Revisiting Function Identification with Machine Learning

Hyungjoon Koo, Soyeon Park and Taesoo Kim
Georgia Institute of Technology
{hkoo37, soyeon, taesoo } @gatech.edu

Abstract

A function recognition problem serves as a basis
for further binary analysis and many applications.
Although common challenges for function detec-
tion are well known, prior works have repeatedly
claimed a noticeable result with high precision and
recall. In this paper, we aim to fill the void of what
has been overlooked or misinterpreted by closely
looking into the previous datasets, metrics, and eval-
uations with varying case studies. Our major find-
ings are that i) a common corpus like GNU utilities
is insufficient to represent the effectiveness of func-
tion identification, ii) it is difficult to claim, at least
in the current form, that an ML-oriented approach
is scientifically superior to deterministic ones like
IDA or Ghidra, iii) the current metrics may not be
reasonable enough to measure function detection in
general, iv) not a single state-of-the-art tool domi-
nates all the others. In conclusion, a function detec-
tion problem has not yet been fully addressed, and
our community first has to seek a better metric for
fair comparison in order to make advances in the
field of function identification.

1 Introduction

Function identification (or recognition) serves as a basis for
reversing executable binaries and for many applications, in-
cluding control flow integrity (CFI), binary similarity analysis,
binary transformation (i.e., randomization, re-optimization),
type inference, and vulnerability detection. Likewise, a major-
ity of binary analysis tools (i.e., BAP [Brumley er al., 2011],
angr [Shoshitaishvili e al., 2016], radare [Radare2, 2009],
IDA Pro [Hex-Rays, 2005b], Ghidra [Directorate, 2019al,
rev.ng [Federico et al., 2017]) often begin with function detec-
tion for further analysis by default because a binary function
provides a logical unit to understand and analyze the high-
level semantics of a low-level binary. Obtaining a function
boundary upon the availability of symbol or debugging infor-
mation is trivial. However, it becomes drastically challenging
when the information is stripped off, which is more common
than not in practice.

A simple means of function recognition is to linearly disas-
semble all code (e.g., objdump), followed by applying func-

tion signature matching such as a function prologue and epi-
logue available. However, it suffers from robustness either
when a predefined pattern lacks such a signature (i.e., highly
optimized functions) or when code and data are intermixed.
Another means is a recursive traversal from an entry point of
a binary that follows a direct control flow transfer until no
new code region is discovered. However, indirectly reach-
able (or unreachable) functions may not always be statically
identified. Despite such challenges, many prior works have
repeatedly demonstrated remarkable results with high preci-
sion and recall (i.e., mostly 96% or above). Recent advances
harness a machine learning technique (i.e., RNN), which
claims to achieve even higher accuracy [Shin et al., 2015;
Guo et al., 2018].

In this paper, we (re-)evaluate and challenge recent advances
in function identification from a different angle, particularly
focusing on proposals that utilize machine learning techniques.
Note that our objective is neither to verify the correctness
of prior evaluations nor to rank the existing approaches by
comparison because there is no doubt about empirical results
that are accurate and reproducible. Instead, we attempt to fill
the void of what may have been overlooked or misinterpreted
by closely looking into the previous datasets, metrics, and
evaluations with the following four research perspectives in
mind: i) appropriateness of the previous datasets (e.g., GNU
utilities), ii) re-interpretation of the prior evaluations, iii) ef-
fectiveness of ML-oriented techniques, and iv) reasonableness
of the current metrics, for function identification.

The following summarizes the key contribution of our pa-
per. First, we investigate GNU utilites because all subsequent
works (but Nucleus) have employed them for their evalua-
tions after the initial release by ByteWeight [Bao et al., 2014].
With normalization, we have discovered quite a few redundant
functions (sorely 12.1% remains unique), which cannot pre-
vent overfitting. Although Nucleus first asserted the bias of
the dataset with a limited assessment, we have fully quanti-
fied the claim. Second, our finding shows that the accuracy
of LEMNA [Guo et al., 2018] (re-implementation of Shin’s
RNN [Shin et al., 2015]) comes from a different metric (i.e.,
a series of true negatives per each following byte).Third, the
evaluation with our own dataset shows that not a single tool
dominates all the others. Although an ML-oriented approach
has its own strength; e.g., automating the implementation of
function identification algorithms, the existing proposals still

lack scientific outcomes to confidently claim that they indeed
are superior to deterministic and popular approaches like IDA
or Ghidra. Fourth, we discover a handful of cases to determine
the correctness of function boundary that the current metrics
cannot reasonably cover, necessitating that a better metric be
explored for more a fair comparison. Overall, our thorough
evaluation with our own dataset, which will be publicly avail-
able upon publication, shows that a function identification
problem requires further study.

2 Background and Related Work
2.1 Problem Definition of Function Identification

A function recognition problem aims to discover a set of func-
tions in case no symbol or debugging information is readily
available, which includes both i) function starts and ii) func-
tion boundaries (both starts and ends). Analyzing malware or
binaries that have stripped off such information is common.

2.2 Evaluation Metrics

Let a set of true positives (i.e., aligned with a ground truth),

false positives (i.e., identified as a function where it is not),

and false negatives (i.e., missed a function where it is) be TP,

FP, and FN, respectively. The following defines a precision

(P), recall (R), F'1 score, and accuracy (A).

Pe |TP| B |TP|

" |TP|+|FP|”" " |TP|+|FN|’
B |TP| +|TN| @
~ |TP|+|TN|+ |FN|+ |FP|

Note that a high precision means the rate of incorrectly identi-

fied functions (FP) is low, whereas a high recall means the rate

of missing functions (FN) is low. The F'1 represents a single

metric with the harmonic mean of P and R.

2xPx R
1=
F P+ R S

2.3 Related Work

Deterministic Approach. UNSTRIP [Jacobson et al., 2011]
generates semantic descriptors (i.e., system calls and concrete
argument values) that represent library functions as a finger-
print for further function identification. Nucleus [Andriesse et
al., 2017] presents a function detection algorithm in a compiler
agnostic fashion. With linearly disassembled code, Nucleus
detects basic blocks and builds an inter-procedural control
flow graph (ICFG) in the beginning. Once direct call invo-
cation over the ICFG reveals function entry blocks, Nucleus
discovers either unreachable or indirectly reachable functions
(isolated from the initial ICFG) via intra-procedural control
flow analysis. [Qiao and Sekar, 2017] develop another means
based on static analysis. Similar to Nucleus, it collects func-
tion candidates that cannot be directly reachable, followed by
checking whether they are associated with a function interface,
including stack discipline, control-flow properties, and data-
flow properties (i.e., parameter passing). Jima [Alves-Foss
and Sone, 2019] is a tool suite that incorporates a series of
analysis algorithms for function boundary detection, including
exception handling, jump pointer, tail call chain, and miss-
ing function detection (i.e., gaps between functions). IDA
Pro [Hex-Rays, 2005b] is a very popular disassembly tool
equipped with both decompilation and debugging features

for code analysis; however, its internal heuristics (i.e., pat-
tern database) for function detection remain proprietary and
thus unknown!. Ghidra [Directorate, 2019a] is an emerging
open-source disassembler that offers a suite of reversing tools
and decompiler. It provides a few built-in function analyzers
such as FunctionStartAnalyzer. The analyzers begin with
identifying every address referenced by a call instruction as
the beginning of a function, and then utilizes a static signature
database that records a known function start pattern according
to a compiler and architecture [Directorate, 2019b].

Machine Leaning Based Approach. One of the early
works [Rosenblum er al., 2008] based on machine learning
adopts a model with a conditional random field (CRF) for
identifying function entry points (FEPs). The model takes
both idiom features (i.e., instruction sequences) and structure
features (i.e., control flow) into account to classify FEPs in
binary code. Byteweight [Bao er al., 2014] builds a weighted
prefix tree to recognize function starts using a precomputed
signature at training time. The prefix tree holds a likelihood
of a function constructed from a training data set where each
node represents either a byte or an instruction, e.g, learning
the probability of an FEP from a sequence of instructions (i.e.,
path from the root to the given node). FID [Wang et al., 2017]
proposes the combination of symbolic execution and machine
learning, mostly focusing on identifying an FEP block. It has
the internal representations of each basic block semantics with
assignment formulas (i.e., stack registers) and memory access
behavior (i.e., memory read), converting them into numeric
feature vectors for a classifier. Meanwhile, [Shin et al., 2015]
utilizes a deep learning approach for the first time, which lever-
ages a bidirectional recurrent neural networks (RNN) model
with a single hidden layer to tackle both function starts and
boundary identification. Despite the absence of clear explana-
tions for the underlying mechanism of the model, the empirical
results demonstrate a very high precision and recall. Recently,
LEMNA [Guo et al., 2018] introduces the first explanation
model for a deep learning based security application (i.e., us-
ing an RNN model). It integrates fused lasso [Tibshirani er al.,
2005] for handling a feature dependency problem with a mix-
ture regression model [Khalili and Chen, 2007] that achieves
an accurate approximation for a local decision boundary.

3 Challenges of Function Identification

A binary function that resides in a code section differs from a
human-written function that conveys semantics. Every binary
function originates from a function i) defined by a user (i.e.,
source code), ii) generated by a compiler (i.e., stack canary
check), or iii) inserted by a linker (i.e., CRT function).

The common challenges for function detection are well-
known, mainly due to compiler optimizations and code regions
intermixed by code and data. First, code optimization often
blurs a clear signature of a function prologue and epilogue, ren-
dering its boundary detection less straightforward because (D a
function can be inlined to be part of another for performance;

"Note that IDA ships with a known function identification algo-
rithm, dubbed FLIRT [Hex-Rays, 2005a] that maintains a signature
database of each function for a standard library, however, it cannot
be applied to general function identification.

Table 1: Summary of our test suite. The numbers in () represent the
number of binaries with a different set of a compiler and optimization.

TestSuite Count Binary Set

500.perlbench_r, 502.gcc_r, 505.mef_r, 520.omnetpp_r,
523.xalancbmk_r, 525.x264_r, 531.deepsjeng_r,
541.leela_r, 557.xz_r, 508.namd_r, 510.parest_r,
511.povray_r, 519.1bm_r, 526.blender _r,
538.imagick_r, and 544.nab_r

SPEC2017 16 (120)

S nginx 1.16.1, vsftpd 3.0.3, and
Utilities 462) openssl 1.1.1f (libssl.so, libcrypto.so)

Table 2: Summary of cutting-edge function detection tools. (¥)
represents the retrained model of ByteWeight.

Tool Train set Test set

Byteweight GNU utils SPEC2017, Our utils
Byteweight* SPEC2017 SPEC2017 (10-fold), Our utils
Shin:R SPEC2017 Our utils

IDAPro7.2 N/A SPEC2017, Our utils
Ghidra9.1.2 N/A SPEC2017, Our utils

Nucleus N/A SPEC2017, Our utils

@ a call invocation happens at the end of a procedure (i.e.,
tail call), replacing it with a single jump (instead of pop and
ret) without returning to an original caller; 3 a single routine
may be split into multiple locations (non-contiguous function);
@ different function symbols can point to the same address
(i.e., identical implementation); and ® compiler-generated
code or compiler-specific heuristics may render function iden-
tification opaque. Second, a compiler can mix a jump table as
data within a function for indirect transfer that complicates a
linear disassembly task (commonly seen in ARM or Windows
binaries). Other reasons include multi-entry functions (i.e.,
calls to the middle of a function), non-returning functions (i.e.,
ending with a call), and code from manually written assembly.

4 Rethinking Function Detection Problem

In this section, we describe the function identification problem
mainly focusing on four research questions. We aim neither to
simply rank the existing tools by comparison nor to verify the
correctness of prior evaluations. Instead, we attempt to fill the
gaps that may have been overlooked or misinterpreted.

Test Suite. We have collected 16 different binaries from the
SPEC2017 benchmark [Standard Performance Evaluation Cor-
poration, 2017] and four binaries from three utilities of our
choice, and then generated 152 different x64 ELF binaries
in total with two compilers (gcc 5.4 and clang 6.0.1) and
four different optimization levels (O0-O3), excluding a clang
version of blender_r and parest_r because of compilation
errors (Table 1). Note that the binaries ending with _s in
SPEC2017 are ruled out due to almost identical function list.

Function Identification Tool. As shown in Table 2, we uti-
lize three deterministic tools (IDA, Ghidra, Nucleus) and two
ML-embedded tools (ByteWeight, LEMNA implementation
of Shin et al’s RNN) for recognizing function starts.

4.1 Research Questions

‘We revisit prior approaches to answer the following research
questions that focus on (D appropriateness of dataset, Q) re-
interpretation of prior evaluations, B effectiveness of ML
techniques, and @ rethinking of metrics, for function identifi-
cation. We also conduct extra experiments if required.

5

* RQL. Is the previous dataset (i.e., GNU utilities) appropriate
for the effectiveness of a function detection technique?

* RQ2. Has a function detection problem been (almost) re-
solved as reported with a very high F1 or accuracy?

* RQ3. Are recent advances with an ML-centered approach
(i.e., deep learning) superior to a deterministic one?

* RQA4. Is the current metric (i.e., precision, recall and F1)
fair enough to measure function identification in general?

4.2 Appropriateness of Dataset

Table 3 shows a comparison of prior approaches for func-
tion identification at a glance. After the first release
of ByteWeight’'s GNU utilities [ByteWeight, 2014] (16
binutils, 104 coreutils, 9 findutils), all subsequent
works but Nucleus employ the same dataset for their evalua-
tions. Nucleus has first claimed that they are too biased to be
generalized with a limited assessment of the assertion.

We have quantified the bias of the dataset, 129 GNU utilities,
adopted by ByteWeight. For simplicity, we sorely focus on
x64 binaries compiled with gcc. Table 4 shows 10 different
groups utilized in ByteWeight for 10-fold cross validation.

; // binutils - ar
; void yyset_lineno(int line_number) {

; yylineno = line_number;

; 1

0x432273: push rbp

0x432274: mov rbp,rsp

0x432277: mov DWORD PTR [rbp-0x4],edi
0x43227a: mov eax ,DWORD PTR [rbp-0x4]
0x43227d: mov DWORD PTR [rip+0x378a81],eax
0x432283: pop rbp

0x432284: ret

; // binutils - as

3 ; static void set_allow_index_reg (int flag) {

14 ; allow_index_reg = flag;

15 ; }

16 ®x4049c8: push rbp

17 0x4049c9: mov rbp, rsp

18 0x4049cc: mov DWORD PTR [rbp-0x4],edi

19 0x4049cf: mov eax,DWORD PTR [rbp-0x4]

20 0x4049d2: mov DWORD PTR [rip+0x30£fbd8],eax
21 0x4049d8: pop rbp

22 0x4049d9: ret

Listing 1: Example of an identical function pair after normalization.

ByteWeight performs normalization of a function as a pre-
processing step before generating a weighted tree; that is, it
converts both an immediate number and target of a call/jump
instruction into a generalized value to improve a recall. After
normalization?, we found that only 17.6K (12.1%) out of the
whole 146K functions remained unique normalized functions
(NFs). For example, 19.8K NFs (91.4%) have been discovered
in a train set (20.7K functions) when selecting Group 9 as a
test set in Table 4. This indicates cross validation cannot avoid
an overfitting because of too many redundant data. The redun-
dancy mainly arises from a static library in common during
compilation: the coreutils consists of 106 small binaries
that employ libcoreutils.a, including 776 common func-
tions from 257 object files. Another interesting finding is that
there are a considerable number of NFs even between differ-
ent functions from different binaries. For instance, Listing 1

2We normalize an immediate with a single value whereas
ByteWeight has a few different ones (i.e., zero, positive, negative),
however, it does not significantly change the final outcome.

Table 3: Comparison of the existing works for function boundary detection. (*) indicates the work that has been included for our evaluation.

Approach Tool Artifacts Year Dataset Arch Type Compiler OptLevel # Binaries Compared To
g Nucleus* SPEC2006, ngnix, lighttpd, g . .
Non-ML %Andr.icssp ot 1%14, 2017] Y 2017 %‘}f}{‘f%}di vsfipd, exim x86/x64 ELF/PE clang/VS 00-03 476 Dyninst, ByteWeight, IDA
‘unction-interface tils, . .
}Qiao and Sekar, 2017] N 2017 %];\FS%OOF GLIBC x86/x64 ELF clang/gcc 00-03 2,488 gytexe%g:t, ::mﬁgi
ima tls, . ¥ yte e1gl t, n: N
[Alves-Foss and Sone, 2019] Y 2019 $pEC2017. Chrome 18664 ELF clangfgecfice 00-03 2860 DA Free, Ghidra. Nucleus
mupL — NathanmCRF N 2007 Unknown 86 ELF/PE geclicc/VS Unknown LI71 NA
[Rosenblum et al., 20081
ByteWeight* [Bao et al., 2014] Y 2014 GNU Utils x86/x64 ELF/PE clang/gcc 00-03 2,200 Dyninst, ByteWeight, BAP, IDA
Shin;:RNN* [Shin et al., 2015] N 2015 GNU Utils x86/x64 ELF/PE clang/gcc 00-03 2,200 ByteWeight
FID [Wang et al., 2017] N 2017 GNU coreutils x86/x64 ELF clang/gec/ice 00-O3 4,240 IDA, ByteWeight
LEMNA* [Guo et al., 2018] Y 2018 GNU Utils x64 ELF gee 00-03 2,200 N/A
Table 4: 10 Groups for 10-fold cross validation for ByteWeight. 12,000 10,499
%5 » 10,000 8,380 9,453
Group Files Funcs Set | Group Files Funcs Set 5 6 8000
Group 1 57 19,996 train | Group 6 49 12,236 train £ 8 6000
Group 2 55 9,475 train | Group 7 48 12,197 train 32 4000 1871
Group 3 51 18,442 train | Group 8 46 12,324 train 2,000 4 696
Group 4 57 13,779 train | Group 9 46 20,680 test - —
Group 5 55 13481 train | Group 10 52 13,519 train RNN over RNNover RNNover Ghidra IDAover

depicts two binary functions that are identical after normal-
ization. The source code of those functions (line 1-5, 14-17)
similarly takes a single integer as a parameter and then assigns
it into a local variable. In this example, there are 16 identical
NFs across six binaries. It is worth noting that our dataset is
valid after normalization because only 753 NFs (less than 1%)
in a test set (80.5K) are shown in a train set (796.1K).

4.3 Re-interpretation of Prior Evaluations

In this section, we revisit prior evaluations that may lead to
a misinterpretation that the function detection problem has
been solved despite myriad hurdles described in Section 3.
ByteWeight reports an F1 value of 98.8% for ELF x64, and
similarly the RNN model proposed by Shin et al. achieves
98.3%. LEMNA has re-implemented Shin’s RNN model for
function identification and reported a result comparable to the
original one (F1 of 99.4%). In particular, LEMNA achieves
an extremely high accuracy, 99.99%, across all optimization
levels. In the same vein, other works showcase a remarkable
outcome compared to the existing works (Table 3).

We believe the reported empirical results are accurate and
reproducible, but, as discussed in Section 4.2, we claim that
one reason for a high detection rate partially stems from an
inappropriate corpus. We further carry out several experi-
ments to support our claim. First, we employ a relatively new
standard dataset, SPEC2017, to confirm that the signature of
ByteWeight works well in general. Table 6 shows F1 is close
to 61.7, which is far beyond the reported value. After retrain-
ing the ByteWeight model with SPEC2017, we obtain an F1 of
78.0. Second, we attempt to reproduce the accuracy of Shin’s
RNN model (source unavailable) with our dataset from the
LEMNA’s open source implementation, obtaining 94.5 and
86.1 as a precision and recall (See Table 6), respectively. In-
deed, we are able to obtain an overly high accuracy as claimed,
but it turns out that the accuracy comes from the means of
counting true negatives. As Shin’s bidirectional RNN model
determines if the next byte is a function start upon a given
sequence of bytes (i.e., input of n bytes as a hyperparameter),
it results in a series of decisions per each following byte. If
the size of a binary is s, s — n decisions would produce a large
number of true negatives because a majority of bytes do not

Ghidra IDA both over RNN RNN

Figure 1: Comparison of the number of true functions between
different tools (i.e., RNN VS deterministic approaches).

Table 5: Non-returning function detection across different tools.

Tool # of Missing Total Rate
IDA Pro 0 9409 0.00%
Ghidra 54 9,409 0.57%
Nucleus 1,186 9,409 12.60%
Byteweight 4,615 9,409 49.05%
Byteweight* 2,024 5,125 39.49%
Shin:RNN 24 250 9.60%

represent the beginning of a function, which makes accuracy
reach 99.99%, according to Equation 2.

4.4 On the Effectiveness of ML Techniques

This section describes the effectiveness of ML-centric ap-
proaches, including deep learning (i.e, Shin’s RNN). Fig-
ure 1 illustrates a simple comparison between the number
of true functions discovered by each tool. For example, Shin’s
RNN approach discovers 8,380 and 1,871 functions more than
Ghidra and IDA, respectively (See Table 6 for details). Mean-
while, Ghidra and IDA discover 9,453 and 10,499 functions
more than the RNN.

Case Study: Non-returning Functions
In particular, we investigate all non-returning functions®
(9,409 or 1.2%) from our dateset, ending with call, jump,
or __exit such as Listing 2, Listing 3, and Listing 4. Ta-
ble 5 concisely shows that ML-oriented approaches miss more
functions than deterministic techniques.

Case Study: Inlined Functions

We look into one of the examples in which the RNN approach
has accurately captured all function starts, whereas both IDA
Pro and Ghidra have failed to discover them (696 functions
in Figure 1). Listing 2 illustrates the code snippet (line 1-14)
and its disassembly from vsftpd-amd64-clang-01. This
function takes a single argument (i.e., p_sess), which plays a
role in branching out into multiple call invocations depending

3We employ a particular flag (FUNC_NORET) that IDA Pro main-
tains for the analysis purpose.

U AW —

1

)

26

29

on the argument (i.e., line 7, 10, and 13 otherwise). Although
this example is slightly different from a typical function inlin-
ing case in that a function symbol resides in a symbol table,
deterministic binary analysis tools regard each branch function
as part of process_post_login_req.

static void

process_post_login_req(struct vsf_session® p_sess) {
char cmd;
/* Blocks */
cmd = priv_sock_get_cmd(p_sess->parent_£fd);
if (tunable_chown_uploads && cmd == PRIV_SOCK_CHOWN)
cmd_process_chown(p_sess);
else if (cmd == PRIV_SOCK_PASV_CLEANUP)
cmd_process_pasv_cleanup (p_sess);
else
die("bad request in process_post_login_req");
; process_post_login_req(vsf_session *p_sess)
0xAC10 push rbx
0xAC11 mov rbx, p_sess
0xAC14 mov edi, [p_sess+180h] ; fd
0xAC1A call priv_sock_get_cmd
OxAC3F lea rcx, jpt_AC4D
0xAC46 movsxd rax, ds:(jpt_AC4D - 16C38h) [rcx+rax*4]
0xAC4A add rax, rcx
0xAC4D jmp rax ; jump table
0xAC52 pop p_sess
OxACS53 jmp cmd_process_get_data_sock
0xAC55 lea rdi, aBadRequestInPr
0xACS5C pop p_sess
0xAC5D jmp die
0xAC80 pop p_sess
0xAC81 jmp cmd_process_pasv_cleanup
; cmd_process_pasv_cleanup(vsf_session *p_sess)
0xAD30 push rbx
0xAD31 mov rbx, p_sess
0xAD34 call vsf_privop_pasv_cleanup
0xAD39 mov edi, [p_sess+180h]
0xAD3F mov esi, 1
0xAD44 pop p_sess
2 OxAD45 jmp priv_sock_send_result

Listing 2: Example of a function and its disassembly after
optimization. The function cmd_process_pasv_cleanup has been
discovered by an RNN alone over deterministic approaches.

4.5 Rethinking of Current Metrics

This section expands our concern (both unsuitable dataset
and evaluation that may lead the misinterpretation of a result)
that the current metrics (i.e., precision, recall, and F1 shown
in Equation 1) may not be fair as a scientific means to measure
the effectiveness of function identification. We provide a
handful of case studies to rethink the suitability of the current
metrics for function detection.

Case Study: Non-continuous Functions

Listing 3 shows the code snippet (line 1-8) and its disas-
sembly from imagick_r-amd64-gcc-03. A compiler op-
timization takes an exception handler apart (line 24-32), hold-
ing two separate binary functions as a ground truth (i.e.,
AcquireImageInfo and AcquireImageInfo.part.2?).
Although it takes up a small portion of entire functions (2,997
functions or 0.38% in our dataset), such margins may lead an

“The symbol name ending with “.part . {num}” has been gener-
ated by gcc. It is a compiler-specific behavior because clang (i.e.,
imagick_r-amd64-clang-03) holds a single function symbol.

o)

unfair precision and recall because it is difficult to say either
side (i.e., counting a non-continuous function as one or two)
is inaccurate from a reversing perspective for binary analysis.

MagickExport ImageInfo *AcquireImageInfo(void) {

ImageInfo *image_info;

image_info=(ImageInfo *) AcquireMagickMemory(sizeof (*
image_info));

if (image_info == (ImageInfo *) NULL)
ThrowFatalException(ResourcelimitFatalError,"
MemoryAllocationFailed");

GetImageInfo(image_info);

return(image_info);

}
; ImageInfo *__cdecl AcquireImageInfo()
0x4C6BCO push rbx
0x4C6BC1 mov edi, 4198h ; size
0x4C6BC6 call AcquireMagickMemory
0x4C6BCB test image_info, image_info
0x4C6BCE jz loc_4C6BEO®
0x4C6BDO mov rbx, image_info

7 0x4C6BD3 mov rdi, image_info ; image_info
0x4C6BD6 call GetImageInfo
0x4C6BDB mov rax, image_info
0x4C6BDE pop image_info
0x4C6BDF retn
0x4C6BEO® call AcquireImageInfo.part.2
; ImageInfo *__cdecl AcquireImageInfo.part.2()
0x402554 push rbx
0x402555 sub rsp, 40h
0x402559 mov rdi, rsp ; exception
0x4025C4 call DestroyExceptionInfo
0x4025C9 call MagickCoreTerminus
0x4025CE mov edi, 1 ; status
0x4025D3 call __exit

Listing 3: Example of a non-continous function and its disassembly
after optimization.

In a similar vein, going back to Listing 2, the decision that
those branch functions have been reasonable in terms of func-
tion boundary correctness is questionable. Interestingly, the
register rbx at lines 36 and 37 holds a p_sess value instead of
a base pointer to invoke the corresponding call. It means miss-
ing the boundary of the seemingly inlined (albeit separated)
function does not hamper conducting further reversing in case
that such a missing function (cmd_process_pasv_cleanup)
is both semantically and tightly coupled with its caller.

Ground Truth from Debugging Information

It is very common to extract a ground truth of a function
boundary from debugging information in a non-stripped bi-
nary because debugging sections contain function positions
and sizes in a DWAREF structure. Likewise, an ._eh_frame
section (even in a stripped binary) follows a DWARF format
by default, storing call frame information (CFI) for an excep-
tion handling routine. The CFI contains two entry forms: i) a
common information entry (CIE) that corresponds to a single
object and ii) a frame description entry (FDE) that contains a
reference to a function and its length.

; __int64 __fastcall atol_317(const char *__nptr)
2 0x9COA20 xor esi, esi
3 0x9CO0A22 mov edx, OAh

0x9COA27 jmp _strtol

4

Listing 4: Example of an identified function by Ghidra using FDE
information where a symbol table does not hold.

A state-of-the-art disassembler such as Ghidra harnesses such
FDE:s to identify a function, sometimes resulting in discov-
ering more functions that may not reside in a symbol table

alone®. To exemplify, Listing 4 demonstrates a short function
from cpugcc_r-amd64-clang-01 that has been detected by
Ghidra with FDE information where a ground truth (i.e., func-
tion symbol) does not hold. We have found that there are
13,380 such functions in the above binary, which significantly
increases the number of false positives for Ghidra and Nucleus.
Under the current scheme of precision and recall, the F1 value
of both Ghidra and Nucleus (96.0 and 90.4 in Table 6) may be
distorted because the function in Listing 4 should be viewed
as an actual binary function. Considering the functions that
can be found in FDEs, the recalculated F1 of Ghidra and Nu-
cleus would be 98.0 and 93.0, respectively, whereas that of
IDA Pro drops (91.3 from 93.4), which impacts on the final
ranking. It is worthwhile to mention that referring FDE may
point to an incorrect function location (i.e., an FDE pointing
to a location in the middle of a single instruction).

5 Evaluation

Table 6 summarizes our empirical results with our own dataset
as selected in Table 1. Even though we question the reason-
ableness of the current metrics in Section 4.5, we have used the
same metrics for direct comparison with prior evaluations. We
have applied the publicly available model from ByteWeight to
our utility dataset. The F1 value is around 61.7 (our evaluation
merely includes the binaries compiled with gcc because the
existing model has not learned any signature from clang).
It indicates that GNU utilities do not offer diverse cases due
to a considerable number of redundant NFs as discussed in
Section 4.2. We have retrained ByteWeight (taking a week
or so) using SPEC2017 and retested it with our dataset (both
compiled with gcc alone). Note that three binaries of our test
set have been crashed while processing, and thus are excluded.
All metrics have considerably increased (78.0 on average);
however, the F1 values of the newly trained model across opti-
mized binaries (O1-3) still remain below 70. Besides, we have
adopted LEMNA'’s re-implementation and its hyperparameters
for Shin et al.’s RNN model because the original work is cur-
rently unavailable. With the test set of our chosen utilities (32
binaries or 80.5K functions) and the training set of SPEC2017,
the RNN model achieves an F1 of 90.1. Finally, we have run
the whole set (152 binaries or 796.1K functions in total) for
deterministic tools including Ghidra, IDA Pro and Nucleus,
and obtained F1 values of 96.0, 93.4, and 90.4, respectively.

6 Discussion

Taking a close look at the experimental results with our efforts
to answer the research questions we have raised, the following
recaps our insights. First, in general, state-of-the-art function
detection tools work very well when no optimization has been
applied. Second, not a single tool dominates all the others. The
performance of a deterministic tool may vary depending on a
signature database. Third, it is difficult to claim that an ML-
centric approach is yet superior to deterministic approaches
although the approach obviously has its own strength. Fourth,

>The GNU binutils such as objdump or nm reads function
symbols from a symbol table (.symtab and .dynsym) by default
rather than parsing entire debugging sections.

Table 6: Experimental results of function starts using a precision (P),
recall (R), and F1 value from various tools. GT represents a ground
truth discovered in a symbol table. ByteWeight* shows our empirical
results after retraining with SPEC2017.

Tool | GT | TP FP FN | P R F1
ByteWeight | 514,082 | 309,781 180,777 204,301 | 63.15 6026 61.67
gcc 514,082 | 309,781 180,777 204301 | 63.15 60.26 61.67
00 | 193.094 | 188:884 19.043 ~ 4210 | 90.84 97.82 94.20
Ol | 108964 | 56,655 55463 52309 | 5053 5199 51.25
02 | 107,673 | 31.833 50,604 75.840 | 38061 2956 3349
O3 | 104351 | 32400 55,667 71942 | 3680 31.06 33.68
ByteWeight* | 463323 | 332,576 56,655 130,747 | 8544 71.78 78.02
acc 463,323 | 332,576 56,655 130,747 | 8544 7178 78.02
00 | 142,603 | 141,774 156 829 | 99.89 9942 99.65
Ol | 108964 509 19607 40365 | 7777 6296 69.58
02 | 107,539 | 635630 18,671 43909 | 7731 59.17 67.04
03 | 104217 | 58573 18221 45644 | 7627 5620 6472
Shin:RNN | 80,532 | 69,334 4034 11,198 | 9450 86.09 90.10
clang 41267 | 35,153 1164 6114 | 9679 8518 90.62
00 | 11647 | 11476 171 | 9955 9853 99.04
Ol | 11637 | 9263 336 2374 | 9640 7960 87.20
02| 8998 | 7194 357 1804 | 9527 7995 86.94
03| 8985 | 7220 109 1765 | 9464 8036 8691
gcc 39265 | 34181 2870 5084 | 9225 87.05 89.58
00 | 11,657 | 11477 90 180 | 99.22 98.46 93.34
0l 9349 | 8351 499 998 | 9436 8933 9177
02| 9305| 7304 1137 200l | 8653 7850 8232
03| 8954 | 7049 1,144 1905 | 8604 7872 8222
Ghidra | 796,069 | 785333 54,131 10,736 | 93.55 98.65 96.03
clang 281987 | 276296 47,134 5691 | 8543 97.98 91.27
00 | 92718 | 92330 2.468 388 | 9740 9958 98.48
Ol | 92226 | 90282 15.006 1944 | 8575 9789 91.42
02 | 480614 | 46933 14744 1681 | 7609 9654 85.11
03 | 484 46751 14916 1678 | 75.81 9654 8493
gcc 514,082 | 509,037 X 5045 | 98164 9902 9883
00 | 193094 | 192523 2318 71 | 98.81 9970 9926
Ol | 108964 | 107.683 1663 1281 | 9848 98.82 9865
02 | 107673 | 106,055 1492 1618 | 9861 9850 98.55
03 | 104351 | 102,776 1,524 1575 | 9854 9849 9831
IDAPro | 796,069 | 699,606 3,194 96463 | 99.55 87.88 93.35
clang 281,987 | 263385 3,102 18,602 | 98.84 9340 96.04
00 | 92718 | 92,600 3 118 | 100.00 99.87 99.93
Ol | 92226 | 84920 1,044 7306 | 9879 92.08 9531
02 | 485614 | 431037 1025 5577 | 97.67 8853 9288
03 | 48429 | 42:828 1030 5601 | 97.65 8843 02.81
gcc 514,082 | 436,221 92 77861 | 9998 84:85 91.80
00 | 193.094 | 191.757 3 1337 | 10000 9931 99.65
Ol | 108964 | 89,288 10 19676 | 9999 8194 90.07
02 | 107.673 | 79:085 47 28588 | 99194 73145 8467
03 | 104351 | 76,091 32 28260 | 9996 7292 8432
Nucleus | 796,069 | 750,012 112,936 46,057 | 86.91 9421 90.42
clang 281,987 | 264,819 72945 17,168 | 7840 9391 85.46
00 | 92718 | 91.872 8810 846 | 9125 99.09 95.01
Ol | 92226 | 82431 21,687 9,795 | 7917 8938 8397
02 | 480614 | 45346 21091 3268 | 68.15 9328 78.76
O3 | 48429 | 45170 21257 3259 | 6800 9327 78.66
cC x s A 3 .
g 514,082 | 485,193 39991 28889 | 9239 9438 93.37
00 | 193.094 | 188789 "8.610 4.305 | 95.64 97.77 96.69
Ol | 108964 | 104985 7330 3979 | 9347 9635 94389
02 | 107,673 | 95897 11481 11,776 | 8931 89.06 89.19
O3 | 104351 | 95522 12570 8829 | 8837 9l54 890.93

the current metrics (i.e., precision, recall, and F1 value) for
function detection may not be reasonable due to idiosyncrasies
from various compiler optimization techniques. This necessi-
tates a better metric, which we leave for our future research.
Fifth, overall, it is difficult to conclude that a function detec-
tion problem has been fully resolved. We believe that both
deterministic and ML-oriented approaches complement each
other. For example, deep learning could play a pivotal role in
learning locally missing functions.

7 Conclusion

In this paper, we rethink the function identification problem us-
ing both deterministic and ML-centric approaches. To this end,
we have attempted to re-interpret prior datasets, evaluations,
and even common metrics using varying case studies.

Open Problem. Based on our major findings, we call for
seeking better metrics and dataset for fair comparison in the
field of function recognition.

References

[Alves-Foss and Sone, 2019] Jim Alves-Foss and Jia Sone.
Function Boundary Detection in Stripped Binaries. In Pro-
ceedings of the Annual Computer Security Applications
Conference (ACSAC), 2019.

[Andriesse et al., 2017] Dennis Andriesse, Asia Slowinska,
and Herbert Bos. Compiler-Agnostic Function Detection
in Binaries. In Proceedings of the 2nd IEEE European
Symposium on Security and Privacy (EuroSP, Paris, France,
April 2017.

[Bao et al., 2014] Tiffany Bao, Jonathan Burket, Maverick
Woo, Rafael Turner, and David Brumley. ByteWeight:
Learning to Recognize Functions in Binary Code. In Pro-
ceedings of the 23rd USENIX Security Symposium (Secu-
rity), San Diego, CA, August 2014.

[Brumley et al., 2011] David Brumley, Ivan Jager, Thanas-
sis Avgerinos, and Edward J. Schwartz. BAP: A Binary
Analysis Platform. In Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification (CAV),
Snowbird, UT, July 2011.

[ByteWeight, 2014] ByteWeight. ByteWeight: Recogniz-
ing Functions in Binaries. http://security.ece.cmu.edu/
byteweight/, 2014.

[Directorate, 2019a] NSA’s Research Directorate. Ghidra,
2019. https://ghidra-sre.org/.

[Directorate, 2019b] NSA’s Research Directorate. Ghidra
function start signature DB. https://github.com/

NationalSecurity Agency/ghidra/blob/master/Ghidra/
Processors/x86/data/patterns/x86-64gcc_patterns.xml,
2019.

[Federico et al., 2017] Alessandro Di Federico, Mathias
Payer, and Giovanni. rev.ng: a unified binary analysis
framework to recover CFGs and function boundaries. In

Proceedings of the 2017 International Conference on Com-
piler Construction (CC), Austin, TX, February 2017.

[Guo et al., 2018] Wenbo Guo, Dongliang Mu5, Jun Xu, Pu-
rui Su, Gang Wang, and Xinyu Xing. LEMNA: Explaining
Deep Learning based Security Applications. In Proceedings
of the 25th ACM Conference on Computer and Communica-
tions Security (CCS), Toronto, ON, Canada, October 2018.

[Hex-Rays, 2005a] Hex-Rays. IDA Fast Library Identifica-
tion and Recognition Technology. https://www.hex-rays.
com/products/ida/tech/flirt/, 2005.

[Hex-Rays, 2005b] Hex-Rays. IDA Pro Disassembler, 2005.
https://www.hex-rays.com/idapro/.

[Jacobson et al., 2011] Emily R. Jacobson, Nathan Rosen-
blum, and Barton P. Miller. Labeling library functions
in stripped binaries. In Proceedings of the 10th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software (PASTE), Seattle, USA, September 2011.

[Khalili and Chen, 2007] Abbas Khalili and Jiahua Chen.
Variable selection in finite mixture of regression models.
Journal of the American Statistical Association, 2007.

[Qiao and Sekar, 2017] Rui Qiao and R Sekar. Function Inter-
face Analysis: A Principled Approach for Function Recog-
nition in COTS Binaries. In Proceedings of the 47th Inter-
national Conference on Dependable Systems and Networks
(DSN), Denver, USA, June 2017.

[Radare2, 2009] Radare2. Libre and Portable Reverse Engi-
neering Framework. http://rada.re/n/, 2009.

[Rosenblum et al., 2008] Nathan Rosenblum, Xiaojin Zhu,
Barton Miller, and Karen Hunt. Learning to analyze bi-
nary computer code. Association for the Advancement of
Artificial Intelligence (AAAI), 2008.

[Shin et al., 2015] Eui Chul Richard Shin, Dawn Song, and
Reza Moazzezi. Recognizing Functions in Binaries with
Neural Networks. In Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, August
2015.

[Shoshitaishvili ef al., 2016] Yan Shoshitaishvili, Ruoyu
Wang, Christopher Salls, Nick Stephens, Mario Polino, Au-
drey Dutcher, John Grosen, Siji Feng, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis.
In Proceedings of the 37th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2016.

[Standard Performance Evaluation Corporation, 2017]
SPEC Standard Performance Evaluation
ration. SPEC CPU2017 Benchmark.
/Iwww.spec.org/cpu2017, 2017.

[Tibshirani et al., 2005] Robert Tibshirani, Michael Saun-
ders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity
and smoothness via the fused lasso. Journal ofthe Royal Sta-
tistical Society: Series B (Statistical Methodology), 2005.

[Wang et al., 2017] Shuai Wang, Pei Wang, and Dinghao Wu.
Semantics-Aware Machine Learning for Function Recog-
nition in Binary Code. In Proceedings of the 33rd IEEE
International Conference on Software Maintenance and
Evolution (ICSME, Shanghai, China, September 2017.

Corpo-
https:

http://security.ece.cmu.edu/byteweight/
http://security.ece.cmu.edu/byteweight/
https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Processors/x86/data/patterns/x86-64gcc_patterns.xml
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Processors/x86/data/patterns/x86-64gcc_patterns.xml
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Processors/x86/data/patterns/x86-64gcc_patterns.xml
https://www.hex-rays.com/products/ida/tech/flirt/
https://www.hex-rays.com/products/ida/tech/flirt/
https://www.hex-rays.com/idapro/
http://rada.re/n/
https://www.spec.org/cpu2017
https://www.spec.org/cpu2017

	Introduction
	Background and Related Work
	Problem Definition of Function Identification
	Evaluation Metrics
	Related Work

	Challenges of Function Identification
	Rethinking Function Detection Problem
	Research Questions
	Appropriateness of Dataset
	Re-interpretation of Prior Evaluations
	On the Effectiveness of ML Techniques
	Case Study: Non-returning Functions
	Case Study: Inlined Functions

	Rethinking of Current Metrics
	Case Study: Non-continuous Functions
	Ground Truth from Debugging Information

	Evaluation
	Discussion
	Conclusion

