
QSYM : A Practical Concolic
Execution Engine Tailored for

Hybrid Fuzzing

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang †, and Taesoo Kim

Georgia Institute of Technology & Oregon State University †

27th USENIX Security Symposium
August 16, 2018 1

Two popular ways to find security bugs:
Fuzzing & Concolic execution

Fuzzing Symbolic Execution
2

Fuzzing and Concolic execution have their
own pros and cons
• Fuzzing
• Good: Finding general inputs
• Bad: Finding specific inputs

• Concolic execution
• Good: Finding specific inputs
• Bad: State explosion

3

Hybrid fuzzing can address their problems

• Use both techniques: Fuzzing + Concolic execution

• Find specific inputs: Using concolic execution
• Limit state explosion: Only fork at branches that are hard to fuzzing

4

Hybrid fuzzing has achieved great success in small-
scale study
• e.g.) Driller: a state-of-the-art hybrid fuzzer
• Won 3rd place in CGC competition
• Found 6 new crashes: cannot be found by fuzzing nor concolic execution

5

However, current hybrid fuzzing suffers from
problems to scale to real-world applications
• Very slow to generate constraint

• Cannot support complete system calls

• Not effective in generating test cases

6

Our system, QSYM, addresses these issues by
introducing several key ideas
• Discard intermediate layer for performance

• Use concrete environment to support system calls

• Introduce heuristics to effectively generate test cases

7

QSYM is scalable to real-world software

• 13 previously unknown bugs in open-source software

• All applications are already fuzzed (OSS-Fuzz, AFL, …)
• Including ffmpeg that is fuzzed by OSS-Fuzz for 2 years

• Bugs are hard to pure fuzzing – require complex constraints

8

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

9

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

10

Performance
overhead

Overview: QSYM

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases

1. Instruction-level execution

11

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

12

Incomplete
Environment modeling

Overview: QSYM

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases

1. Instruction-level execution
2. Concrete environment modeling

13

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

14

Ineffective test case generation
due to unsatisfiable paths

Overview: QSYM

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases

3. Optimistic Solving

1. Instruction-level execution
2. Concrete environment modeling

15

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

16

Blocked
by complex logics

Overview: QSYM

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases

3. Optimistic Solving

1. Instruction-level execution
2. Concrete environment modeling

17

4. Basic block pruning
Refer our paper

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

18

Performance
overhead

Intermediate representations (IR) are good to
make implementations easier
• Provide architecture-independent interpretations

• Can re-use code for all architectures

• e.g. angr works on many architectures: x86, arm, and mips

19

Problem1: IR incurs significant performance
overhead
• Increase the number of instructions
• 4.7 times in VEX (IR used by angr)

• Need to execute a whole basic block symbolically
• Due to caching and optimization
• Only 30% of instructions need to be symbolically executed

20

Solution1: Execute instructions directly
without using intermediate layer
• Remove the IR translation layer
• Pay for the implementation complexity

21

QSYM reduces the number of instructions to
execute symbolically
• 126 CGC binaries

22

4x less

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

23

Incomplete
Environment modeling

State forking can reduce re-execution
overhead for constraint generation
• No need to re-execute to reach the state
• Recover from the snapshot

24

State forking for kernel is non-trivial

• State in concolic execution = Program state + Kernel state

• Forking program state is trivial
• Save application memory + register
• Save constraints

• Forking kernel state is non-trivial
• Need to maintain all kernel data structures
• e.g., file system, network state, memory system …

25

Problem2: State forking introduces problems in either
completeness or performance

• Kernel modeling
• e.g.) angr
• Pros: Small performance overhead
• Cons: Incompleteness – angr supports only 22 system calls in Linux

• Full kernel emulation
• e.g.) S2E
• Pros: Completeness
• Cons: Large performance overhead

26

Solution2: Re-execute to use concrete
environment instead of kernel state forking
• Instead of state forking, re-execute from start

• High re-execution overhead
• Instruction-level execution
• Basic block pruning

• Limit constraint solving: Based on coverage from fuzzing

27

Models minimal system calls and uses
concrete values
• Only model system calls that are relevant to user interactions
• e.g.) standard input, file read, …

• Other system calls: Call system call using concrete values
• e.g.) mprotect(addr, sym_size, PROT_R)

à mprotect(addr, conc_size, PROT_R)

28

Problem: Concrete environment results in
incomplete constraints
• Add implicit constraints
• e.g.) mprotect(addr, sym_size, PROT_R)

à mprotect(addr, conc_size, PROT_R)

• Without knowing semantics of system calls
• Concretize: Over-constrained
• Ignore: Under-constrained

29

Unrelated constraint elimination can tolerate
incomplete constraints

x = int(input())
y = int(input())

Incomplete constraints
mprotect(addr, x, PROT_R)

if y * y == 1337 * 1337:
bug()

Constraints for x (Incomplete)
&& y * y == 1337 * 1337

Path constraints

y * y == 1337 * 1337
Branch dependent constraints

x = Use concrete value
y = 1337

30

Overview: Hybrid fuzzing in general

Program

push ebp
mov ebp, esp
…

Basic block

t0 = GET:I32(ebp)
t1 = GET:I32(esp)
t2 = Sub32(t1,0x00000004)
…

Intermediate Representations

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints
State forkingFuzzing

Coverage

Test cases

31

Ineffective test case generation
due to unsatisfiable paths

Problem3: Over-constrained paths results in
no test cases

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()

type = int(input())

type == TYPE1

….

type == TYPE2

Unsatisfiable: No test case

+ long time

32

type != TYPE1

Problem3: Over-constrained paths results in
no test cases

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()

type = int(input())

type == TYPE1

….

type == TYPE2

+ long time

33

type != TYPE1

If these branches are independent

Solution3: Solve constraints optimistically

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()

type = int(input())

type == TYPE1

….

type == TYPE2

+ long time

34

type != TYPE1

Our decision: Solve only the last constraint in
the path

type = int(input())

if type == TYPE1:
parse_TYPE1()

…

if type == TYPE2:
parse_TYPE2()

35

• Simple: Only one constraint
• High chance to pass the branch

• Only waste a small solving time

In hybrid fuzzing, generating incorrect inputs
are fine due to fuzzing

Program

push ebp
mov ebp, esp
…

Basic block

A[0] == ‘A’
&& A[1] == ‘A’
&& A[2] == ‘A’
…

Constraints

Fuzzing

Coverage

Test cases

36

Fuzzing will filter out
incorrect inputs based on coverage

Optimistic solving helps to find more bugs

37

• LAVA-M dataset

Implementation

• 16K LoC of C++

• Intel Pin: emulation
• Z3: constraint solving

• Will be available at https://github.com/sslab-gatech/qsym

38

Evaluation questions

• Scaling to real-world software?

• How good is QSYM compared to
• Driller (a state-of-the-art hybrid fuzzing)
• Vuzzer (a state-of-the-art fuzzing)
• Fuzzing and symbolic execution

39

QSYM scales to real-world software

• 13 bugs in real-world software

40

QSYM can generate test cases that fuzzing is
hard to find
• e.g.) ffmpeg: Not reachable by fuzzing

if(((ox^(ox+dxw))
| (ox^(ox+dxh))
| (ox^(ox+dxw+ dxh))
| (oy^(oy+dyw))
| (oy^(oy+dyh))
| (oy^(oy+dyw+ dyh))) >> (16 + shift)
|| (dxx | dxy | dyx | dyy) & 15
|| (need_emu && (h > MAX_H || stride > MAX_STRIDE)))

{ ... return; }
// the bug is here

41

Compare QSYM with Driller, a state-of-the-art
hybrid fuzzing
• Dataset: 126 binaries from CGC

• Run only one instance of concolic execution for 5 min
• i.e., remove fuzzing

• Compare code coverage

42

QSYM achieved more code coverage than
Driller in most cases of CGC
• Among 126 challenges
• QSYM achieved more: 104 challenges
• Driller achieved more: 18 challenges

43

QSYM achieved more code coverage due to
its better performance
• e.g., CROMU_00001

• To achieve new code coverage, seven stages are required
• Add one user à Add another user à login à send to message à …

• QSYM can reach the stage, but Driller cannot in time

44

Driller achieved more code coverage if nested
branches exist
• Driller can find inputs for nested branches by a single execution due

to forking

• QSYM requires re-execution
• NOTE: Our experiment allows only one instance of concolic execution

45

QSYM outperforms other techniques in LAVA-M
dataset

• LAVA-M dataset: inject hard-to-find bugs in real-world software
• 5 hour run

46

Discussions & Limitation

• Use of less accurate test cases
• Requires efficient validators
• e.g., exploit generation

• Implementation status
• Only support x86, x86_64
• No floating point support

47

Conclusion

• Hybrid fuzzing scalable to real-world software
• 13 bugs in real-world software

• Outperform a state-of-the-art hybrid fuzzing and other bug finding

• https://github.com/sslab-gatech/qsym

48

Thank you

49

Using only the last constraint is good for time
and bug finding

50

Number of instructions that are not emulated
by QSYM due to its limitation

• 13 / 126 challenges: At least one
• 3 / 126 challenges: More than 1% of total instructions

51

