FREEDOM: Engineering a
State-of-the-Art DOM Fuzzer

Wen Xu, Soyeon Park, and Taesoo Kim

Georgia Tech

Georgia I&
Techl|

DOM Engines have been studied for 10+ years

= | Renderer :
WWW | s | —
—p | €= DOM Engine 5@ € |
User il ' Server
RCE / Data leak Web Browser Malicious pages 2009 - 2018
Dynamic DOM Static Grammar-based Do we really need a new DOM fuzzer?
Testing Generation x Fewer and fewer (exploitable) DOM bugs
Domfuzz Bf3 Cross_fuzz Dharma Avalanche WadiDomato P x Heavily fuzzed mainstream DOM engines

S N W MNN)) / EREEDOM: A evolutionary DOM fuzzer
2017 2020 finding new and more bugs!

2008 2010 2011 2015 2016

Input Format: HTML Documents

<html> I—) CSS selector ,—) CSS property
<style>

fed,classl { colunns: 1264; [UESRENURIGIES) 1

select { word-spacing: normal; }

</style> CSS Rules

<script>

function main{) {
// Property write
try { e3.autofocus = true; } catch(e) {}
// Method call
try { e3.reportValidity(); } catch(e) {}
// Property read
try { var vl = e2.control; } catch(e) {}
try { vl.outerText = '"1"; } catch(e) {}

—> Event handler

i
function f1() { ... }
function f2() { ... }

</script>

<body onload="main()">
<form id="el" class="class1">
<label id="e2" for="e3"/> —> Element node

<select id="e3" onblur="f2()"> </select>
</form> ;) Text node

<svg id="e4"
width="100">
</svg> Attribute node

</body> Child element node

</html> DOM Tree

JavaScript

CSS Rules specifies the styles of the
DOM obijects in the tree

JavaScript callbacks modifies the
state (e.g., layout, effect, etc.) of
the objects at runtime

DOM Tree specifies the objects to

be displayed at the very beginning

Problems of the state of the art

Generating context-dependent values in HTML documents

v Certain types of values in a HTML document refer to other values
x Random generation based on context-free grammar cannot anticipate exact values concretized

<elementid> = htmlvar0000<int min=1 max=9> <selector> = .<class>
<svgelementid> = svgvar0000<int min=1 max=9> <selector> = #<elementid>
<class> = class<int min=0 max=9> <selector> = <element>
<tagname> =a | abbr | acronym | ... <element p=0.5> = <tagname>

<svgtagname> = a | altGlyph | altGlyphDef | ... <element p=0.4> = <svgtagname>
A random document probably has 30 HTML elements, only 5 SVG elements or simply no <a> \ utatlon-based DOM Fuzzi ng

x Whether or not coverage-guided

<svgelement_animate> = <lt>animate <animattr> <svgattrs_animate> /<gt>

<animattr> = attributeName="x" from="<x_value>" mutatlon Works agalnst DOM englnes |S
<animattr> = attributeName="y" from="<y_value>"
<animattr> = attributeName="d" from="<d_value>" an open prObIem
-~ and many more. x Stateless HTML files in plaintext are
A random document probably mutates the non-existent x attribute of <path> not fu”y muta b|e

Our solution: FREEDOM

Check the paper for four types of context dependences
A modern DOM fuzzing playground

that existing DOM fuzzers are unable to describe

* Grammar rules selected from Domato

FREEDOM Can Still Find New Critical DOM Bugs

24 0days in Safari, Chrome, and Firefox during 2019 and 2020

10 CVEs and 65K USD bug bounty

A macOS remote exploit based on one Oday found in Safari

FD-IR: A stateful HTML intermediate representation

Two types of contexts and numerous interdependent, lowerable, generative and mutable Value instances

CSSFilterValue

generate

¢ literal = None
% ref =None

—

1

CSSFilterPropertyValue

1

CSSRuleValue

Standard Compliance

CSSFilter CSSFilter Global context
Value mutate value

% literal = blur(5px) ‘ % literal = None Object

% ref=None % ref=v3 E — o

o _ .
l stringify l stringify < Type = SVGFilterElement

blur (5px) url (#v3)

v/ Covers DOM, CSS, and JavaScript
v/ Lowered to HTML files in

plaintext

v Highly extensible
A Python3 implementation with serialization and deserialization support

% ID=v3

Context-Awareness Fuzzing Support

v Global object and token pools v" Random generation from scratch
v/ Function-wise object pools (U-D) v Mutation over existing FD-IR
v References between DOM objects v Merging two FD-IR programs

FREEDOM Workflow

A cloud-based setting with two working modes

Generation-based Blackbox Fuzzing Mutation-based Coverage-guided Fuzzing

(—) - (—J
C—— = #% o h— [
(—] (—]
[0 Generate a FD-IR program through 6 [0 Randomly mutate a FD-IR program
appending algorithms fetched from the server in 16 ways
[0 Lower to HTML files for testing [0 Profile runtime coverage
[0 Report crash to the central server [0 Upload testcases visiting new code

blocks in FD-IR to server database

Comparison With State-of-the-Arts

Fuzzing WebKit generatively with 100 cores for 24 hours

Dharma e Domato o 6 e ()

100 v/ Similar code coverage

50- MW v/ 3x more unique crashes

60 - v/ 3x more security-related crashes

v/ Covers Nearly 90% Domato crashes
v' Nearly 65% crashes have
context-dependent values that
Domato hardly generates

FREEDOM becomes the new state-of-the-art

v/ Captures the old types of bugs described by context-free grammars
v/ Discovers new bugs that require semantically complicated inputs

v Visits 13.96% more code blocks
v/ 7 unique crashes on average (Dharma
found none)

40 A 103

Number of unique crashes

20

Number of crashes (log scale)

[
(=]
Y

Exploring Coverage-Driven DOM Fuzzing

Fuzzing WebKit mutationally driven by coverage (blank corpus) and compare with blackbox generation

5 (2) Coverage / 2.62% more coverage = Blackbox generation is not comprehensive but
i;:us =/ 3 new unique crashes efficient and effective in a reasonable time
;;46 fpfe"g / 2 security-related crashes . C-ov-erage-guided mutation is irreplaceable for
244- E? o / More likely to trigger :‘lndlng'hard-to-reach b'L:jgsd oM furs "
B | = rowwomenss) | crashes that require strict or " Improving coverage—gu.l ? M fuzzing wit
0l - - subtle settings more resources and existing corpus

Ineffectiveness Check the paper for concrete bug cases that are

found by coverage-driven fuzzing but missed by

X i .
Nearly 3.8x fewer unique crashes on average random generation

x Misses around 75% crashes by generation
x Misses 7 security-related crashes

* FD, : FREEDOM in generation mode
FD,, : FREEDOM in coverage-guided mutation mode

Conclusion

FREEDOM: An evolutionary static DOM fuzzer
» Supporting both generation-based and coverage-guided mutation-based fuzzing
» Based on a context-aware IR for HTML documents
* Finding new DOM engine bugs

First study on applying coverage-guided mutation to DOM Fuzzing

We expect further improvement on DOM fuzzing facilitated by FREEDOM

Open sourced at https://github.com/sslab-gatech/freedom

10

https://github.com/sslab-gatech/freedom

