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Abstract—Fuzzing is an emerging technique to automatically
validate programs and uncover bugs. It has been widely used
to test many programs and has found thousands of security vul-
nerabilities. However, existing fuzzing efforts are mainly centered
around Unix-like systems, as Windows imposes unique challenges
for fuzzing: a closed-source ecosystem, the heavy use of graphical
interfaces and the lack of fast process cloning machinery.

In this paper, we propose two solutions to address the
challenges Windows fuzzing faces. Our system, WINNIE, first
tries to synthesize a harness for the application, a simple program
that directly invokes target functions, based on sample executions.
It then tests the harness, instead of the original complicated
program, using an efficient implementation of fork on Windows.
Using these techniques, WINNIE can bypass irrelevant GUI code
to test logic deep within the application. We used WINNIE to fuzz
59 closed-source Windows binaries, and it successfully generated
valid fuzzing harnesses for all of them. In our evaluation, WINNIE
can support 2.2× more programs than existing Windows fuzzers
could, and identified 3.9× more program states and achieved
26.6× faster execution. In total, WINNIE found 61 unique bugs
in 32 Windows binaries.

I. INTRODUCTION

Fuzzing is an emerging software-testing technique for
automatically validating program functionalities and uncovering
security vulnerabilities [42]. It randomly mutates program
inputs to generate a large corpus and feeds each input to the
program. It monitors the execution for abnormal behaviors,
like crashing, hanging, or failing security checks [56]. Recent
fuzzing efforts have found thousands of vulnerabilities in open-
source projects [12, 28, 52, 62]. There are continuous efforts
to make fuzzing faster [4, 9, 53] and smarter [60, 65, 67].

However, existing fuzzing techniques are mainly applied to
Unix-like OSes, and few of them work as well on Windows
platforms. Unfortunately, Windows applications are not free
from bugs. Recent report shows that in the past 12 years,
70% of all security vulnerabilities on Windows systems are
memory safety issues [43]. In fact, due to the dominance of
Windows operating system, its applications remain the most
lucrative targets for malicious attackers [10, 17, 18, 48]. To
bring popular fuzzing techniques to the Windows platform, we
investigate common applications and state-of-the-art fuzzers,
and identify three challenges of fuzzing applications on
Windows: a predominance of graphical applications, a closed-
source ecosystem (e.g., third-party or legacy libraries), and the
lack of fast cloning machinery like fork on Unix-like OSes.
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Fig. 1: Architecture of XnView on Windows. The program accepts
the user input via the GUI. The main executable parses the received
path and dynamically loads the library to process the input. A fuzzing
harness bypasses the GUI to reach the functionality we wish to test.

Windows applications heavily rely on GUIs (graphical user
interfaces) to interact with end-users, which poses a major
obstacle to fuzzing. As shown in Figure 1, XnView [64] requires
the user to provide a file through the graphical dialog window.
When the user specifies the file path, the main executable
parses the file, determines which library to delegate to, and
dynamically loads the necessary library to handle the input.
Although some efforts try to automate the user interaction [7],
the execution speed is much slower than ordinary fuzzing.
For example, fuzzing GUI applications with AutoIt yields
only around three executions per second [20], whereas Linux
fuzzing often achieves speeds of more than 1,000 executions
per second. Speed is crucial for effective fuzzing, and this
slow-down renders fuzzing GUI application impractical.

The general way to overcome the troublesome GUI is
to write a simple program, called a harness, to assist with
fuzzing. A harness replaces the GUI with a CLI (command-
line interface), prepares the execution context such as arguments
and memory, and invokes the target functions directly. In this
way, we can test the target program without any user interaction.
For example, with a harness that receives the input path from
the command line and loads the decoder library, we can test
XnView without worrying about the dialog window. Recent
work has even explored generating harnesses automatically for
open-source programs [8, 35].

Nevertheless, Windows fuzzing still relies largely on human
effort to create effective harnesses because most Windows
programs are closed-source, commercial-off-the-shelf (COTS)
software [3, 21, 44, 55, 61]. Existing automatic harness
synthesis methods require to access the source code, and thus
cannot handle closed-source programs easily [8, 35]. Without
the source code, we have little knowledge of the program’s
internals, like the locations of interesting functions and their
prototypes. Since manual analysis is error-prone and unscalable
to a large number of programs, we need a new method to
generate fuzzing harnesses directly from the binary.
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Finally, Windows lacks the fast cloning machinery (e.g.,
fork syscall) that greatly aids fuzzing on Unix-like OSes. Linux
fuzzers like AFL place a fork-server before the target function,
and subsequent executions reuse the pre-initialized state by
forking. The fork-server makes AFL run 1.5×–2× faster on
Linux [70]. fork also improves the stability of testing as each
child process runs in its own address space, containing any
side-effects, like crashes or hangs. However, the Windows
kernel does not expose a clear counterpart for fork, nor any
suitable alternatives. As a result, fuzzers have to re-execute
the program from the beginning for each new input, leading
to a low execution speed. Although we can write a harness
to test the program in a big loop (aka., persistent mode [68]),
testing many inputs in one process harms stability. For example,
each execution may gradually pollute the global program state,
eventually leading to divergence and incorrect behavior.

We propose an end-to-end system, WINNIE, to address
the aforementioned challenges and make fuzzing Windows
programs more practical. WINNIE contains two components:
a harness generator that automatically synthesizes harnesses
from the program binary alone, and an efficient Windows fork-
server. To construct plausible harnesses, our harness generator
combines both dynamic and static analysis. We run the target
program against several inputs, collect execution traces, and
identify interesting functions and libraries that are suitable for
fuzzing. Then, our generator searches the execution traces to
collect all function calls to candidate libraries, and extracts
them to form a harness skeleton. Finally, we try to identify the
relationships between different function calls and arguments
to build a full harness. Meanwhile, to implement an efficient
fork-server for Windows systems, we identified and analyzed
undocumented Windows APIs that effectively support a Copy-
on-Write fork operation similar to the corresponding system
call on Unix systems. We established the requirements to
use these APIs in a stable manner. The availability of fork
eliminates the need for existing, crude fuzzing techniques like
persistent mode. To the best of our knowledge, this is the first
practical counterpart of fork on Windows systems for fuzzing.

We implemented WINNIE in 7.1K lines of code (LoC).
We applied WINNIE on 59 executables, including Visual
Studio, ACDSee, ultraISO and EndNote. Our harness generator
automatically synthesized candidate harnesses from execution
traces, and 95% of them could be fuzzed directly with only
minor modifications (i.e., ≤ 10 LoC). Our improved fuzzer
also achieved 26.6× faster execution and discovered 3.6×
more basic blocks than WinAFL, the state-of-the-art fuzzer on
Windows. By fuzzing these 59 harnesses, WINNIE successfully
found 61 bugs from 32 binaries. Out of the 59 harnesses,
WinAFL only supported testing 29.

In summary, we make the following contributions:

• We identified the major challenges of fuzzing closed-
source Windows applications;

• We developed WINNIE, which can automatically generate
harnesses for Windows binaries to bypass GUI code;

• We implemented the first efficient Windows fork-server;
• WINNIE successfully generated efficient harnesses for 59

Windows binaries and found 61 bugs in 32 binaries.

To facilitate future research, we have open-sourced WINNIE at
https://github.com/sslab-gatech/winnie.
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Fig. 2: Fuzzing overview. (1) The fuzzer maintains a queue of inputs.
Each cycle, (2) it picks one input from the queue and (3) modifies it
to generate a new input. (4) It feeds the new input into the fuzzed
program and (5) records the code coverage. (6) If the execution triggers
more coverage, the new input is added back into the queue.

II. BACKGROUND: WHY HARNESS GENERATION?

Fuzzing is a popular automated technique for testing soft-
ware. It generates program inputs in a pseudo-random fashion
and monitors program executions for abnormal behaviors (e.g.,
crashes, hangs or assertion violations). Since it was introduced,
fuzzing has found tens of thousands of bugs [27].

Most popular fuzzers employ greybox, feedback-guided
fuzzing. Under this paradigm, fuzzers treat programs like black
boxes, but also rely on light-weight instrumentation techniques
to collect useful feedback (e.g., code coverage) from each run.
The feedback is used to measure how an input helps explore
the program’s internal states. Thus, a fuzzer can gauge how
effective an input is at eliciting interesting behaviors from
the program. Intuitively, since most bugs lie in the relatively
complicated parts of code, the feedback guides the fuzzer
towards promising parts of the program. This gives greybox
fuzzers a decisive advantage over black-box fuzzers which
blindly generate random inputs without any runtime feedback.

AFL [69], a popular Linux fuzzer, exemplifies greybox
fuzzing in practice. Figure 2 depicts AFL’s fuzzing process.
The testing process is similar to a genetic algorithm. It proceeds
iteratively, mutating and testing new inputs each round. Inputs
which elicit bugs (i.e., crashes or hangs) or new code coverage
from the program are selected for further testing, while other
uninteresting inputs are discarded. Across many cycles, AFL
learns to produce interesting inputs as it expands the code
coverage map. Although simple, this strategy is surprisingly
successful: several recent advanced fuzzers [4, 9, 14] follow the
same high-level process. Overall, AFL-style, greybox fuzzing
has proven extremely successful on Linux systems.

Although most recent research efforts focus on improving
fuzzing Linux applications [4, 9, 14, 22, 39, 50, 69], Windows
programs are also vulnerable to memory safety issues. Past
researchers have uncovered many vulnerabilities by perform-
ing a manual audit [43]. In fact, Windows applications are
especially interesting because they are commonly used on end-
user systems. These systems are prime targets for malicious
attackers [10, 17]. Automatic Windows testing would pave a
way for researchers to look for bugs in many Windows programs
while limiting manual code review. In turn, this would help
secure the Windows ecosystem.

Unfortunately, no fuzzers can test Windows applications as
effectively as AFL can test Linux applications. Table I compares
Linux AFL with popular Windows fuzzers. WinAFL is a fork of
AFL ported for Windows systems [57] and supports feedback-
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Fuzzer AFL WinAFL HonggFuzz Peach WINNIE

Feedback ✔ ✔ ✗ ✗ ✔
Forkserver ✔ ✗ ✗ ✗ ✔
Open-source ✔ ✔ ✔ ✗ ✔
Windows ✗ ✔ ✔ ✔ ✔

TABLE I: Comparison between various Windows fuzzers and
Linux AFL. We compare several key features that we believe are
essential to effective fuzzing. WINNIE aims to bring the ease and
efficiency of the Linux fuzzing experience to Windows systems.

driven fuzzing. HonggFuzz supports Windows, but only for
fuzzing binaries in dumb mode, i.e., without any coverage
feedback [25]. Peach is another popular fuzzer with Windows
support but requires users to write specifications based on their
knowledge of the fuzzed program [16]. Overall, although there
are several rudimentary fuzzers for Windows systems, we find
that none offers fast and effortless testing in practice. In this
paper, we aim to address these concerns and make Windows
fuzzing truly practical. To do so, we must first examine what
the major obstacles are.

A. The GUI-Based, Closed-Source Software Ecosystem

Compared to Linux programs, Windows applications have
two distinguishing features: closed-source and GUI-based. First,
many popular Windows applications are commercial products
and thus closed-source, like Microsoft Office, Adobe Reader,
Photoshop, WinRAR, and Visual Studio. As these commercial
applications contain proprietary intellectual property, most
of them are very unlikely to be open-sourced in the future.
Second, Windows software is predominantly GUI-based. Unlike
on Linux which features a rich command-line experience,
essentially all of the aforementioned Windows programs are
GUI applications. Due to the closed nature of the ecosystem,
vendors rarely have an incentive to provide a command-line
interface, as most end-users are most familiar with GUIs. In
other words, the only way to interact with most programs’ core
functionality is through their GUI.

GUI applications pose a serious obstacle to effective fuzzing.
First, GUI applications typically require user interaction to
get inputs, and cannot be tested automatically without human
intervention. Bypassing the GUI is nontrivial: it is slow to
fully automate Windows GUIs with scripting [20]; meanwhile
avoiding the user interface altogether usually requires a deep
understanding of the application’s codebase, as programmers
often intertwine the asynchronous GUI code with the input
processing code [30]. Second, GUI applications are slow to
boot, wasting a lot of time on GUI initialization. Table II
shows the startup times of GUI applications compared to a
fully-CLI counterpart. In our experiments, GUI code often
brought fuzzing speeds down from 10 or more executions per
second to less than one. Naturally, fuzzing a CLI version of the
application is absolutely essential. WinAFL [57] acknowledges
this issue, and recommends users to create fuzzing harnesses.

B. Difficulty in Creating Windows Fuzzing Harnesses

It is a common practice to write fuzzing harnesses to test
large, complicated software [8, 35]. In general, a harness is
a relatively small program that prepares the program state
for testing deeply-embedded behaviors. Unlike the original

Program Harness GUI Ratio Program Harness GUI Ratio

HWP-jpeg 117 4075 34.8×K Tiled 28 720 25.7×K
Gomplayer 15 1105 73.6×K ezPDF 184 4397 23.8×K
ACDSee 16 510 31.8×K EndNote 30 1461 23.8×K

TABLE II: Execution times (ms) with and without GUI. GUI code
dominates fuzzing execution time (35× slower on average). Thus,
fuzzing harnesses are crucial to effective Windows application fuzzing.
We measured GUI execution times by hooking GUI initialization code.

Attributes Fudge FuzzGen Winnie

Binary ✗ ✗ ✔
Target OS Linux Linux/Android Windows
Control-flow analysis ✔ ✔ ✔
Data-flow analysis ✔ ✔ ✗
Input analysis Heuristic - Dynamic trace
Ptr / Struct analysis Heuristic Value-set analysis Heuristic

TABLE III: Comparison of harness generation techniques. Most
importantly, WINNIE supports closed-source applications by ap-
proximating source-level analyses. Fine-grained data-flow tracing is
impractical without source code as it incurs a large overhead.

program, we can flexibly customize the harness to suit our
fuzzing needs, like bypassing setup code or invoking interesting
functions directly. Hence, harnesses are a common tactic for
enhancing fuzzing efficacy in practice. For instance, Google
OSS-Fuzz [29] built a myriad of harnesses on 263 open-source
projects and found over 15,000 bugs [27].

Harnesses are especially useful when testing GUI-based
Windows applications. First, we can program the harness to
accept input from a command-line interface, thus avoiding user
interaction. This effectively creates a dedicated CLI counterpart
for the target program which existing fuzzers can easily handle.
Second, using a harness avoids wasting resources on GUI
initialization, focusing solely on the functionality at the heart
of the program (e.g., file parsing) [3, 44, 55].

Unfortunately, Windows fuzzing faces a dilemma: due
to the nature of the Windows ecosystem, effective fuzzing
harnesses are simultaneously indispensable yet very difficult
to create. In addition, due to the prevalence of closed-source
applications, many existing harness generation solutions are
inadequate [8, 35]. As a result, harness creation often requires
in-depth reverse engineering by an expert, a serious human
effort. In practice, this is a serious hindrance to security
researchers fuzzing Windows applications.

Fudge and FuzzGen. Fudge [8] and FuzzGen [35] aim
to automatically generate harnesses for open-source projects.
Fudge generates harnesses by essentially extracting API call
sequences from existing source code that uses a library.
Meanwhile, FuzzGen relies on static analysis of source code
to infer a library’s API, and uses this information to generate
harnesses. Table III highlights the differences between the
existing solutions and WINNIE. Most crucially, Fudge and
FuzzGen generally target open-source projects belonging to
the Linux ecosystem, but WINNIE aims specifically to fuzz
COTS, Windows software. Although it may seem that Linux
solutions should be portable to Windows systems, the GUI-
based, closed-source Windows software ecosystem brings new,
unique challenges. As a result, these tools cannot be used to
generate harnesses for Windows applications.

3



Fudge, FuzzGen, and WINNIE all employ heuristics to infer
API control-flow and data-flow relationships. However, whereas
Fudge and FuzzGen can rely on the availability of source
code, WINNIE cannot as a large amount of API information is
irrevocably destroyed during the compilation process, especially
under modern optimizing compilers. Thus, although Fudge and
FuzzGen’s analyses are more detailed and fine-grained, they
are crucially limited by their reliance on source code. This is
the fundamental reason why these existing solutions are not
applicable to Windows fuzzing. Hence, a new set of strategies
must be developed to effectively generate fuzzing harnesses in
the absence of source code.

III. CHALLENGES AND SOLUTIONS

WINNIE’s goal is to automate the process of creating
fuzzing harnesses in the absence of source code. From our
experience, even manual harness creation is complicated
and error-prone. Thus, before exploring automatic harness
generation, we will first discuss several common difficulties
researchers encounter when creating harnesses manually.

A. Complexity of Fuzzing Harnesses

Fuzzing harnesses must replicate all behaviors in the original
program needed to reach the code that we want to test. These
behaviors could be complex and thus challenging to capture
in the harness. For instance, a harness may have to initialize
and construct data structures and objects, open file handles,
and provide callback functions. We identified four major steps
to create a high-quality harness: 1 target discovery; 2 call-
sequence recovery; 3 argument recovery; 4 control-flow and
data-flow dependence reconstruction.

To illustrate these steps in action, we look into a typical
fuzzing harness, shown in Figure 3. XnView is an image
organizer, viewer and editor application [64]. Although the
original program supports more than 500 file formats [63],
our goal is to test the JPM parser, implemented in the
library ldf_jpm.dll. Figure 3 shows the corresponding harness.
First, the harness declares callback functions (lines 2-3), and
initializes variables (lines 6 and 9). Second, the harness imitates
the decoding logic of the original program: it opens and
reads the input file (line 10), retrieves properties (lines 14-17),
decodes the image (line 20), and closes it (line 23). Lastly, the
harness declares the required variables (line 9) and uses them
appropriately (lines 15, 17, 20 and 23). Conditional control
flow based on return values is also considered to make the
program exit gracefully upon failures (line 11).

1 Target discovery. The first step of fuzzing is to identify
promising targets that handle user inputs. This process can be
time-consuming as, depending on the program, the input may
be specified in a variety of ways, such as by filename, by file
descriptor, or by file contents (whole or partial). In this example,
the researcher should identify that the API JPM_Document_Start
from ldf_jpm.dll library is responsible for accepting the user
input through a pointer of an opened file descriptor (line 10).

2 Call-sequence recovery. The harness must reproduce the
correct order of all function calls relevant to the target library.
In this example, there are total 10 API calls to be reconstructed
in the full harness. Note that static analysis alone is not enough

1 // 1) Declare structures and callbacks
2 int callback1(void* a1, int a2) { ... }
3 int callback2(void* a1) { ... }
4

5 // 2) Prepare file handle
6 FILE *fp = fopen("filename", "rb");
7

8 // 3) Initialize objects, internally invoking ReadFile()
9 int *f0_a0 = (int*) calloc(4096, sizeof(int));

10 int f0_ret = JPM_Document_Start(f0_a0, &callback1, &fp);
11 if (f0_ret){ exit(0); }
12

13 // 4) Get property of the image
14 int f1_a2 = 0, int f4_a2 = 0;
15 JPM_Document_Get_Page_Property((void *)f0_a0[0], 0xA, &f1_a2);
16 ...
17 JPM_Document_Get_Page_Property((void *)f0_a0[0], 0xD, &f4_a2);
18

19 // 5) Decode the image
20 JPM_Document_Decompress_Page((void *)f0_a0[0], &callback2);
21

22 // 6) Finish the harness
23 JPM_Document_End((void *)f0_a0[0]);

Fig. 3: An example harness, synthesized by our harness generator. It
tests the JPM parser inside the ldf_jpm.dll library of the application
XnView. The majority of the harness was correct and usable out of
the box. We describe the steps taken to create this harness in §III-A
and in more detail in §IV. Low level details are omitted for brevity.

to discover all callsites. Due to the prevalence of indirect calls
and jump tables, researchers must also use dynamic analysis
to get the concrete values of the call targets.

3 Argument recovery. The harness must also pass valid
arguments to each function call. Reconstructing these arguments
is challenging: the argument could be a pointer to a callback
function (like &callback1 at line 10), a pointer to an integer
(like &f1_a2 at line 15), a constant (like 0xa at line 15), or
many other types. When manually constructing a harness,
the researcher must examine every argument for each API
call, relying on their expertise to determine what the function
expects.

4 Control-flow and data-flow dependence. It is oftentimes
insufficient to simply produce a list of function calls in the right
order. Moreover, libraries define implicit semantic relationships
among APIs. These relationships manifest in control-flow
dependencies and data-flow dependencies. For example, a
conditional branch between API calls may be required for the
harness to work, like the if-statement at line 11 of the example.
Alternatively, one API may return or update a pointer which is
used by a later API call. Unless these relationships are respected,
the resulting harness will be incorrect, yielding false positives
and spurious crashes. For example, the above code updates array
f0_a0 at line 10, and uses the first element in lines 15, 17, 20,
and 23. In the absence of source code, this step is extremely
challenging, and even the most advanced harness generator
cannot guarantee correctness. Human intuition and experience
can supplement auto-analysis when reverse-engineering.

B. Limitations of Existing Solutions

As Windows does not provide fast process cloning machin-
ery (e.g., Linux’s fork), fuzzers usually start each execution
from the very beginning. Considering the long start-up time of
Windows applications (see Table II), each re-execution wastes
a lot of time to reinitialize the program. Existing solutions (e.g.,
WinAFL) resort to a technique known as persistent mode to
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Fig. 4: Overview of WINNIE. Given the target program and a set of sample inputs, WINNIE aims to find security vulnerabilities. It uses a
harness generator to synthesize simple harnesses from the execution trace, and then fuzzes harnesses efficiently with our implementation of fork.

overcome the re-execution overhead [68]. In persistent mode,
the fuzzer repeatedly invokes the target function in a tight loop
within the same process, without reinitializing the program each
iteration. To realize the most performance gains, one generally
aims to test as many inputs as possible per new process.

While persistent mode partially addresses the performance
issues of Windows fuzzing, its efficacy is limited by its strict
requirements on the loop body. Specifically, persistent mode
expects harnesses to behave like pure functions, meaning that
harnesses avoid any side-effects, such as leaking memory or
modifying global variables. Otherwise, each execution would
start from a different program state. Since the harness is
repeatedly looped for thousands of iterations, even the smallest
side-effects will gradually accumulate over time, finally leading
to problems like memory leaks, unreproducible crashes and
hangs, and unreliable coverage. For example, a program that
leaks 1MB of memory per iteration will reach WinAFL’s default
memory limit and be terminated. We experienced such errors
very often in practice, and discuss more details later in §VII-A.

Many side-effect errors from persistent mode are difficult
to debug or difficult to circumvent. A common issue is that
persistent mode cannot continue if the target function does not
return to the caller. For example, a program can implement
error handling by simply terminating the program. Because
most inputs generated during fuzzing are invalid (albeit benign),
this still demands constant re-execution, severely degrading
performance. Another common problem is that a program will
open the input file in exclusive mode (i.e., other processes
cannot open the same file) without closing it. This prevents the
fuzzer from updating the input file in the next iteration, breaking
persistent mode. Problems like these limit the applicability and
scalability of persistent mode fuzzers.

C. Our Solutions

We propose WINNIE, an end-to-end system that addresses
aforementioned obstacles to effectively and efficiently fuzz
Windows applications. WINNIE contains two components, a
harness generator that synthesizes harnesses for closed-source
Windows programs with minimal manual effort (§IV), and a
fuzzer that can handle uncooperative target applications with
our efficient fork implementation (§V). Figure 4 shows an
overview of our system. Given the program binary and sample
inputs, our tracer runs the program and meanwhile, collects
dynamic information about the target application, including
API calls, arguments and memory contents. From the trace,
we identify interesting fuzzing targets that handle user input,
including functions in external libraries and locations inside
the main binary. For each fuzzing target, our harness generator
analyzes the traces and reconstructs related API sequences as
a working harness. We test the generated harnesses to confirm
their robustness and effectiveness, and then launch fuzzing
instances with our fork-server to find bugs. In the following

Class Type What to record
1 Module string name, path, module
2 Call/Jump inter-module thread id, caller, callee, symbols, args

intra-module same as above, only for main .exe
3 Return inter-module thread id, callee, caller, retval

intra-module same as above, only for main .exe
4 Arg/RetVal constants concrete value

pointers address and referenced data (recursively)

TABLE IV: Dynamic information collected by the tracer. We
record detailed information about every inter-module call. We also
record the same information for intra-module calls within the main
binary. If the argument or return value is a pointer, we recursively dump
memory around the pointed location. We then use this information to
construct fuzzing harnesses (§IV).

sections, we will use the harness shown in Figure 3 as an
example to explain the design of each component of WINNIE.

IV. HARNESS GENERATION

To generate the harness, WINNIE followed the four steps
previously outlined in §III-A. Consider XnView as an example:

1 For target discovery (§IV-A), we trace XnView while
opening several JPM files, and then search the traces for input-
related APIs, such as OpenFile and ReadFile.

2 For call-sequence recovery (§IV-B), we search the traces for
function calls related to the fuzzing target. In the example, we
find all the function calls related to the chosen library (lines 10,
15, 17, 20 and 23). We put the call-sequence into the harness,
forming a harness skeleton. The skeleton is now more-or-less
a simple series of API calls, which we then flesh out further.

3 For argument recovery (§IV-C), we analyze the traces to
deduce the prototype for each function in the call sequence.
The traces contain verbose information about APIs between
the main binary and libraries, like arguments and return values.

4 Finally, we establish the relationships (§IV-D) among the
various calls and variables presented in the harness skeleton and
emit the final code after briefly testing (§IV-E) the candidate
harness. WINNIE also points out complicated logic potentially
missed by our tracer (such as the callback function at line 20)
as areas for further improvement.

A. Fuzzing Target Identification

In this step, WINNIE evaluates whether the program can
be fuzzed and tries to identify promising target functions. We
begin by performing dynamic analysis on the target program as
it processes several chosen inputs. Table IV shows a detailed
list of items that the tracer captures during each execution. 1
We record the name and the base address of all loaded modules.
2 For each call and jump that transfers control flow between
modules, our tracer records the current thread ID, the caller and
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callee addresses, symbols (if available), and arguments. Without
function prototype information, we conservatively treat all CPU
registers and upper stack slots as potential arguments. 3 We
record return values when encountering a return instruction. 4
If any of values fall into accessible memory, we conservatively
treat it as a pointer and dump the referenced memory for further
analysis. To capture multi-level pointer relationships (e.g.,
double or triple pointers), we repeat this process recursively.
For pointers, we also recognize common string encodings (e.g.,
C strings) and record them appropriately.

Using our captured traces, we look for functions which
are promising fuzzing targets. It is commonly believed that
good fuzzing targets have two key features [58, 68]: the library
accepts the user-provided file path as the input, and it opens
the file, parses the content and closes the file. We use these two
features to find candidate libraries for fuzzing. Specifically, for
each function call, we check whether one of its arguments points
to a file path, like C:\my_img.jpm. To detect user-provided
paths, our harness generator accepts filenames as input. Next,
we identify callers of well-known file-related APIs such as
OpenFile and ReadFile. If a library has functions accepting
file paths, or invokes file-related APIs, we consider it is an
input-parsing library and treat it as a fuzzing candidate.

WINNIE also identifies library functions that do not open or
read the file themselves, but instead accept a file descriptor or
an in-memory buffer as input. To identify functions accepting
input from memory, our tracer dissects pointers passed to calls
and checks if the referenced memory contains any content
from the input file. We also verify that the appropriate file-read
APIs were called. To find functions taking file descriptors as
inputs, we inspect all invocations of file-open APIs and track
the opened file descriptors. Then, we check whether the library
invokes file-related APIs on those file descriptors.

Our harness generator focuses primarily on the external
interfaces a library exposes. On the other hand, we do not
record control flow within the same module as these represent
libraries’ internal logic. Because invoking the API through
those interfaces models the same behavior as the original
program, inter-module traces are sufficient for building an
accurate harness. However, we treat the main executable as a
special case and record all control-flow information within it.
This is because the main executable is responsible for calling
out to external libraries. Thus, we also search the intra-module
call-graph of the main executable for suitable fuzzing targets.

WINNIE then expands its search to within the main binary
by analyzing its call-graph. Specifically, WINNIE begins at
the lowest common ancestor (LCA) of I/O functions and the
parsing library APIs we previously identified. In a directed
acyclic graph, the LCA of two nodes is the deepest one that
can reach both. In our case, we search for the lowest node
in the main binary’s callgraph that satisfies two criteria. First,
it should be before the file-read operation so that our fuzzer
can modify the input. Note that even if the fuzzed process has
opened the input file, we still can modify it so the program uses
the new content. Second, the LCA should reach locations that
invoke parsing functions. Figure 5 shows an example callgraph
from the program ACDSee. The function at address 0x5cce80
is the LCA as it reaches two file-related APIs (i.e., OpenFile
and ReadFile) and also invokes the parsing functionality in
ide_acdstd.apl. We also consider the LCA’s ancestors (e.g.,

0x5cce80 0x401160

0x43fc50 0x43f890 0x4014f0

ReadFile()

OpenFile()

main()

IDP_Init

IDP_Metadata

IDP_OpenImageW

IDP_GetPageInfo

IDP_CloseImage

acdsee.exe
(main binary)

ide_acdstd.apl
(library)

†

†

Fig. 5: A simplified call-graph of the ACDSee program. WINNIE
analyzes the call-graph for fuzzing possible targets, focusing on inter-
module calls and I/O functions. We look for functions that can reach
both I/O functions and also the interesting ones we wish to fuzz. “†”
indicates such functions, known as LCA candidates (§IV-A).

main()) as fallback candidates, if the immediate LCA does not
yield a working harness. In cases where a working LCA is
found, it often is sufficient for making an effective harness.

Our tool can also optionally use differential analysis to refine
the set of candidate fuzzing targets. Given two sets of inputs,
one triggering the target functionality and another not triggering,
WINNIE will compare the two execution traces and locate the
library functions that are specific to the target functionality. We
discard the other functions which are present in both sets of
traces. This feature helps deal with multi-threaded applications
where only one thread performs operations related to the input
file. In any case, differential analysis is optional; it only serves
as an additional criteria to improve harness generation.

B. Call-sequence Recovery

Now that we have identified a candidate fuzzing target, our
goal in this step is to reproduce a series of API calls which
will correctly reach and trigger the functionality we wish to
fuzz. We call such an API sequence a harness skeleton. We
search the traces for function calls related to that library and
copy them to the harness skeleton (lines 10, 15, 17, 20, 23 in
Figure 3). We also reconstruct the functions’ prototypes (e.g.,
argument count and types) with hybrid analysis: we combine
the static analysis provided by IDA Pro [31] or Ghidra [2] with
concrete information retrieved from the dynamic execution
traces. Namely, we apply pointer types to arguments that
were valid addresses in the traces, as the static analysis can
misidentify pointer arguments as integers. Lastly, we attach
auxiliary code that is required to make the harness work, like a
main function, forward function declarations, and helper code
to open or read files (line 6).

Special care must be taken to handle applications which
use multiple threads. In that case, we will only consider the
threads that invoke file-related APIs. This is to avoid adding
irrelevant calls that harm the correctness of the harness. We
encountered several programs that exhibit this behavior, such as
GomPlayer, which had hundreds of irrelevant function calls in
the execution trace. When the program creates multiple threads
within the same library, the trace records an interleaving of
many threads’ function calls combined. However, since we
recorded the thread IDs in our previous step, we can untangle
the threads to focus on them individually. With the per-thread
analysis, we can narrow the number of calls down to just seven.
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C. Argument Recovery

In this step, we reconstruct the arguments that should be
passed to each API call in the call sequence recovered in the
previous step. WINNIE attempts to symbolize the raw argument
values recorded in the traces into variables and constants. First,
we identify pointer arguments. We do so empirically through
differential analysis of the trace data. Specifically, the tracer runs
the program with the same input twice, both times with address
space layout randomization (ASLR) enabled [49]. Because
ASLR randomizes memory addresses across different runs, two
pointers passed to the same call site will have different, pseudo-
random values that are accessible addresses both times. If this
is the case, we can infer that the argument is a pointer. For
pointer arguments, we use the concrete memory contents from
the trace, dissecting multiple levels of pointers of necessary.
Otherwise, we simply consider the value of the argument itself.

Next, we determine whether the argument is static or
variable. Values which vary from execution to execution are
variable, and we define names for variables and replace their
uses with new names. Values which remain constant between
runs are static, and we simply pass them as the constant value
seen in the trace (like 0xA and 0xD in Figure 3).

D. Control-Flow and Data-Flow Reconstruction

WINNIE analyzes the program to reflect control-flow and
data-flow dependencies in the harness. Control-flow depen-
dencies represent how the various API calls are logically
related (e.g., the if-statement on line 11 in Figure 3). To find
control-flow dependencies, we apply static analysis. Specifically,
WINNIE analyzes the control-flow between two API calls
for paths from the return value of the invoked function to
a termination condition (e.g., return or exit()). If such a
path is found, WINNIE duplicates the decompiled control-flow
code (e.g., if-statements). The current version of WINNIE
avoids analyzing complex flows involving multiple assignments
or variable operands in the conditional statement; we leave
such cases to a human expert. This is important for accurate
harness generation: neglecting control-flow dependencies causes
incorrect behavior. For example, consider a harness that fails
to reflect an early exit error handling condition in the original
program. The program under normal execution would terminate
immediately, but the harness would proceed onwards to some
unpredictable program state. These kinds of mistakes lead to
unreproducible crashes (i.e., false positives).

Data-flow dependencies represent the relationships among
function arguments and return values. To find data-flow depen-
dencies, WINNIE tries to connect multiple uses of the same
variable between multiple call sites (e.g., f0_a0 in Figure 3).
We consider the following possible cases:

• Simple flows from return values. Return values of past
function calls are commonly reused as arguments for later
calls. We detect these cases by checking if an argument
always has the same value as a past return value. We only
do this for whose values exceed a certain threshold. If we
connected any frequently observed values (e.g., connect
return value 0 as the next argument), we may generate
incorrect harnesses; this resolves many common cases
where functions return object pointers.

• Points-to relationships. Some arguments are retrieved
from memory using pointers returned by previous code.
For instance, an API may return a pointer, whose pointed
contents are used as an argument in a later API call. In
the example harness in Figure 3, line 23 uses an argument
f0_a0 that is loaded from memory, initialized by the
API JPM_Document_Start. When we detect these points-to
relationships in the trace, we reflect them in the harness
as pointer dereferences (i.e., *p). WINNIE also supports
multi-level points-to relationships (e.g., double and triple
pointers), thanks to the tracer’s recursive memory dumping.

• Aliasing. WINNIE defines a variable if it observes one or
more repeated usages. In other words, if the same non-
constant value is used twice as an argument, then the two
uses are considered aliases forming a single variable.

E. Harness Validation and Finalization

Although it covers most common cases, WINNIE’s harness
generator is not foolproof. WINNIE points out parts of the
harness that is unsure about and provides suggestions to help
users further improve it. 1 We report distant API calls where
the second API’s call site is far from the first. In such cases,
our API-based tracer might have missed some logic between
two API calls. 2 We highlight code pointer arguments to users,
which could represent callback function pointers or virtual
method tables. 3 We provide information about file operations
as they are generally important during harness construction.

Once a fuzzing harness has been generated, we perform
a few preliminary tests to evaluate its effectiveness. First, we
check the harness’s stability. We run the harness against several
normal inputs; if the harness crashes, we immediately discard
it. Second, we evaluate the harness’s ability to explore program
states. Specifically, we fuzz the harness for a short period
and check whether the code coverage increases over time. We
discard harnesses that fail to discover new coverage. Lastly, we
test the execution speed of the harness. Of all stable, effective
harnesses, we present the fastest ones to the user.

WINNIE’s goal is to generate harnesses automatically.
However, the general problem of extracting program behaviors
from runtime traces without source code is very challenging
so there will always be cases it cannot cover. Thus, we aim to
handle most common cases to maximize WINNIE’s ability to
save the human researcher’s time. We observe that in practice it
produces good approximations of valid harnesses, and most of
them can be fuzzed with only minor modifications as shown in
Table VIII. We discuss our system’s limitations and weaknesses
in §VII-C and §VIII.

V. FAST PROCESS CLONING ON WINDOWS

Fork indeed exists on Windows systems [15], but existing
work fails to provide a stable implementation. To support effi-
cient fuzzing of Windows applications, we reverse-engineered
various internal Windows APIs and services and identified a
key source of instability. After overcoming these challenges,
we were able to implement a practical and robust fork-server
for Windows fuzzing. Specifically, our implementation of the
Windows fork corrects the problems related to the CSRSS,
which is a user-mode process that controls the underlying layer
of the Windows environment [54]. If a process is not connected
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Fig. 6: Overview of fork() on Windows. We analyzed various
Windows APIs and services to achieve a CoW fork() functionality
suitable for fuzzing. Note that fixing up the CSRSS is essential for
fuzzing COTS Windows applications: if the CSRSS is not re-initialized,
the child process will crash when accessing Win32 APIs. We include
a detailed technical description in appendix §X-A.

Re-execute Forkserver
Fork() CreateProcess WINNIE Cygwin WSL(v1) WSL(v2) Linux

Supports PE files? ✔ ✔ ✔ ✗ ✗ ✗
Copy-on-Write? ✗ ✔ ✗ ✔ ✔ ✔
Speed (exec/sec) 91.9 310.9 72.8 442.8 405.1 4907.5

TABLE V: Comparison of fork() implementations. Cygwin is not
CoW, and WSL does not support Windows PE binaries. WINNIE’s
new fork API is therefore the most suitable for Windows fuzzing.

to the CSRSS, it will crash when it tries to access Win32
APIs. Note that virtually every Windows application uses the
Win32 API. Our fork correctly informs the CSRSS of newly-
created child processes, as shown in Figure 6. Connecting to
the CSRSS is not trivial for forked processes: for the call to
succeed, we must manually de-initialize several undocumented
variables before the child process connects. We provide a
detailed technical description of our implementation in the
appendix §X-A.

To the best of our knowledge, our fork implementation
is the only one that can support fuzzing commercial off-
the-shelf (COTS) Windows applications. Table V shows a
comparison of process creation techniques on Windows and
Linux. CreateProcess is the standard Windows API for
creating new processes with a default program state, used
by WinAFL. New processes must re-execute everything from
the beginning, wasting a lot of time on GUI initialization
code, shown in Table II. Persistent mode [68] aims to mitigate
the re-execution overhead, but is impractical due to the
numerous problems outlined in §III-B. Thus, our goal is to
avoid re-executions altogether by introducing a fork-style API.
Meanwhile, Cygwin’s fork implementation is not designed for
COTS Windows applications. It works by manually copying the
program state after calling CreateProcess. It also suffers from
problems related to address space layout randomization [6].
The Windows Subsystem for Linux (WSL) is designed for
running Linux ELF binaries on Windows. Thus, we cannot use
it for testing Windows PE binaries, even if it is faster [41]. Our
fork implementation achieves a speed comparable to the WSL
fork, and most importantly, supports Windows PE applications.

Verifying the Fork Implementation. We ran several test
programs under our fork-server to verify its correctness. First,
verified that each child process receives a correct copy of
the global program state. We checked various the values of

Category Component Lines of code

Harness generator Dynamic tracer 1.6K LoC of C++
Synthesizer 2.0K LoC of Python

Fuzzer Fuzzer 3.0K LoC of C++
Fork library 0.5K LoC of C++

TABLE VI: WINNIE components and code size

global variables in test programs before and after forking a
new process. For example, we incremented a global counter
in the parent process after each fork and verified that the
child process received the old value. Second, to verify that the
fork implementation is CoW (copy-on-write), we initialized
large amounts of memory in the parent process before forking.
Because the memory footprint of the parent process did
not affect the time taken by fork, we concluded that our
implementation is indeed CoW.

We also briefly measured the speed of fork with WinAFL’s
built-in test program as shown in Table V. On an Intel i7 CPU,
we were able to call our fork 310.9 times/sec per core with a
simple program, which is 4.2× faster than Cygwin’s No-CoW
fork and ∼1.3× slower than the WSL fork. Since we are not
using the same fork mechanism as the one provided by the
Linux kernel but instead mimicking its CoW behavior using
the Windows API, the execution speed is nowhere as fast (e.g.,
>5,000 execs/sec). Even if Windows implementation of fork is
slower than Linux’s, the time regained from avoiding costly re-
executions easily makes up for the overhead of fork. Moreover,
the process creation machinery on Windows is slow in general:
in our experiments, ordinary CreateProcess calls (as used by
WinAFL) only reach speeds of less than 100 execs/sec. Overall,
we believe that the reliability and quality of our Windows fork-
server is comparable to ones used for fuzzing on Unix systems.

Idiosyncrasies of Windows Fork. Our fork implementation
has a few nuances due to the design of the Windows operating
system. First, if multiple threads exist in the parent process, only
the thread calling fork is cloned. This could lead to deadlocks
or hangs in multi-threaded applications. Linux’s fork has the
same issue. To sidestep this problem, we target deeply-nested
functions that behave in a thread-safe fashion. For example, in
the program UltraISO, we bypassed the GUI and fuzzed the
target function directly, shown in Table VIII. Second, handle
objects, the Windows equivalent of Unix file descriptors, are
not inherited by the child process by default. To address this
issue, we enumerate all relevant handles and manually mark
them inheritable. Third, because the data structures involved in
fork-related APIs differ from version to version of Windows, it
is impractical to support all possible installations of Windows.
Nevertheless, our fork-server supports all recent builds of
Windows 10. Since Windows is very backwards-compatible, we
do not see this as a significant limitation of our implementation.

VI. IMPLEMENTATION

We prototyped WINNIE with 7.1K lines of code (shown in
Table VI). WINNIE supports both 32- and 64-bit Windows
PE binaries. We built our fuzzer on top of WinAFL and
implemented the fork library from the scratch. The tracer
relies on Intel Pin [40] for dynamic binary instrumentation.
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Fig. 7: Overview of WINNIE’s fuzzer. We inject a fuzzing agent
into the target. The injected agent spawns the fork-server, instruments
basic blocks, and hooks several functions. This improves performance
(§VI-A) and sidesteps various instrumentation issues (§VI-B).

A. Fuzzer Implementation

Figure 7 shows an overview of our fuzzer. We inject
a fuzzing agent agent.dll into the target program, which
cooperates with the fuzzer using a pipe for bidirectional
communication. This architecture helps assuage the most
uncooperative of fuzzing targets.

The fuzzing agent is injected as soon as the program loads,
before any application code has begun executing. Once injected,
the agent first hooks the function specified by the harness and
promptly returns control to the target application. Then, the
target application resumes and initializes itself. The application
halts once it reaches the hooks, and the fuzzing agent spins up
the fork-server. Since we spin up the fork-server only at some
point deep within the program, initialization code only runs
once, massively improving performance.

Our fuzzer works as follows: 1 The fuzzing agent, which
contains the fork server, is injected into the target application.
The injected agent 2 installs function hooks on the entry point
and the target function, and 3 instruments all basic blocks
so it can collect code coverage. 4 Then, the fuzzer creates
forked processes. Using the pipe between the fuzzer and target
processes, 5 the agent reports program’s status and 6 the
fuzzer handles coverage and crash events.

B. Reliable Instrumentation

Collecting code coverage from closed-source applications is
challenging, specially for Windows applications. WinAFL uses
two methods to collect code coverage: one using dynamic binary
instrumentation using DynamoRIO [57], and another using
hardware features through Intel PT (IPT) [59]. Unfortunately,
DynamoRIO and IPT are prone to crashes and hangs. In our
evaluation, WinAFL was only able to run 26 of 59 targets.

To address this issue, we discard dynamic binary instrumen-
tation in favor of fullspeed fuzzing [47] to collect code coverage.
Fullspeed fuzzing does not introduce any overhead except when
the fuzzer discovers a new basic block. Based on boolean basic
block coverage, fullspeed fuzzing only considers there to be
new coverage when a new basic block is visited. To implement
this, we patch all basic blocks of the tested program with an
int 3 instruction. Then, we fuzz the patched program and wait

for the execution to reach a new block. When reached, the first
byte of the new block is then restored so that it will no longer
generate exceptions in the future. Since encountering new basic
blocks is rare during fuzzing, fullspeed fuzzing has negligible
overhead and can run the target application at essentially native
speed. Breakpoints need only be installed once thanks to the
fork-server: child processes inherit the same set of breakpoints
as the parent. We noticed that this is an important optimization
as we observe Windows applications easily contain a massive
number of basic blocks (e.g., >100K).

VII. EVALUATION

We evaluated WINNIE on real-world programs to answer
the following questions:

• Applicability of WINNIE. Can WINNIE test a large
variety of Windows applications? (§VII-A)

• Efficiency of fork. How efficient is fork on versus other
modes of fuzzing like persistent mode? (§VII-B)

• Accuracy of harness generation. How effectively can
WINNIE create fuzzing harnesses from binaries? (§VII-C)

• Finding new bugs. Can WINNIE discover new program
states and bugs from real world applications? (§VII-D)

Evaluation Setup. Our evaluation mainly compares WINNIE
with WinAFL. Other Windows fuzzers either do not support
feedback-driven fuzzing (e.g., Peach [16]), or cannot directly
fuzz Windows binaries (e.g., HonggFuzz [25]). We configured
WinAFL to use basic-block coverage as feedback and used
persistent-mode to maximize performance. Our evaluation
of WinAFL considers two modes, the DynamoRIO mode
(WinAFL-DR) where WinAFL relies on dynamic binary in-
strumentation, and the PT mode where WinAFL uses the Intel
PT hardware feature to collect code coverage. We enlarged the
Intel PT ring buffer sizes from 128 kilobytes to 512 kilobytes
to mitigate data-loss issues [34]. We performed the evaluation
on an Intel Xeon E5-2670 v3 (24 cores at 2.30GHz) and 256
GB RAM. All the evaluations were run on Windows 10, except
WinAFL-DR, which was run on Windows 7 as it did not run
properly under Windows 10.

Target Program Selection. We generated 59 valid fuzzing
harnesses with WINNIE. We ran all 59 programs test the applica-
bility of WINNIE (§VII-A). For the other evaluations (§VII-B to
§VII-D), we randomly chose 15 GUI or CLI applications among
the 59 generated harnesses due to limited hardware resources
(i.e., 15 apps × 24 hrs × 5 trials = 5,400 CPU hrs). We aimed
to show that WINNIE can fuzz complicated GUI applications
and that WINNIE also outperforms existing solutions on CLI
programs. Thus, we chose a mixture of both types of binaries
from a variety of real-world applications. For this evaluation,
we mainly focused on programs that accept user input from
a file, as their parsing components are usually complex (i.e.,
error-prone) and handle untrusted inputs.

A. Applicability of WINNIE

Figure 8 shows that WINNIE supports running a wider
variety of Windows applications than WinAFL. Specifically,
WINNIE successfully generates working harnesses for all
programs and is able to test them efficiently. WinAFL-IPT
failed to run 33 of out 59 harnesses (55.9%) while WinAFL-DR
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Fig. 8: Applicability of WINNIE and WinAFL. Among 59 exe-
cutables, WinAFL-IPT and WinAFL-DR failed to run 33 and 30
respectively, whereas WINNIE was able to test all 59 executables. We
provide a detailed breakdown of all 59 programs in appendix §X-B.

Program Without Fork Fork
Leak Hang† Speed Cov. Speed Coverage

7z 5.2 1430 49.3 (9.5×K) 2117 (1.5×K)
makecab ✗ 14.8 576 49.4 (3.3×K) 1020 (1.8×K)
GomPlayer ✗ 0.4 201 25.9 (64.7×K) 1496 (7.4×K)
Hwp-jpeg ✗ 4.2 1045 25.9 (6.2×K) 1847 (1.8×K)
Hwp-tiff ✗ ✗ 0.3 1340 26.2 (87.3×K) 2301 (1.7×K)
EndNote 5.3 68 89.5 (16.9×K) 693 (10.2×K)

Total 3/6 2/6 (31.3×K) (4.0×K)

TABLE VII: Evaluation of fork(). We ran six applications that both
WinAFL and WINNIE could fuzz for 24 hours. We compared their
speed and checked for memory and handle (i.e., file descriptor) leaks.
fork not only improves the performance, but also mitigates resource
leaks. Hang† means an execution speed slower than 1.0 exec/sec.

failed to run 30 (50.8%). For each program that WinAFL failed,
we analyzed the cause and present the details in the appendix
§X-B. Execution timeouts during the dry-runs dominate all
failed cases of WinAFL (18 for WinAFL-IPT and 19 for
WinAFL-DR). Specifically, before the fuzzing fully begins,
WinAFL launches a few dry-runs to verify that the fuzzing
setup is valid (e.g., harness quality). If the program times out
during the dry-run, WinAFL will not be able to continue the
testing. The second main failure mode was crashing during
the dry-run. This contributed seven failures for WinAFL-IPT
and eight for WinAFL-DR. We provide several case studies to
understand why WinAFL fails to test these programs:

Unexpected Change in Global State. 1 mspdbcmf.exe is
a PDB (debug symbol file) conversion tool, and WinAFL
failed with a timeout error. When the fuzzer executes the
same function iteratively, the program falls into a termination
condition, due to a corrupted global variable. In particular,
the program assigns a non-zero value to the global variable
(g_szPdbMini) in the first execution, and the changed value
makes the application terminate during the second execution.
In other words, the root cause was that the target function
was not idempotent. Unfortunately, WinAFL misclassifies this
unexpected termination as a timeout, and thus the fuzzer quits
after the dry-run. 2 ML.exe (Macro assembler and Linker)
is an assembler program in Visual Studio that crashes when
fuzzing begins. Similar to the aforementioned timeout issue,
a crash happens at the second execution of the main function.
In the first execution, the target program checks the global
flag (i.e., fHasAssembled) to determine whether the assembly
is done and then initializes necessary heap variables. Once the
program finishes the first time, it changes the global flag to true.
In the second execution, the program’s control flow diverges
because the fHasAssembled flag is true. This ultimately leads
to a crash when it tries to access the uninitialized heap variable.

Program Target Size API Calls LoC Fixed (LoC) (%)

ACDSee IDE_ACDStd.apl 3007K 19 506 CB (38), ST (174) 34.3
HWP-jpeg HncJpeg10.dll 220K 3 92 CB (7), ST (8) 16.3
ezPDF Pdf2Office.dll 3221K 4 112 CB (2), ST (8) 8.9
HWP-tiff HncTiff10.dll 630K 3 82 CB (7) 8.5
UltraIso UltraISO.exe 5250K 1 57 CB (2) 3.5
XnView ldf_jpm.dll 692K 10 199 CB (4), pointer (2) 3.0
Gomplayer avformat-gp.dll 4091K 7 116 pointer (2) 1.7
file magic1.dll 147K 3 96 0 0.0
EndNote PC4DbLib 2738K 1 55 0 0.0
7z 7z.exe 1114K 1 55 0 0.0
makecab makecab.exe 50K 1 55 0 0.0
Tiled tmxviewer.exe 113K 1 55 0 0.0
mspdbcmf mspdbcmf.exe 1149K 1 55 0 0.0
pdbcopy pdbcopy.exe 726K 1 55 0 0.0
ml ml.exe 476K 1 55 0 0.0

CB: Callback function, ST: Custom struct

TABLE VIII: Harnesses generated by WINNIE. The majority of
the harnesses worked out of the box with few modifications. Some
required fixes for callback and struct arguments, which we discuss
below. For a complete table of all 59 harnesses, see appendix Table XII.

IPT Driver Issues. The dynamic binary instrumentation
adopted by WinAFL-IPT had unknown issues and sometimes
prevented WinAFL from collecting code coverage. For example,
for the program KGB archiver, we observed that the fuzzer
could not receive any coverage due to a Intel-PT driver error.

B. Benefits of Fork

We tested whether fork makes fuzzing more efficient. To
do so, we ran the selected programs under our fuzzer in fork
mode, while we set WinAFL to create a new process for each
execution (re-execution mode). Both of these configurations
can run the target program reliably. As shown in Table VII,
fork improves fuzzing performance: compared to re-execution
mode, WINNIE achieved 31.3× faster execution speeds and
discovered 4.0× more basic blocks. In particular, GomPlayer
and EndNote recorded 64.7× and 87.3× faster executions and
revealed 7.4× and 10.2× more basic blocks respectively.

We also evaluated whether fork makes fuzzing more stable.
We configured WinAFL to use persistent mode, which runs a
specific target function in a loop. Then, we tracked the system’s
memory and resource usage over time while fuzzing. Almost
immediately, we observed memory leaks in the persistent mode
harnesses for HWP-jpeg, HWP-tiff, and makecab. The HWP-
jpeg and HWP-tiff harnesses also leaked file handles, which
would lead to system handle exhaustion if the fuzzer runs
for a long time. These types of leaks tend to cause fuzzing
to unpredictably fail after long periods of fuzzing, creating
a big headache for the human researcher. We explain this in
further detail in §III-B. fork prevented the memory leaks and
file handle leaks, improving stability. We further discuss the
advantages and disadvantages of persistent mode in §VIII.

C. Efficacy of Harness Generation

In this section, we evaluate how well WINNIE helps users
create effective fuzzing harnesses. To do so, we diffed the
initial and final harness code in our evaluation. We analyzed
the fixes required to make the harnesses work, and present the
findings in Table VIII and Table IX. We also include general
information about all 59 harnesses in appendix §X-B. As shown,
the majority of the harnesses worked with no modifications. On
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Program Vendor Input GUI? Size Speed (exec/sec) Coverage (# of new BBs) p-value Applied heuristics
W-DR W-PT WINNIE W-DR W-PT WINNIE W-DR W-PT T L DF CS CB CF DF

makecab Windows 10 .txt CLI 50KB 228.2 21.3 49.4 762 982 1020 <0.001 <0.001 ✔ ✔
HWP-jpeg Hancom 20 .jpg GUI 220KB 25.2 21.0 25.9 1821 1498 1847 0.12 <0.001 ✔ ✔ ✔ ✔
7z 7-Zip .7z Both 1,114KB 8.7 17.0 49.3 1435 1530 2117 <0.001 <0.001 ✔ ✔
EndNote Clarivate .pdt GUI 2,738KB 2.1 50.4 89.5 8 37 693 <0.001 <0.001 ✔ ✔ ✔ ✔
Gomplayer GOM Lab .mp4 GUI 4,091KB 0.2 0.6 25.9 194 1068 1496 <0.001 <0.001 ✔ ✔ ✔ ✔
HWP-tiff Hancom 20 .tif GUI 630KB 0.2 ✗ 26.2 1279 ✗ 2301 <0.001 N/A ✔ ✔ ✔ ✔
Tiled T. Lindeijer .tmx Both 113KB ✗ ✗ 8.7 ✗ ✗ 36 N/A N/A ✔ ✔
file libmagic .png CLI 147KB ✗ ✗ 52.5 ✗ ✗ 116 N/A N/A ✔ ✔
UltraISO Ultra ISO .iso GUI 5,250KB ✗ ✗ 45.3 ✗ ✗ 1558 N/A N/A ✔ ✔ ✔
ezPDF Unidocs .pdf GUI 3,221KB ✗ ✗ 18.9 ✗ ✗ 6355 N/A N/A ✔ ✔ ✔ ✔
XnView XnSoft .jpm GUI 692KB ✗ ✗ 23.2 ✗ ✗ 16702 N/A N/A ✔ ✔ ✔ ✔ ✔ ✔
mspdbcmf VS2019 .pdb CLI 1,149KB ✗ ✗ 8.1 ✗ ✗ 9637 N/A N/A ✔ ✔
pdbcopy VS2019 .pdb CLI 726KB ✗ ✗ 28.5 ✗ ✗ 3302 N/A N/A ✔ ✔
ACDSee ACDsee .png GUI 3,006KB ✗ ✗ 63.1 ✗ ✗ 618 N/A N/A ✔ ✔ ✔ ✔ ✔ ✔
ml VS2019 .asm CLI 476KB ✗ ✗ 44.0 ✗ ✗ 2399 N/A N/A ✔ ✔

T: Target identification, L: LCA, DF: Differential analysis, CS: Call sequence, CB: Callback, CF: Control-flow (exit, loop), DF: Data-flow (constant/variable, pointer)

TABLE IX: Comparison of WINNIE against WinAFL. Among 15 applications, WinAFL could only run 6, whereas WINNIE was able run
all 15. Columns marked “✗” indicate that the fuzzer could not fuzz the application. Markers “✔” indicate which heuristics were applied during
harness generation. When both WinAFL and WINNIE support a program, WINNIE generally achieved better coverage and throughput. Although
WINNIE excels at fuzzing complicated programs, WinAFL and WINNIE achieve similar results on small or simple programs. We explain in
further detail in §VIII. For all other programs, WINNIE’s improvement was statistically significant (i.e., p<0.05). P-values were calculated
using the Mann-Whitney U test on discovered basic blocks.
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Fig. 9: Comparison of basic block coverage. We conducted five trials, each 24 hours long, with three fuzzers: WINNIE, WinAFL-DR, and
WinAFL-IPT. Only programs which were supported by all fuzzers are shown here; WinAFL was unable to fuzz the rest. When a program can
be fuzzed by both WINNIE and WinAFL, their performance is comparable. Nevertheless, most programs cannot be fuzzed with WinAFL.

average, the synthesized harnesses had 82.7 LoCs, relied on 3.2
heuristics, and required only 3.4% of the code to be modified.
Based on our findings, we discuss the various strengths and
weaknesses of the harness generator below.

Strengths of the Harness Generator. The execution tracer
provides helpful information about the target program, such as
promising fuzzing targets (i.e., Table IX: Target identification).
This saves the user’s time. While creating harnesses, we kept
most the original code that WINNIE generated. Without the aid
of our system, the user would have had to manually record all
of the corresponding function calls and their arguments. The
API sequences WINNIE generates also gives useful clues to
the user. In the example harness for XnView, since WINNIE
extracted 4 calls to the same API with differing arguments,
one could conclude that the API’s purpose was to initialize
various attributes of an object. In our experiments, WINNIE
successfully inferred some relationships present in the program
(§IV-D). For example, WINNIE automatically detected that an
opened file handle is passed to the next function (lines 6 and
10 in the example Figure 3) WINNIE also informs users about
constant values, suggesting that they may be magic values that
should not be modified.

To assess the usability of WINNIE and its ability to aid
human researchers, we recruited two information security
M.S. students who were unaware of the project. They were
asked to use WINNIE to create fuzzing harnesses for Windows
applications of their choice. Within 3 days, they were able
to produce 7 functional harnesses, spending roughly only 3

hours per harness on average. The harness generator was
most effective when it could rely on a single LCA API (e.g.,
Table VIII: 7z). In these cases, the user only needed to collect
program run traces and provide them to the harness generator.
Upon receiving the trace, WINNIE automatically calculated the
LCA and generated C code to correctly invoke the function.

Weaknesses. Although most harnesses worked with few modifi-
cations, ACDSee and HWP-jpeg in particular required relatively
large modifications (e.g., 34.3% and 16.3% respectively). This
is mainly because they passed complex objects and virtual
functions to the library’s API. One challenge was reconstructing
the custom structure layouts without the original source code.
Although WINNIE dissects structures and pointer chains from
the trace to provide plausible inferences, WINNIE is not perfect.
To correct this, we analyzed the object using a decompiler and
identified eight variables and four function pointers. Second, we
manually extracted the callback functions by adding decompiled
code. We followed the function pointers from the trace, and
copied the decompiled code into the harness. There will always
be some cases that WINNIE cannot handle. We discuss a few
examples in §VIII, and we hope to support them in future
versions of WINNIE.

D. Overall Results

1) Overall Testing Results: Figure 9 shows the ability of
each fuzzer to find new coverage. Overall, WINNIE discovered
3.6× more basic blocks than WinAFL-DR and 4.1× more
basic blocks than WinAFL-IPT. We also applied statistical tests,
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Product Buggy File Size Bug Type(s) Bug(s)

Source Engine engine.dll 6.1M ND 2
MS WinDBG pdbcopy.exe 743K Arbitrary OOB read 1
MS Windows makecab.exe 82K Double free 1
Visual Studio ml.exe 475K SBOF 1

undname.exe 23K SOF 1
Alzip Egg.dll 131K ND 1

Tar.dll 114K Integer underflow 1
Alz.dll 123K Stack OOB read 1

Ultra ISO ultraISO.exe 5.3M Integer overflow, SOF 2
Uninitialized use 1

XnView ldf_jpm.dll 709K HC, Integer overflow 2
Hancom Office HncBmp10.flt 85K Heap BOF 2

HncJpg,Png,Gif 134-225K ND 3
HncDxf10.flt 242K ND, Integer overflow 3
HncTif10.flt 645K HR, TC, FC, HC 6
IMDRW9.flt 147K ND, SBOF 2
ISGDI32.flt 760K Heap UAF, HC 3
IBPCX9.flt 83K Integer overflow, ND 2

FFMpeg FFmpeg.dll† 12.8M Div by zero 1
Uriparser uriparse.exe† 157K Integer underflow 1
Gomplayer RtParser.exe 18K SOF, SBOF, ND 3
EzPDF ezPDFEditor.exe 23.9M Race condition, ND 3

Pdf2Office.dll 3.2M SBOF, SOF, ND 3
VLC player Mediainfo.dll 136K Integer underflow 1

libfaad.dll 273K ND, Denial of service 2
Utable Utable.exe 874K SBOF 1
RetroArch bnes.dll 2.4M ND 2

emux_gb.dll 419K ND, Div by zero 3
snes_9x.dll 2.8M Heap OOB write 1
quicknes.dll 1.0M Div by zero 1

Capture2Text C2T_CLI.exe 558K ND 1
Total 32 19 61

ND: Null-ptr dereference, HR: Heap OOB read, HC: Heap corruption, TC: Type
confusion, FC: Field confusion, SOF: Stack overflow, SBOF: Stack buffer overflow

TABLE X: Bugs found by WINNIE. We discovered total 61 unique
vulnerabilities from 32 binaries. All vulnerabilities were discovered
on the latest version of COTS binaries. We reported all bugs to the
developers. “†” indicates that the bug existed in the released binary,
but the developer had already fixed it when we filed our report.

using p-values to compare the performance of three fuzzers,
as suggested by [37]. For WinAFL-DR and WinAFL-IPT, all
trials except HWP-jpeg have p-values less than 0.05, meaning
that WINNIE’s improvement is statistically significant.

2) Real-world Vulnerabilities: WINNIE’s approach scales
to complex, real-world software. To highlight the effectiveness
of our approach, we applied our system to non-trivial programs
that are not just large in size but also accompany complicated
logic and GUI code. We also included binaries from several
well-known open-source projects because most of them have
only been heavily fuzzed on Linux operating systems; thus
their Windows-specific implementations may still contain bugs.
Among them all, WINNIE found 61 previously unknown bugs
in 32 binaries (shown in Table X). All these bugs are unique.
These bugs cover 19 different types, including but not limited
to stack and heap buffer overflow, type confusion, double free,
uninitialized use, and null pointer dereference. At the time of
writing, we have reported these bugs to their corresponding
maintainers and are working with them to help fix the bugs.

VIII. DISCUSSION

Due to the difficulty of fuzzing closed-source, GUI-based
applications, most Windows programs are tested either by
unscalable manual efforts, or are only evaluated during the
development by their vendors. In contrast, Linux programs are
consistently tested and improved at all stages of the software
lifecycle by researchers over the world. Most prior fuzzing

work also has been concentrated on Linux systems. However,
as shown in our evaluation, it is easy to find many bugs in
Windows software we target—especially given the legacy code
bases involved. Nevertheless, we identify several limitations of
WINNIE, which can be addressed in the future to better test
more programs.

Limitations of Harness-Based Testing. Testing the program
with a harness limits the coverage within the selected features.
In the case of WINNIE, we cannot reach any code in unforeseen
features absent from the trace. Thus, the maximum code
coverage possible is limited to the API set the trace covers; the
number of generated harness is limited by the number of inputs
traced. To mitigate this issue, we recommend users to collect
as many sample inputs as possible to generate a diverse set of
harnesses. Although we cannot eliminate this problem inherited
from harness-based testing, automatic harness generation will
help alleviate the burden of manually creating many harnesses.

Highly-Coupled Programs. It is more challenging for
WINNIE to generate harnesses for applications tightly coupled
with their libraries. As the logic is split into two binaries, the
program may use frequent cross-module calls to communicate,
making it hard to accurately identify and extract the relevant
code we wish to fuzz. In Adobe Reader, for instance, the main
executable AcroRd32.exe is simply a thin wrapper of the library
AcroRd32.dll [3]. There are a lot of functions calls between
these two binaries, or with other libraries, like jp2.dll. Thus,
the harness generator needs to handle calls between the main
executable and a library, callbacks from a library to the main
executable, and calls between libraries. Our system focuses on
handling cases where the communication merely happens within
two components. To support more complicated invocations like
in Adobe Reader, we plan to improve our tracer and generator to
capture a complete trace of inter-module control- and data-flow.

False Positives. Inaccurate harnesses may generate invalid
crashes or exceptions that do not occur in the original program.
As a result, WINNIE will mistakenly assume the presence of a
bug, leading to a false positive. As described in §IV-E, WINNIE
combats false positives by pre-verifying candidate harnesses
during synthesis. Still, eliminating false positives requires a
non-negligible effort. Since bug validation must be conducted
against the actual application, constructing a suitable input file
and interacting with the GUI is required. For example, when
fuzzing Adobe Reader’s image parser, end-to-end verification
requires creating a new PDF with the buggy image embedded,
and then opening the image via the GUI. This step can be
automated on a per-target basis, and it is mostly an engineering
effort. Nevertheless, as long as WINNIE can generate high-
quality harnesses, this validation incurs little overhead due to
the small number of false crashes.

Focus on Shared Libraries. WINNIE’s harness generator fo-
cuses testing shared libraries because shared libraries represent
a clear API boundary. Past harness generation work also focuses
on testing functions within libraries [8, 35]. Moreover, unlike
calls to exported functions in libraries, private functions in
the main executable are difficult to extract into independent
functions. To fuzz the main binary, we rely on our injected
fork-server, allowing any target address in the main binary to
be fuzzed.

12



Performance Versus Persistent Mode. We noticed that
WinAFL occasionally shows better performance on certain
target applications, typically simple ones. Upon investigation,
we found that the performance difference ultimately stems
from WinAFL’s strong assumptions about the target application.
Specifically, WinAFL assumes the harness will not change any
global state and will cleanly return back to the caller (§III-B).
Therefore, it only restores CPU registers and arguments each
loop iteration. Instead, WINNIE uses fork to comprehensively
preserve the entire initialized program state, which incurs a little
overhead. However, as shown in the evaluation, our conservative
design makes WINNIE support significantly more programs.
Although WinAFL performs better on simple programs, it could
not test even half of the programs in our evaluation (§VII-A).

Other input modes. In our evaluation, we focused on fuzzing
libraries which accept inputs from files or standard input.
Another common way programs accept input is through network
packets. WINNIE supports this case. To fuzz these network
applications, we extended WINNIE by implementing a de-
socket [13, 71] technique to redirect socket traffic to the fuzzer.

A. Future Work

Beyond this initial work towards practical Windows fuzzing,
we identify several directions for future improvement. Among
the following, we believe that handling structures and callback
functions is fundamentally challenging, whereas supporting
other ABIs or languages would be relatively straightforward.

Structures. Custom structures are challenging to both au-
tomatic testing tools and human researchers, and incorrect
structures may lead to program crashes. To mitigate this issue,
we could apply a memory pre-planning technique [66] to
provide probabilistic guarantees to avoid crashes. We could
also use memory breakpoints to trace the detailed memory
access patterns of the program and infer the structure layouts.

Callback functions. Callback functions in the main executable
make harness generation difficult. In our example Figure 3, we
reconstructed the callback function by copying decompiled code
from the main binary into the harness. For simple callbacks,
we could automatically add decompiled code to the harness.
For complicated cases, we could load the main binary and call
the functions directly, as copied code is not always reliable.

Support for Non-C ABIs. WINNIE focuses on C-style APIs,
and we did not investigate fuzzing programs with other ABIs.
In our experience during the evaluation, these libraries are rare
in practice. In the future, WINNIE can be extended to support
other native languages’ ABIs, like C++, Rust, or Go.

Bytecode languages and interpreted binaries. While
WINNIE supports most native applications, it does not support
applications compiled for a virtual machine (e.g., .NET,
Java). To support these binaries, specialized instrumentation
techniques [1] should be used to collect code coverage.

IX. RELATED WORK

WINNIE is closely related to recent work on fuzzing and
fuzzing harness generation. Fuzzing has evolved into a well-
known program testing and bug finding technique since it was
first introduced [42]. Various fuzzing techniques have been

proposed [22, 24, 33, 36, 53, 60, 67], developed [5, 11, 14,
16, 25, 26, 38, 39, 50, 69], and used to find a large number of
program bugs [12, 28, 52, 62, 69].

Windows Fuzzing. Although Windows fuzzing is restricted
by the many challenges discussed in this paper, there are still
many Windows fuzzer implementations. Black-box fuzzers
like Peach [16] excel at scalability due to their simplicity but
can only find shallow bugs. White-box fuzzers like Sage [24],
leverage symbolic execution to explore deeper paths but are
slow. Lastly, grey-box fuzzers like WinAFL [57], strike a good
balance by using coverage feedback. However, existing WinAFL
implementations suffer from unreliable persistent mode that
limits the applications it can support (§III-B). WINNIE is based
on WinAFL but uses a fork-server during execution, which
is far more robust. As a result, WINNIE can fuzz far more
programs than existing Windows fuzzers, as shown in §VII-A.

Fuzzing Harness Generation. Analyzing API usage patterns
to generate code snippets is not a new idea. Some tools are
primarily designed to help users understand an unfamiliar
library [45, 46, 72]. IMF [32] analyzes kernel API call
sequences recorded from the run trace to deduce API usage
patterns and uses that knowledge during fuzzing (e.g., the order
APIs should be called). Unlike past works which focus on static
analysis of source code [8, 19, 35, 73] or dynamic analysis [32],
WINNIE leverages hybrid analysis of run traces to extract code
sequences. We further discuss WINNIE’s differences in §II-B.

Partial Execution. There are several approaches to run code
fragments to discover bugs [23, 51]. MicroX and UC-KLEE
aim to run the code fragment under emulation and symbolic
execution respectively. Unlike prior works, WINNIE aims to
avoid heavy solutions that partially execute the program, such
as emulation (like MicroX), or symbolic execution (like UC-
KLEE). Also, WINNIE executes the target application under a
realistic context. For any crash, there is a concrete input that
helps reproduce the bug. UC-KLEE and MicroX execute it in
the middle and thus may trigger an unrealistic execution path.

X. CONCLUSION

We proposed WINNIE, an end-to-end system to support
fuzzing Windows applications. Instead of repeatedly running
the program directly, WINNIE synthesizes lightweight harnesses
to directly invoke interesting functions, bypassing GUI code. It
also features an implementation of fork on Windows to clone
processes efficiently. We tested WINNIE on 59 Windows closed-
source binaries. WINNIE discovered 3.9× more program states
and achieved 26.6× faster execution than existing Windows
fuzzers. Overall, WINNIE found 61 bugs from 32 binaries.
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APPENDIX

A. Fork Internals

To implement our fork functionality, we reverse-engineered
various internal Windows APIs and systems, namely ntdll.dll,
NtCreateUserProcess, and the CSRSS (Client/Server Runtime
Subsystem). Doing so, we identified several magic values
required by them. After overcoming these challenges, we were
able to implement a practical, robust fork-server for fuzzing.

Role of CSRSS. The CSRSS is the user-mode process
that controls the underlying layer of the Windows environ-
ment [54]. This daemon is responsible for allocating console
windows and shutting down processes. New processes must
connect to it to function properly.

We use Windows native system APIs to communicate with
the kernel directly. Figure 6 and Figure 10 display our fork
implementation. The steps are as follows:

1 The parent process calls NtCreateUserProcess with
the proper flags, creating a suspended child process with
a CoW copy of the parent’s address space (line 1). We
keep the child process suspended until the parent 2 calls
CsrClientCallServer to inform the CSRSS that a new process
was created (line 12). 3 The parent now resumes the child,
which proceeds to self-initialize (line 17). Then, the parent
returns from fork (line 14). 4 In the child process, because
the address space matches the parent’s, several global variables
(e.g., CsrServerApiRoutine in ntdll.dll) that would be zero
for new processes are already set. The child must de-initialize
these manually by zeroing them out (line 18) to avoid crashing
in the next step. 5 The child now connects to the CSRSS
by calling CsrClientConnectToServer (line 20). This step is
critical for the child process to function properly. 6 The
CSRSS finally acknowledges the newly created process and
thread, and the child process returns from fork (line 21).

1 NTSTATUS result = NtCreateUserProcess(
2 &hProcess, &hThread, MAXIMUM_ALLOWED, MAXIMUM_ALLOWED,
3 NULL, NULL, PROCESS_CREATE_FLAGS_INHERIT_FROM_PARENT
4 | PROCESS_CREATE_FLAGS_INHERIT_HANDLES,
5 THREAD_CREATE_FLAGS_CREATE_SUSPENDED,
6 NULL, &procInfo, NULL
7 );
8

9 if (!result) { // Parent process
10 // Inform the CSRSS that a new process was created
11 // via CsrClientCallServer(CreateProcessRequest)
12 NotifyCsrssParent(hProcess, hThread);
13 // Allow the child to connect to CSR and resume.
14 ResumeThread(hThread);
15 return GetProcessId(hProcess);
16 } else { // Child process
17 // De-initialize ntdll variables before re-initialization
18 memset(pCsrData, 0, csrDataSize);
19 // Connect to the CSRSS via CsrClientConnectToServer
20 ConnectCsrChild();
21 return 0;
22 }

Fig. 10: Fork implementation, We displayed the core fork() function
only. Low level details and helper functions are omitted for brevity.
For more detailed code, refer to our project’s source code.

B. Tested Harnesses
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Fig. 11: Cumulative distribution plot for our harnesses. The graph
plots how many of our harnesses fixed N LoC or fewer. As shown,
nearly 70% of the harnesses worked without any modifications at all.
95% of our harnesses could be fuzzed with ≤ 10 LoC modifications.
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# Program File Size WinAFL-PT WinAFL-DR # Program File Size WinAFL-PT WinAFL-DR

1 7zip 7z.dll 1115KB ✔ ✔ 31 IrfanView jpg_transform 404KB timeout timeout
2 WinRAR rar.exe 557KB ✔ ✔ 32 EzPDF pdf2html.dll 5596KB crash crash
3 makecab makecab.exe 68KB ✔ ✔ 33 ezpdf2hwp.dll 1227KB crash crash
4 GomPlayer avformat-gp-57 4092KB ✔ ✔ 34 pdf2office(xls) 3221KB crash crash
5 expand expand.exe 53KB ✔ ✔ 35 RetroArch bnes.dll 2407KB timeout timeout
6 VLCPlayer libfaad.dll 273KB ✔ ✔ 36 handy.dll 736K timeout timeout
7 uriparser uriparser.exe 157KB ✔ ✔ 37 quicknes.dll 1022KB timeout timeout
8 AdobeRdr jp2klib.dll 847KB ✔ ✔ 38 bsnes.dll 31MB timeout timeout
9 Starcraft storm.dll 453KB ✔ ✔ 39 fmsx.dll 523KB timeout timeout
10 HWP impic9.flt 86KB ✔ ✔ 40 sfc.dll 2724KB timeout timeout
11 imcdr9.flt 70KB ✔ ✔ 41 vbam.dll 1683KB timeout timeout
12 hncbmp10.flt 85KB ✔ ✔ 42 fcemm.dll 683KB timeout timeout
13 hncgif10.flt 131KB ✔ ✔ 43 desmume.dll 5408KB timeout timeout
14 hncwmf10.flt 79KB ✔ ✔ 44 ml ml.exe 476KB crash crash
15 imdrw9.flt 147KB ✔ ✔ 45 mspdbcmf mspdbcmf.exe 1150KB timeout timeout
16 hncjpeg10.flt 220KB ✔ ✔ 46 pdbcopy pdbcopy.exe 726KB proc terminated input file leak
17 hnctiff10.flt 629KB ✔ ✔ 47 XnView cadimage.dll 4205KB crash crash
18 monkey2 mac.exe 408KB ✔ ✔ 48 ldf_jpm.dll 692KB crash crash
19 GraphMagic core_rl_magic_ 973KB ✔ ✔ 49 UltraISO ultraiso.exe 5250KB no inst. crash
20 undname undname.exe 23KB ✔ ✔ 50 ACDSee IDE_ACDStd 3007KB timeout timeout
21 EzPDF pdf2office(doc) 3221KB ✔ ✔ 51 KGB paq6.dll 52KB no inst. keep terminating
22 pdf2office(ppt) 3221KB ✔ ✔ 52 inkscape inkscape.exe 386KB crash crash
23 Alzip egg.dll 131KB ✔ ✔ 53 MuseScore3 musescore3.exe 30.5MB timeout timeout
24 tar.dll 114KB ✔ ✔ 54 MSSDK peverify.exe 257KB timeout timeout
25 alz.dll 123KB ✔ ✔ 55 tar tar.exe 43KB timeout timeout
26 Lib lib.exe 20KB ✔ ✔ 56 link link.exe 1358KB timeout timeout
27 HWP hncpng10.flt 479KB input creation failed ✔ 57 esentutl esentutl.exe 341KB hang timeout
28 imgdrw9.flt 146KB input creation failed ✔ 58 PowerISO macdll.dll 466KB timeout timeout
29 Libmagic magic1.dll 147KB no inst. ✔ 59 tiled tmxviewer.exe 109KB timeout timeout
30 dxcap dxcap.exe 904KB CreateProc fail Prog failed.

TABLE XI: Results of testing the generated harnesses with WinAFL. We generated 59 harnesses and tested on WINNIE, WinAFL-IPT,
and WinAFL-DR. WINNIE was able to run all 59 harnesses. WinAFL-IPT and WinAFL-DR failed to run 33 and 30 harnesses respectively.
"No inst." denotes no instrumentation.

Program Target Size APIs LoC Fixed (LoC) (%) Program Target Size APIs LoC Fixed (LoC) (%)

AdobeRdr jp2klib.dll 847KB 9 282 CB (89), ST (14) 36.5 WinRAR rar.exe 557K 1 55 0 0.0
ACDSee IDE_ACDStd 3007K 19 506 CB (38), ST (174) 34.3 expand expand.exe 53K 1 55 0 0.0
HWP HncJpeg10.dll 220K 3 92 CB (7), ST (8) 16.3 VLCPlayer libfaad.dll 273K 1 55 0 0.0

hncbmp10.flt 85KB 3 103 CB (2), ST (8) 9.7 uriparser uriparser.dll 157K 1 55 0 0.0
ezPDF Pdf2Office(d) 3221K 4 112 CB (2), ST (8) 8.9 Monkey2 mac.exe 408K 1 55 0 0.0

Pdf2Office(p) 3221K 4 112 CB (2), ST (8) 8.9 GraphMagic core_rl_magic 973K 1 55 0 0.0
Pdf2Office(e) 3221K 4 112 CB (2), ST (8) 8.9 undname undname.exe 23K 1 55 0 0.0

HWP HncTiff10.dll 630K 3 82 CB (7) 8.5 Alzip egg.dll 131K 1 55 0 0.0
ezPDF Pdf2html.dll 5596K 4 110 ST (8) 7.2 tar.dll 114K 1 55 0 0.0

ezpdf2hwp.dll 1227K 4 110 ST (8) 7.2 alz.dll 123K 1 55 0 0.0
HWP imgpic9.flt 86KB 3 90 CB (2), ST (3) 5.6 dxcap dxcap.exe 904K 1 55 0 0.0

imdrw9.flt 147KB 3 90 CB (2), ST (3) 5.6 RetroArch bnes.dll 2407K 1 55 0 0.0
imcdr9.flt 70KB 3 92 CB (2), ST (3) 5.4 handy.dll 736K 1 55 0 0.0
hncgif10.flt 131KB 3 92 CB (2), ST (3) 5.4 quicknes.dll 1022K 1 55 0 0.0
hncwmf10.flt 79KB 3 92 CB (2), ST (3) 5.4 bsnes.dll 31MB 1 55 0 0.0
hncpng10.flt 479KB 3 102 ST (8) 7.8 fmsx.dll 523KB 1 55 0 0.0

UltraIso UltraISO.exe 5250K 1 57 CB (2) 3.5 sfc.dll 2724KB 1 55 0 0.0
XnView cadimage.dll 4205 2 65 PTR (2) 3.1 vbam.dll 1683KB 1 55 0 0.0

ldf_jpm.dll 692 10 199 CB (4), PTR (2) 3.0 fcemm.dll 683KB 1 55 0 0.0
EndNote RMConvertLib 2027K 1 73 argument (2) 2.7 desmume.dll 5408KB 1 55 0 0.0
Gomplayer avformat-gp.dll 4091K 7 116 PTR (2) 1.7 Inkscape inkscape.exe 386KB 1 55 0 0.0
EndNote PC4DbLib 2738K 1 55 0 0.0 MuseScore3 musescore3 30.5KB 1 55 0 0.0
file magic1.dll 147K 3 96 0 0.0 MSSDK peverify.exe 257KB 1 55 0 0.0
Starcraft storm.dll 453KB 2 37 0 0.0 tar tar.exe 43KB 1 55 0 0.0
7z 7z.exe 1114K 1 55 0 0.0 link link.exe 1358KB 1 55 0 0.0
makecab makecab.exe 50K 1 55 0 0.0 lib lib.exe 20KB 1 55 0 0.0
Tiled tmxviewer.exe 113K 1 55 0 0.0 esentutl esentutl.exe 341KB 1 55 0 0.0
mspdbcmf mspdbcmf.exe 1149K 1 55 0 0.0 PowerISO macdll.dll 466KB 1 55 0 0.0
pdbcopy pdbcopy.exe 726K 1 55 0 0.0 KGB paq6.dll 52KB 1 55 0 0.0
ml ml.exe 476K 1 55 0 0.0

CB: Callback function, ST: Custom struct, PTR: Pointer

TABLE XII: All harnesses included in our evaluation. Of 59 harnesses, the majority worked without any modifications required, and only 3
required changing more than 10 lines of code. We discuss the problem of callbacks and structs in §VIII-A. The problematic Adobe Reader
example is discussed in §VIII. The ACDSee and HWP-jpeg harnesses are discussed in §VII-C.
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