast and slow cores in one proces-
sor, an AMP machine can adjust for dynamic usage patterns,
for example, utilizing all cores to maximize the performance
or using only slow cores for better energy-efficiency. More-
over, an AMP-aware scheduler can place low computation
tasks on slow cores and place compute-intensive tasks on
the fast ones. Unfortunately, current lock designs are unsuit-
able for the AMP architecture, as most lock designs assume
homogeneous cores [41]. In particular, their performance
significantly degrades when running on an AMP machine.
This happens because slow cores execute critical sections up
to 4x slower than faster cores [4], leading to lower through-
put and higher latency [41]. Moreover, no lock design works
efficiently for a multi-socket NUMA server, each has AMP.

Design. Our design is inspired by the LibASL [41], an AMP-
aware user space lock without NUMA-awareness. Taking
a step further, we extend LibASL’s design for future AMP
NUMA machines. LibASL works as follows: During a low
contention scenario, it allows both slow cores and fast cores
to acquire the lock to maximize performance. Meanwhile,
during high contention, it penalizes slow cores so that fast
cores can acquire the lock more aggressively for better per-
formance. We slightly depart from LibASL with regards to
penalty. In particular, we penalize slow core threads by forc-
ing them to wait for a maximum of fixed time (10ms) before
acquiring the lock. Providing appropriate wait time prevents
starvation and ensures acceptable latency for workloads run-
ning on slow cores.

Figure 6 shows our version of the AMP-aware lock imple-
mented using SYNCORD APIs. We use MAX_WAIT_TIME (line 2)
as the maximum wait time for threads running on slow cores,
and per-node socket ID (line 6) is used for NUMA-awareness.



class global_aux: # Global auxilary data structure
+ int MAX_WAIT_TIME = 10ms # Max backoff for the slow core

class node: # Per-node auxiliary data structures
+ int socket_id # Store socket ID for the thread

def lock_enable_fastpath(lock): # Allow lock stealing
return True

11 def is_lock_unlocked(lock):
12 return lock.val == UNLOCK # Check if the lock is unlocked

14 def lock_to_enter_slowpath(lock, node):
15 node.socket_id = get_numa_id() # Record socket ID for waiter
16 cpu = get_processor_id() # Get the CPU ID of the thread

18 # Fast core thread directly enters; the slow one joins if:
19 # 1. the lock is not held or

20 # 2. it has been waiting for a predefined time

21 if is_slow_core(cpu):

22 backoff(lock, MAX WAIT_TIME, is_lock_unlocked)

24 # Group same socket thread together
25 def should_reorder(lock, anchor, curr):
2 return anchor.socket_id == curr.socket_id

28 def skip_reorder(lock, anchor):
29 return rand() & Oxffff # Skip reordering to avoid starvation

Figure 6: AMP algorithm pseudocode with SYNCoRD.

Similar to SHFLLocK, we allow lock stealing in the fast path
(lines 8-9). On failing the fast path, the waiter assigns itself
a socket ID (line 15) and checks its core type (line 21). If the
waiter runs on a fast core, it immediately enters the slow path
and joins the waiting queue. Otherwise, the waiter needs
to wait before joining the waiting queue using the backoff
function (lines 21-22). The thread on the slow core spins
either until the MAX_WAIT_TIME has elapsed or if the lock has
been released (lines 11-12). After returning from the backoff
function, the waiter finally enters the slow path and joins
the waiting queue. Once a thread enters the slow path, it
follows a similar strategy as that of the NUMA lock for queue
reordering and skipping. Thus, our NUMA-aware AMP lock
prioritizes threads on fast cores before joining the queue,
and further prefers the thread from the same socket after
entering the queue. On the other hand, slow cores do acquire
the lock after spinning for a predefined time (10ms). With
the time-bound spinning, our approach prevents starvation
while boosting application throughput.

Evaluation. Since there is no NUMA-AMP machine, we
emulate the AMP environment by changing the CPU fre-
quency. The fast cores are 4x faster than the slow cores and
each socket has 14 fast and 14 slow cores, respectively. We
use the same workloads as before (§5.1) and compare stock,
SuriLock, and AMP. AMP is implemented statically (static-
AMP) and using SYNCoRD (+AMP) to compare the overhead
coming from SyNCorbp. Figure 7 shows that AMP outper-
forms both SHFLLock and stock by 1.5x and 13.4x each and
maintains the performance with increasing core count. To
dig deeper, we measure the throughput of fast and slow cores

separately. We find that all three locks have similar through-
put under low contention (eight threads) for all workloads.
This happens because all three locks are able to steal locks
during the fast path. However, when the contention becomes
high, both stock and SHFLLock allow slow cores to acquire
the lock, leading to lower throughput. On the other hand,
AMP lets fast cores acquire the lock most of the time and
thus achieves higher throughput.

5.3 Scheduler-cooperative lock

Motivation. Patel et al. [58] described the scheduler subver-
sion problem, in which competitive threads hold the same
lock for varying times, leading to a subversion of CPU
scheduling goals. In particular, current CPU schedulers let
each thread have an equal share of the CPU time. Suppose
two threads are spending most of their CPU time executing
in a critical section protected by the same lock; one thread
(the bully thread) holds the lock for a much longer time
(e.g., orders of magnitude longer) than the other (the victim
thread). In this case, the bully thread essentially receives a
much longer CPU time than the victim thread, subverting the
scheduling goal. This can lead to pathological cases of denial
of service attacks, and lower application performance [58].

Design. To address this problem, we implement a new lock
algorithm, that strives to achieve fair hold time across threads:
SCL. SCL utilizes SHFLLOCK as the underlying kernel lock and
uses SYNCoRD APIs. The algorithm assumes that all threads
have the same priority and receive the same CPU time. The
algorithm tracks the time spent in the critical section for each
thread. If one thread holds the lock longer than its share, it
cannot acquire the lock until other threads have received
an equal chance to acquire the lock. On top of SCL, we also
implement a NUMA-aware version: NUMA-SCL.

Figure 8 presents the implementation of SCL. We have not
included the NUMA part for brevity, which is similar to §5.1.
We introduce several auxiliary data structures to implement
this algorithm: a per-thread lock hold time variable (line 3), a
per-thread variable for recording the beginning of the critical
section (line 5), a per-lock integer for counting contending
thread (line 9), and total hold time for each lock (line 10).
The algorithm works as follows: Before a thread (t) joins the
waiting queue, it first computes the lock quota based on the
number of threads and overall lock holding time (line 14).
Based on the time t spent in the critical section (line 15), it
waits until other threads get the equal opportunity (lines 15—
20) by backing off for that approximated time (line 20). We
track the per-lock total lock hold time and per-thread lock
hold time by tracking when the thread enters the critical
section (line 23) and update the overall lock usage in the
release phase (lines 26-31).

Evaluation. We evaluate five locks with a workload pro-
posed by Patel et al. [58]. The workload creates two types of
threads: victim threads and bully threads that contend on the
rename_lock. Table 2 shows the configuration of the work-



(a) MWRL (b) lock1 (c) LevelDB:readrandom
2.0M 7.5M 1.2M
1.6M ,j\:_'-'-—'-'mu-..---.,_. 6.0M 1.0M *AMP ===
et L 0.8M static-AMP = =——
§ pesenbne e, 45M F ’ SHFLLOCK =#+++ee
E 30M 4 0.6M stock
o : vy 0.4M
1.5M £° 0.2M
ooM Ll 1 11 P g Ll b oM
— N < 00 WOV 0 VO F N O 0 O F — N < 00 O 0 VW F N O 0 O FH —
- AN "N 0~ F O N — N 1" 00—~ F O N
— o = = N — o~ o~ — O
2.0M 7.5M 12M *AMP-fast - -@-
. ", 1OM L *AMP-slow = =X~
L - L ’
1.6M e “""’*"%_'&‘ 6.0M o T, : /‘ static-AMP-fast - 4—
2 1.2M H 4.5M / " -$ Y 0.8M - "' “\ static-:AMP-slow -
2 A ¢ ISP P * SHFLLOCK-fast -4
5 0.8M SHFLLOCK-slow «++¢:-
stock-fast
04M &/ stock-slow
0.0M

# of threads

# of threads

# of threads

Figure 7: Overall throughput (up) and the throughput of fast and slow cores (down) for stock, SHFLLock, and AMP implemented
statically (static-AMP) and with SYNCorp (+AMP). Throughput of AMP-slow after 28 threads is very low but not zero. Refer

to Table 4 for details.

class global_aux: # Global auxiliary data structures
# Per-thread variable to record the lock hold time
+ int lock_hold_time<thread>
# Per-thread variable to timestamp the beginning of CS
int cs_beg_ts<thread>

+

1
2
3
4
5
6
7 class lock: # Per-lock auxiliary data structures
8

9

int num_threads # Threads contending for the lock

+
+ int tot_lock_hold_time # Total lock hold time of all threads

12 def lock_to_enter_slowpath(lock, node):

13 # Calculate the lock hold quota

14 quota = lock.tot_lock_hold_time / lock.num_threads

15 if lock_hold_time[curr_thread] > quota:

16 # Exceeded local quota. Wait until threads

17 # use same amount of quota

18 wait = (lock_hold_time[curr_thread] * lock.num_threads)
19 wait -= lock.tot_lock_hold_time

20 backoff(lock, wait, None)

22 def lock_acquired(lock):
23 cs_beg_ts[curr_thread] = get_time() # get timestamp after acq

25 def lock_to_release(lock):

26 # Calculate the length of the critical section

27 cs_len = get_time() - cs_beg_ts[curr_thread]

28

29 # Update the lock usage for this thread and the lock
30 lock_hold_time[curr_thread] += cs_len

31 lock.tot_lock_hold_time += cs_len

Figure 8: Pseudocode of NUMA-SCL with SyNCorp. We
omit the NUMA-awareness code (refer to Figure 4).

load, in which the bully holds the lock up to three orders of
higher magnitude than the victim. These five locks include
Linux’s stock, SHFLLOCK, static-SCL [58], +SCL (SCL without
NUMA) and *NUMA-SCL. We implement the last two SCL
locks with SynCorb. Figure 9 shows the overall throughput
and Jain’s fairness index [31] of these locks. Jain’s fairness
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Figure 9: Impact of different lock designs on throughput
and fairness. The workload is a rename program contending
on rename lock where bully threads hold lock much longer
than victim threads. Refer to Table 2 for more details.

index ranges from zero to one, where zero and one indicate
completely unfair and fair, respectively. Since the SCL policy
ensures that each thread holds the lock for the same length,
all SCL versions allow the victim threads to hold the lock
much more often than the bully threads. As a result, SCL im-
plementations achieve orders of magnitudes higher through-
put than both stock and SuFLLock. Moreover, sNUMA-SCL
outperforms the non-NUMA version (xSCL) by minimizing
cache-line bouncing, thereby having the best overall through-
put. The static implementation of SCL performs worse than
SYNCORD versions, as it requires periodic scanning of the
thread lists to remove inactive waiters. Such an approach is
not required for SCL locks with SYNCORD because the user
can dynamically decide the timeframe to enforce the lock
hold time fairness.

We further confirm the aggregated lock hold time of bullies
and victims. Figure 10 shows that a bully thread holds the lock



®
1S3
1

stock-bully ==
stock-victim ===

*NUMA-SCL-bully m===m
*NUMA-SCL-victim =z

1| &
oo N N
=
N
B

Figure 10: Total lock hold time of bully (B) and victim (V)
threads.

Lock hold time (s)

N W s

oS o o © o o
T

—_
o

o

# of threads

for more than 99.9% in the stock version while s\NUMA-SCL
ensures a better share between bully and victim.

5.4 Biased per-cpu readers-writer lock
This section shows the use of SYNCorp lock bypass APIs.

Motivation. Readers-writer lock (rwlock) is one of the most
widely used primitives in Linux [37]. This primitive allows
either multiple readers or one writer to acquire a lock. Most
rwlock designs track active readers with a centralized readers
indicator. However, the centralized readers indicator has poor
scalability (Figure 1) because frequent atomic instructions for
readers result in cache-line invalidation and coherence traffic.
Prior work addressed this issue using distributed counters,
but with the cost of high memory usage and longer writer
latency. Thus, it is a good candidate only for read-intensive
workloads [18, 42].

Design. We design a distributed readers-writer lock us-
ing the SYNCoRD bypass APIs. Our design is inspired by the
BRAVO design [18]. With SYNCorD’s dynamic approach, users
can enable the distributed rwlock only when needed and dis-
able it to avoid unnecessary overhead, such as memory foot-
print and writer latency. Note that SYNCORD cannot ensure
the mutual exclusion property for the unsafe APIs, and it is
up to the lock developers to ensure the correctness. More-
over, we also use another unsafe function (backoff_unsafe)
that waits indefinitely until the condition is met. We forbid
the user from using this unsafe function with our safe APIs,
as we throw an error on detecting it.

Figure 11 shows the per-CPU rwlock implementation in
SYNCoRp. We add two more fields per lock: rbias to track
the read bias mode, and visible_readers table with cache-
line aligned entries. Before a reader (R) acquires a lock, it
first checks the read-biased mode. If the read-biased mode is
set, R marks itself as an active reader (lines 7-9) and checks
the rbias again due to a possible race from the writer’s side
(line 33). If rbias is still set, R bypasses the underlying lock,
else it falls back to the underlying implementation (lines
11-13). At the time of release, R checks whether it acquired
the lock in the read-biased mode (lines 16-20), and bypasses
the underlying lock release if so. R is also responsible for
setting rbias once it acquires the underlying lock without

class lock: # Per-lock auxiliary data structures

1
2 ce

3 + int rbias # When set, the lock is on readers-biased mode
4 + int visible_readers[max_cpu] # Distributed read indicator
5 === Reader ===

6 def lock_bypass_acquire(lock):

7 if lock.aux.rbias: # If in read biased

8 lock.aux.visible_readers[cpu] = 1 # Mark the reader

9 if lock.aux.rbias: # No writer is waiting

10 return True
1 else: # Writer is present
12 lock.aux.visible_readers[cpu] = 0

13 return False

15 def lock_bypass_release(lock):
16 # Bypass the lock if reader acquired in rbias mode

17 if lock.aux.visible_readers[cpu] == 1:
18 lock.aux.visible_readers[cpu] = 0
19 return True

20 return False

22 def lock_acquired(lock):

23 # Enter the read-biased mode
2 if not lock.aux.rbias:

25 lock.aux.rbias = True

26

27 # === Writer ===

28 def wait_for_reader(lock, cpu):
29 return lock.aux.visible_readers[cpu] ==

31 def lock_acquired(lock):
32 if lock.aux.rbias:

33 lock.aux.rbias = False # Revoke bias
34 for i in range(®, NUM_CPU): # Wait for readers to leave
35 backoff_unsafe(lock, wait_for_reader(i))

Figure 11: Pseudocode of the BRAVO algorithm. We omit the
code to get CPU ID for brevity.

bypassing it (lines 24-25) so that other readers can directly
acquire the read lock by setting their respective indicators.
In the case of writer acquisition, a writer (W) first acquires
the underlying writer lock. W will only acquire the lock when
there are no active readers that hold the underlying lock.
After that, W further checks for the read-biased mode (line
32). If it is active, W first disables it and waits for all readers
to exit the critical section that used the per-CPU indicator
(lines 34-35).

Evaluation. Figure 12 compares the stock rwlock with
our version using SYNCoORD (xper-CPU rwlock). We evalu-
ate these locks with a page_faultl microbenchmark from
will-it-scale [7] and Metis [48], a MapReduce framework,
contending on the reader side of mmap_sem. Figure 12 shows
that «per-CPU rwlock outperforms stock by 2.2x and main-
tains the performance with increasing core count.

5.5 Dynamic lock profiling

Motivation. Several works [8, 19, 35, 37, 52] have shown
that kernel locks mostly determine the scalability of applica-
tions. Hence, lock profiling tools are critical to understanding
a lock’s performance. Unfortunately, only few tools exist for
kernel lock profiling, and even those have limited analysis
capability. For example, developers often use Linux perf [1]
to measure the aggregated CPU cycles in each code region.
While this is useful to find lock contention, it does not pro-
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Figure 12: Comparison between Linux rwlock and our dis-
tributed per-CPU rwlock with SYNCoRbD. Refer to Table 2 for
workload details.

policy acquisitions x-socket avg-batch violation
SCL+Reorderpy;y 4042 277 14.59 1659
SCL+Backoff, i1, 918765 8678 105.87 538

Table 3: Statistics collected by SYNCORD to analyze our two
different implementations of NUMA-SCL: SCL+Reorderg,;;y
and SCL+Backoffg,;y. We collect this result from the same
benchmark used in §5.3 with 224 threads.

vide any lock-specific performance stats, such as the time
spent in the critical section. As a result, Linux perf is not al-
ways the right tool for understanding lock performance. On
the other hand, Linux provides another tool: lockstat [73]
which exposes various statistics of kernel locks. However,
it profiles all the kernel locks together and only shows the
system-wide statistics. Moreover, a user can neither choose
the lock instance nor specific lock data to profile. To make
matter worse, lockstat requires a kernel to be compiled
with a specific configuration, which significantly increases
the size of every lock data structure and introduce perfor-
mance overhead. For example, a kernel with lockstat uses
423MB of extra memory over the stock version even from
the booting.

Design. SYNCORD can patch locks at various granularities,
from an individual lock instance to a set of locks. In addition,
SYNCoRrbD provides the ability to profile any lock instance
with arbitrary lock-specific performance stats. In particu-
lar, a user can now customize which set of lock instances to
profile with specific statistics (even the algorithm-specific
ones). For example, a user can profile only the rename lock
and count the number of lock acquisitions across socket in-
stead of collecting a set of statistics for all the locks in the
kernel. We reproduce the statistics provided by lockstat us-
ing SYNCoRD. Since the hooking points of SYNCorD General
APIs (Table 1) have the same context as those of lockstat, the
implementation is straightforward with simple updates of
the counters and timestamp in each AP

Evaluation. We compare the overhead of lock profiling
between lockstat and SYNCORD. lockstat keeps track of
10 counters for each lock. We implement two versions of
SyNCoRrp-based lockstat having identical 10 counters and

100% lockstat (10 counters)
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Figure 13: Performance overhead of lock profiling in
MWRL for both lockstat and our custom implementation
of lockstat with SYNCoRD. The overhead increases with
increasing counters.

policy # threads acqst-fast acqst-slow
AMP+Reorder pqs 8 20,340,943 8,192,987
AMP+Backoffg;,,, 8 24,825,644 5,267,531
AMP+Reorder 224 571,712 571,354
AMP+Backoffg;,,, 224 37,937,529 54,941

Table 4: Statistics collected by SYNCorD to analyze our
two different implementations of AMP: AMP+Reorderf,s and
AMP+Backoffg,,,. We collect the result for MWRL with the
same environment as in §5.2.

one counter. Figure 13 shows that lockstat constantly incurs
a 60% application slowdown. We observe that the overhead
of SYNCoRrbD profiling increases with an increased number
of counters. With 10 counters, SYNCORD profiler incurs a
similar overhead as that of conventional lockstat, while it
is only 24% for one counter. Furthermore, unlike lockstat,
SYNCoRD opens the door for lock profiling even on produc-
tion servers, as SYNCORD can dynamically turn on the pro-
filing feature and does not introduce overhead when the
profiling is uninstalled.

Simplifying performance analysis. We now illustrate
an example of how SYNCORD’s custom profiling can signifi-
cantly simplify the performance analysis. Our initial imple-
mentation of the AMP (§5.2) and SCL (§5.3) algorithms only
utilized the reordering mechanism of CNA and SHFLLOCK
(§5.1). In particular, we only used the should_reorder API to
enforce both NUMA-awareness to handle hardware charac-
teristics and SCL and AMP algorithms for software require-
ments. However, the reordering API alone has limitations in
strictly enforcing the policy, thus it is difficult to have desired
performance as the number of threads increases.

To understand the NUMA-SCL algorithm, we collect
the following statistics for the reordering-based algorithm
(SCL+Reorderpg,;,), and the current algorithm-based on bully
backoff with NUMA-aware reordering (SCL+Backoffp,y): the
total number of lock acquisitions, the number of lock ac-
quisitions across socket, the average times of lock passing
within a socket, and the number of policy violations (a bully



thread acquires the lock when it shouldn’t). Table 3 shows
that SCL+Reorderg,;, fails to enforce the policy, leading to
a high violation count. This happens because the reorder-
ing approach guarantees that a waiter will acquire the lock
once it is part of the waiting queue. Thus, a bully can still
grab the lock even though it is penalized, if a victim has
not yet joined the waiting queue. Instead, the backoff-based
approach (SCL+Backoff,;,) avoids this problem by prevent-
ing the bully thread from joining the wait queue, thereby
effectively enforcing the policy.

Table 4 shows the collected statistics for AMP locks us-
ing two variations: AMP+Reorderp,; Which uses reordering
only to enforce both fast-core preference and same-socket
preferences, and AMP+Backoff,,, shown in §5.2. We collect
the number of lock acquisitions separately on the fast and
slow cores. Under low contention (eight threads), both algo-
rithms have similar throughput. However, under a highly
contended scenario (224 threads), the reordering approach
cannot correctly enforce the fast-core preference anymore,
leading to a performance drop. The same reasoning from
SCL holds true here too.

5.6 Experience with SYNCorD

Policy LoC Time
NUMA-aware spinlocks (§5.1) 6  3hours
Scheduler-cooperative locks (§5.3) 30 18 hours
Asymmetric multicore-aware locks (§5.2) 15 8 hours
Scalable reader-writer locks (§5.4) 36  5hours
Lock profiling (§5.5) 36 1 hour

Table 5: Development effort of the use cases.

We now discuss the efforts and lessons we have learned
in developing the use cases with SYNCoORD.

Lock development effort. Table 5 summarizes the develop-
ment effort of all use cases. We spent most of the development
time understanding, debugging, and testing the lock algo-
rithm. Implementing the algorithms in SYNCoRrbD involves
only tens of lines of code and is relatively straightforward.
In addition, SYNCoRrD allows users to modify the lock with-
out kernel installation and rebooting, which dramatically
reduces the overall development effort.

Hardware is (still) the key factor of performance. We
include the NUMA grouping policy even for SCL and AMP
algorithms to make them perform well on a NUMA machine.
Initially we did not plan to include the NUMA grouping al-
gorithm since we thought the performance gain achieved by
task-specific scheduling should dominate. For example, due
to the big performance gap between fast and slow cores in
AMP machines, scheduling fast cores should achieve good
enough performance without NUMA grouping. However,
this has proven to not be the case. LibASL performs even
worse than SHFLLock on our emulated AMP NUMA ma-
chine due to the cache-line bouncing among sockets. Hence,

we believe that a lock developer still needs to consider and
prioritize the underlying hardware when designing a lock.

Avoid overloading APIs. As discussed in §5.5, our initial
implementation of the SCL and AMP algorithms only used
reordering mechanisms to enforce both customized policy
and the NUMA-grouping algorithm. However, the profiling
results show that complex policy in the reordering API does
not work at a high thread count. The root cause of this is-
sue is that the node reordering mechanism in SHFLLock and
CNA cannot strictly prevent certain nodes from acquiring a
lock once they join the queue. Specifically, the reordering
mechanism makes the scheduling decision as soon as it en-
counters the first suitable candidate, without considering
whether a better candidate exists in the entire waiting queue.
With the current lock implementation, we believe the best
way to address this issue is to avoid overloading APIs. Specif-
ically, a lock developer should not specify too complicated
policies in one API and, if possible, divide the policies into
small pieces and enforce each one of them with the suitable
APIs. For example, in our AMP implementation, we enforced
the NUMA grouping policy through reordering and the fast
core scheduling policy when cores enter the wait queue.

6 Discussion

6.1 Generality of SYNCorD

SYNCoRD’s current implementation focuses on non-blocking
locks, but the fundamental concept can be applied to other
synchronization primitives, such as blocking locks (mu-
tex) [55], RCU [50], seqlocks [27], and wait events [68].
SYNCORD can similarly modularize key decisions and be-
haviors of these synchronization primitives and expose them
as APIs. For example, SYNCORD may expose the condition to
wake up or park a thread as APIs for a blocking lock. More-
over, with lock bypass APIs, which grant privileged users
complete control of the kernel lock, the implementation of
kernel locks can even be moved to user space.

6.2 Support for multi-tenancy

The current SYNCORD prototype targets an environment
where one user or a set of users trust each other to share
the machine. In this scenario, SYNCORD can resolve patch
conflicts (i.e., a lock instance is patched by multiple patches)
by allowing a privileged user to provide a final patch (§3.3).
However, this approach no longer works in a multi-tenancy
cloud environment.

To extend SYNCORD to a multi-tenancy environment, we
plan to apply the widely used cgroup and namespace concepts
to kernel synchronization primitives. For example, a synchro-
nization cgroup controls the set of kernel synchronization
primitives that an application can change. A synchronization
namespace virtualizes the underlying synchronization prim-
itives. For example, for a shared kernel lock, a corresponding
virtual lock is created in every synchronization namespace.
The kernel implements an arbitration mechanism, such as



time-sharing, to decide which virtual lock can hold the phys-
ical lock. Hence, the synchronization namespace enables
applications to modify synchronization primitives while still
enforcing performance isolation. With this change, we can
drop privilege for SYNCoRD to each namespace instead of
limiting it to system administrators.

6.3 Easier programming of lock policy

In the current SYNCORD prototype, a user needs to provide
the entire code for each policy. For example, both AMP (§5.2)
and SCL (§5.3) policies include NUMA grouping code to
achieve better scalability. We can extend SYNCORD to com-
pose multiple policies into one (i.e., merge NUMA-grouping
and AMP to get NUMA-aware AMP) unless there is a dupli-
cate use of the API between policies.

SYNCoRD currently only supports C to write customized
lock code, but it can be further extended to support more
languages. With several toolchains [24, 30, 64] that allow
writing eBPF programs in languages other than C, SYNCoRrD
can support more expressive and memory-safe languages
such as Python or Rust with better libraries and ecosystems.

6.4 Patching time

With our environment, the patching time is typically 10-
40ms, and at a maximum of 5 seconds in an extreme case:
patching every spinlock in the kernel. Livepatch applies the
patch by checking each thread’s stack whether the thread
has invoked any patched functions. If so, Livepatch waits
until all threads exit the patched function. One of the reasons
for long patching time derives from a few tasks blocking the
completion of a patching operation. The five-second patching
time looks unreasonably long to us and further reducing the
patching time is possible by sending a fake signal to the
remaining blocking tasks.

7 Related Work

In section §2.2, we covered several works that customize
kernel from user space. While SYNCoRD is the first work to
expose the concurrency control to user space, the need for
different locking designs depending on hardware or software
requirements has been also discussed in previous works.
Dice and Kogan [18] presented the BRAVO lock which can
dynamically switch between a centralized reader-writer lock
and a lock using distributed reader indicators. When the
BRAVO algorithm detects a read-biased workload pattern, it
improves scalability between readers by using distributed
reader indicators, but at a cost of a potential slow down
when released from the read-biased mode. This clear trade-
off shows that the logic to turn on the read-biased mode is
critical to performance, but BRAVO relies on heuristic param-
eters because it was impossible to change lock algorithms
on the fly. Once ported to SYNCORD, when to turn on the
read-biased mode can be an open problem for users.
Recently, Chehab et al. [17] proposed CLoF, which gener-
ates hundreds of possible combinations of spinlocks to create

NUMA-aware hierarchy locks. CLoF first generates a set of
locks and then selects the best performing lock for the target
environment. The work emphasizes the need for different
lock designs depending on the underlying hardware, which
strengthens our motivation. Constructing and finding the
best performing lock is an orthogonal topic to our work.
Lock profiling. Synchronization primitives play a signifi-
cant role in application scalability, thus sophisticated lock
profiling tools can help users understand the performance
bottleneck. In addition to the perf [1] and lockstat [73]
introduced in §5.5, there are several more works to improve
lock profiling.

SyncPerf [3] hooks pthread related functions and provide
a synchronization analysis tool with low overhead. Tallent et
al. [67] used a sampling approach to quantify lock contention
and SyncProf [71] collects profiling data through repetitive
execution of an application to find the source of contention.
Although these studies contributed to a better understanding
of lock contention, all three works profile locks used in the
user space, not the kernel locks.

LockDoc [43] traced the usage of kernel locks and auto-
matically generates documentation describing the order in
which each lock should be used. The work mainly focused
on inferring locking rules instead of the performance aspect
of each lock. wPerf [72] analyzes waiting events to find the
source of a performance bottleneck, but does not provide
lock-specific statistics.

8 Conclusion

Kernel synchronization primitives greatly impact application
performance and scalability. However, the current kernel de-
sign prevents application developers from controlling the
kernel synchronizations. This paper proposes application-
informed kernel synchronization primitives which allow users
to customize the kernel locks on the fly. To showcase the idea,
we implemented SYNCORD, a framework for user-defined cus-
tom lock code. SYNCoRrD allows a privileged user to deploy
custom code into the kernel lock safely and efficiently with-
out recompiling or rebooting the kernel. We show that appli-
cations can leverage SYNCORD to achieve significant perfor-
mance gains by developing hardware- or workload-specific
lock algorithms. Furthermore, SYNCORD enables users to
perform custom, fine-granularity lock profiling, which can
greatly simplify the performance analysis of lock algorithms.
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