
Revisiting Function Identification
with Machine Learning

Hyungjoon Koo, Soyeon Park, and Taesoo Kim

January 2021

Machine Learning for Program Analysis (MLPA)



Function Identification Problem
Problem definition
◦ Discover a set of function boundaries in a binary 

◦ No symbol or debugging information readily available

A binary function is
◦ Defined by a developer from source code

◦ Generated by a compiler (e.g., stack canary check)

◦ Inserted by a linker (e.g., CRT function)

Why important?
◦ Serve as a basis for reversing executable binaries

◦ Many applications: binary transformation, binary similarity analysis, call graph reconstruction

◦ Almost every binary analysis tool includes a feature of function recognition

2



Common Challenges
Code optimization often blurs a clear function signature

e.g., function inlining

Compiler-generated code or compiler-specific heuristics

Mixed code and data
e.g., jump table

Non-returning functions
e.g., ending with a call

Code from manually written assembly

3



Existing Approaches
Linear disassembly
◦ Linearly disassemble all code (e.g., objdump)

◦ Apply function signature matching (e.g., function prologue)

◦ Downside: no pattern, code/data intermixed

Recursive traversal
◦ Begin from an entry point

◦ Follow a direct control flow transfer

◦ Downside: indirectly reachable (or unreachable) functions cannot be recognized

ML-oriented approach
◦ Conditional random field (CRF)

◦ Weighted prefix tree

◦ Recurrent neural network (RNN)

4



Summary of Prior Works

Tool Year Dataset Artifacts Arch # Bins Compared To

Nucleus 2017 SPEC2006, nginx, lighttpd, 
opensshd, vsfpd, exim

Y x86/x64 476 Dyninst, ByteWeight,
IDA

Qiao et al. 2017 GNU Utils, SPEC2006, Glibc N x86/x64 2,488 ByteWeight, Shin:RNN

Jima 2019 GNU Utils, SPEC2017, Chrome Y x86/x64 2,860 ByteWeight, Shin:RNN,

IDA Free, Ghidra, 
Nucleus

ByteWeight 2014 GNU Utils Y x86/x64 2,200 Dyninst, BAP, IDA

Shin:RNN 2015 GNU Utils N x86/x64 2,200 ByteWeight

FID 2017 GNU coreutils N x86/x64 4,240 IDA, ByteWeight

5



Our Focus
Is NOT about
◦ Verifying the correctness of prior evaluations

◦ Ranking the existing approaches (i.e., which one is the best?)

Is about
◦ Filling the void of what has been overlooked or misinterpreted

◦ Revisiting the previous datasets, metrics, and evaluations

→ Has the function identification problem been fully addressed?

6



Research Questions
Is the previous dataset appropriate?

Has a function detection problem been fully resolved?

Are ML-oriented approaches superior to deterministic ones?

Is the current metric (i.e., precision, recall, F1) fair enough?

7



Appropriateness of Dataset
GNU utilities (129)
◦ ByteWeight released 16 binutils, 104 coreutils, and 9 findutils

◦ coreutils has a static library (libcoreutils.a) in common → redundant functions

◦ Most subsequent works use them for their evaluations

Normalization
◦ ML approaches take “normalization” as a pre-processing step

◦ 17.6K / 146K (12.1%) remain unique

◦ 91.4% in a test set has been discovered in a training set → overfitting

8



Re-interpretation of Prior Evaluations
Remarkable reports
◦ ByteWeight: F1 of 98.8 for ELF x64

◦ Shin’s RNN: F1 of 98.3

◦ LEMNA (Shin’s RNN re-implementation): 99.99% accuracy

Are we there yet?
◦ Re-experimentation with a different dataset 

(e.g., SPEC2017, other utilities of our choice)

◦ Retraining the ByteWeight model with our dataset: F1 of 78.0

◦ LEMNA’s accuracy comes from the number of decisions per byte 
(i.e., large # of true negatives)

◦ The LEMNA results with our dataset: precision of 94.5, recall of 86.1

9



Effectiveness of ML Techniques
Comparison of the number of true functions
◦ RNN VS Deterministic approaches

◦ Non-returning function (i.e., ending with call, jump, or __exit) detection

10



Rethinking of Current Metrics (1/2)
Precision, Recall and F1 values

[Case 1] Non-continuous functions

11



Rethinking of Current Metrics (2/2)
[Case 2] Ground truth from debugging information
◦ objdump or nm read function symbols merely from a symbol table

◦ Ghidra discovers more functions with a frame description entry (FDE) 
by parsing debugging sections

◦ Example (13,380 cases from cpugcc_r-amd64-clang-O1)

◦ Also, we need to consider cases 
when referring FDE may point to an incorrect function location!

12



Our Dataset and Tools
Dataset
◦ SPEC2017: 16 different binaries (120)

◦ 4 Utilities including nginx, vsftpd, and openssl (32)

◦ x64 ELFs that compiled with gcc/clang using O0-3 optimization levels

Tools
◦ Deterministic tools

◦ IDA

◦ Ghidra

◦ Nucleus

◦ ML-embedded tools

◦ LEMNA implementation of Shin:RNN

◦ ByteWeight signature from the latest version of BAP

◦ ByteWeight (for retraining): originally released version 

13



Evaluation

Tool Ground Truth Precision Recall F1

Nucleus 796,069 86.91 94.21 90.42

IDA Pro 796,069 99.55 87.88 93.35

Ghidra 796,069 93.55 98.5 96.03

ByteWeight 514,082 63.15 60.26 61.67

ByteWeight (retrained) 463,323 85.44 71.78 78.02

Shin:RNN (LEMNA impl) 80,532 94.50 86.09 90.10

14



Insights and Conclusion
Insights
◦ State-of-the-art function detection tools work well for binaries without optimizations

◦ Not a single tool dominates all the others

◦ Difficult to claim an ML-centric approach surpasses deterministic ones

◦ The current metrics may not be reasonable in some cases

Conclusion
◦ A function detection problem has yet been fully resolved

◦ Better metrics and dataset for fair comparison are needed

15



Q&A

16


