Machine Learning for Program Analysis (MLPA)

Revisiting Function ldentification
with Machine Learning

January 2021

Hyungjoon Koo, Soyeon Park, and Taesoo Kim

Georgia ﬁ&
Tech

—

Function ldenftification Problem

Problem definition
Discover a set of function boundaries in a binary
No symbol or debugging information readily available

A binary function is
Defined by a developer from source code

Generated by a compiler (e.g., stack canary check)
Inserted by a linker (e.g., CRT function)

Why important?
Serve as a basis for reversing executable binaries
Many applications: binary transformation, binary similarity analysis, call graph reconstruction
Almost every binary analysis tool includes a feature of function recognition

Common Challenges

Code optimization often blurs a clear function signature
e.g., function inlining

Compiler-generated code or compiler-specific heuristics

Mixed code and data
e.g., jump table

Non-returning functions
e.g., ending with a call

Code from manually written assembly

Existing Approaches

Linear disassembly
Linearly disassemble all code (e.g., objdump)

Apply function signature matching (e.g., function prologue)
Downside: no pattern, code/data intermixed

Recursive traversal
Begin from an entry point

Follow a direct conftrol flow transfer
Downside: indirectly reachable (or unreachable) functions cannot be recognized

ML-oriented approach
Condifional random field (CRF)

Weighted prefix tree
Recurrent neural network (RNN)

Summary of Prior Works
ool |Year |Dafasel | Arfacts | Arch | # Bins | ComparedTo

Nucleus 2017 SPEC2006, nginx, lighttpd, Y x86/x64 476 Dyninst, ByteWeight,
opensshd, vsfpd, exim IDA

Qico et al. 2017 GNU Utils, SPEC2006, Glibc N x86/x64 2,488 ByteWeight, Shin:RNN

Jima 2019 GNU Utils, SPEC2017, Chrome Y x86/x64 2,860 ByteWeight, Shin:RNN,
IDA Free, Ghidra,
Nucleus

ByteWeight 2014 GNU Utils Y x86/x64 2,200 Dyninst, BAP, IDA

Shin:RNN 2015 GNU Utils N x86/x64 2,200 ByteWeight

FID 2017 GNU coreutils N x86/x64 4,240 |IDA, ByteWeight

QOur Focus

Is NOT about
Verifying the correctness of prior evaluations

Ranking the existing approaches (i.e., which one is the best?)

Is about
Filing the void of what has been overlooked or misinterpreted

Revisiting the previous datasets, metrics, and evaluations

- Has the function identification problem been fully addressed?

Research Questions

Is the previous dataset appropriatee

Has a function detection problem been fully resolved?

Are ML-oriented approaches superior to deterministic ones?

Is the current metric (i.e., precision, recall, F1) fair enough?

Appropriateness of Dataset

GNU utilities (129)
ByteWeight released 16 binutils, 104 coreutils, and 9 findutils

coreutils has a static library (1ivcoreutiis.a) in common - redundant functions
Most subsequent works use them for their evaluations

Normalization
ML approaches take “normalization” as a pre-processing step

17.6K / 146K (12.1%) remain unique
91.4% in a test set has been discovered in a fraining set > overfitting

Group Files Funces Set | Group Files Funcs Set
Group 1 57 19996 (rain | Group6 49 12236 train

Group 2 55 09475 train | Group7 48 12,197 train
Group 3 51 18442 train | Group 8 46 12,324 train
Group 4 57 13779 train | Group9 20,680 test

46
Group 5 55 13481 rain | Group 10 52 13519 train

Re-interpretation of Prior Evaluations

Remarkable reports
ByteWeight: F1 of 98.8 for ELF x64

Shin’s RNN: F1 of 98.3
LEMNA (Shin’s RNN re-implementation): 99.99% accuracy

Are we there yete

Re-experimentation with a different dataset
(e.g., SPEC2017, other utilities of our choice)

Retraining the ByteWeight model with our dataset: F1 of 78.0

LEMNA's accuracy comes from the number of decisions per byte
(i.,e., large # of true negatives)

The LEMNA results with our dataset: precision of 94.5, recall of 86.1

Effectiveness of ML Techniques

Comparison of the number of true functions
RNN VS Deterministic approaches

12,000 10,499

10,000 8,380 3,433
8,000
6,000
4,000
2,000]ﬁl 696
[]

RMNMN over RNN over RMNNover Ghidra IDA over
Ghidra IDA both over RNN RMNM

Number of
Functions

Non-returning function (i.e., ending with call, jump, or _ exit) detection

Tool # of Missing Total Rate
IDA Pro 0 9409 0.00%
Ghidra 34 9409 0.57%
Nucleus 1.186 9409 12.60%
Byteweight 4615 9409 49.05%
Byteweight* 2,024 5,125 39.49%
Shin:R 24 250 9.60%

Rethinking of Current Metrics (1/2)

Precision, Recall and F1 values

__rp| TP _ 2xPxR
~|TP|+|FP|’ "~ |TP|+|FN|'° ~ P+R

[Case 1] Non-contfinuous functions

MagickExport ImageInfo *AcquireImageInfo(void) {
ImageInfo *image_info;
image_info=(ImageInfo *) AcquireMagickMemory(sizeof(*
image_info));
if (image_info == (ImageInfo *) NULL)
ThrowFatalException(ResourcelLimitFatalError,"”
MemoryAllocationFailed");
GetImageInto(image_into);
return(image_info);

}

rbx

edi, 4198h ; size
AcquireMagickMemory
image_info, image_info
loc_4C6RE®

rbx, image_info

rdi, image_info ; image_info
GetImageInfo

rax, image_info

image_info

AcquireImageInfo.part.2

E-imageInfD *__cdecl AcquireImageInfo.part.2()

9x4C6BCH push
Ox4C6BC1 mov
O@x4C6BCH call
Ox4C6EBCB test
Ox4C6BCE jz
Ox4C6EDA mov
Ox4C6EBD3 mov
@x4C6EBD6 call
Ox4C6EDB mov
0x4C6BDE pop
Ox4C6BDF retn
9x4CEBED call
Hx462554 push
Bx4B82555 sub
Hx402559 mov
Bx46025C4 call
Hx4625C9 call
Bx4025CE mowv
Hx4625D3 call

rbx
rsp, 46h
rdi, rsp ; exception

DestroyExceptionInfo
MagickCoreTerminus
edi, 1 ; status
__exit

Rethinking of Current Metrics (2/2)

[Case 2] Ground truth from debugging information
objdump or nm read function symbols merely from a symbol table

Ghidra discovers more functions with a frame description entry (FDE)
by parsing debugging sections

Example (13,380 cases from cpugcc_r-amd64-clang-01)

; __inte4 __fastcall atol_317(const char *__nptr)
Ox9CHAZ0 Xor esi, esi

Ox9COAZ2 mov edx, OAh
Ox9CHAZT jmp _strtol

Also, we need to consider cases
when referring FDE may point to an incorrect function location!

Our Dataset and Tools

Dataset
SPEC2017: 16 different binaries (120)

4 Utilities including nginx, vsftpd, and openssl (32)
x64 ELFs that compiled with gcc/clang using O0-3 optfimization levels

Tools

Deterministic tools
IDA
Ghidra
Nucleus

ML-embedded fools
LEMNA implementation of Shin:RNN
ByteWeight signature from the latest version of BAP
ByteWeight (for retraining): originally released version

Evaluation

Tool | GroundTruth| _ Precision| _ Recall| ____Fl
Nucleus 796,069 86.91 94.21 90.42
IDA Pro 796,069 99.55 87.88 93.35
Ghidra 796,069 93.55 98.5 96.03
ByteWeight 514,082 63.15 60.26 61.67
ByteWeight (retrained) 463,323 85.44 /1.78 /78.02
Shin:RNN (LEMNA impl) 80,532 94.50 86.09 90.10

Insights and Conclusion

Insights
State-of-the-art function detection tools work well for binaries without optimizations
Not a single tool dominates all the others
Difficult to claim an ML-centric approach surpasses deterministic ones
The current metrics may not be reasonable in some cases

Conclusion
A function detection problem has yet been fully resolved
Better metrics and dataset for fair comparison are needed

