QSYM : A Practical Concolic
Execution Engine Tailored for
Hybrid Fuzzing

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang 1, and Taesoo Kim

Georgia Institute of Technology & Oregon State University T

27th USENIX Security Symposium
August 16, 2018

Two popular ways to find security bugs:
Fuzzing & Concolic execution

¢

ﬁLLVM CYBERHAVEN

COMPILEHR
INFRASTRUCTURE

american fuzzy lop 0.47b (readpng) SE‘ U E
process timing overall results
0 days, 0 hrs, 4 min, 43 sec

0 days, 0 hrs, 0 min, 26 sec 195
0

none seen yet
0 days, 0 hrs, 1 min, 51 sec 1
cycle progr map coverage
38 (19.49%) 1217 (7.43%)
0 (0.00%) 2.55 bits/tuple
stage progress findings in depth
interest 32/8 128 (65.64%)
0/9990 (0.00%) 85 (43.59%)
654k 0 (0 unique)
2306/sec 1 (1 unique)
fuzzing strategy yi path geometry
88/14. 6/14.4k, 6/14.4k 3
0/1804, 1786, 1/1750 178
31/126k, 3/45.6k, 1/17.8k 114
1/15.8k, 4/65.8k, 6/78.2k
34/254k, 0/0
2876 B/931 (61.45% gain)

Fuzzing Symbolic Execution

Fuzzing and Concolic execution have their
own pros and cons

* Fuzzing
* Good: Finding general inputs
e Bad: Finding specific inputs

* Concolic execution
* Good: Finding specific inputs
* Bad: State explosion

Hybrid fuzzing can address their problems

* Use both techniques: Fuzzing + Concolic execution

* Find specific inputs: Using concolic execution
* Limit state explosion: Only fork at branches that are hard to fuzzing

Hybrid fuzzing has achieved great success in small-
scale study

e e.g.) Driller: a state-of-the-art hybrid fuzzer
« Won 3" place in CGC competition
* Found 6 new crashes: cannot be found by fuzzing nor concolic execution

However, current hybrid fuzzing suffers from
problems to scale to real-world applications

* Very slow to generate constraint
e Cannot support complete system calls

* Not effective in generating test cases

Our system, QSYM, addresses these issues by
introducing several key ideas

* Discard intermediate layer for performance
e Use concrete environment to support system calls

* Introduce heuristics to effectively generate test cases

QSYM is scalable to real-world software

e 13 previously unknown bugs in open-source software

 All applications are already fuzzed (OSS-Fuzz, AFL, ...)
* Including ffmpeg that is fuzzed by OSS-Fuzz for 2 years

* Bugs are hard to pure fuzzing — require complex constraints

Overview: Hybrid fuzzing in general

t0 = GET:132(ebp)
ﬁ ﬁ
pm”;\t‘:t?p o t1 = GET:132(esp)
P, €5P £2 = Sub32(t1,0x00000004)
Program
Basic block Intermediate Representations
/\ .
Coverage R Ag)g]L ==['?' p— p—
- A[l] == A’ - -
ﬂ
- /\ && A[Z] — IAI B h
Constraints - -
Fuzzing State forking Test cases
A S

-’

—_y -
_— e — o w—
- e e e e e s e s s S

Overview: Hybrid fuzzing in general

t0 = GET:I32(eb
=% | push ebp (ebp)

t1 = GET:132(esp) Performance
mov ebp, esp _
Program t2 = Sub32(t1,0x00000004) overhead

Basic block Intermediate Representations

Coverage _ # A[0] == A
-

&& A[l] == A’
- /\ && A[Z] == ‘N

Constraints

I
1)

1 ()

1T]

Fuzzing State forking
S

—_y -
B J— — o w—
- e o e e e e o e s s s - .

Test cases
-

10

Overview: QSYM

1. Instruction-level execution

Program

push ebp
mov ebp, esp

american fuzzy lop 0.47b (readpng)

ategy yields
88/14.4k, 6/14.4k, 6/14.4k
0/1804, 0/}786, 1/175
3/4

0
31/126k, 3/45.6k, 1/17.8k
1/15.8k, 4/65.8k, 6/78.2k
34/254k, 0/0

2876 B/931 (61.45% gain)

Fuzzing

“—_____ ___—

Basic block

A[0] == ‘A

&& A[l] =="A’
&& A[2] =

- l)!\f

Constraints

-_—

-

111 {7717

1) ()

Test cases

\

/

Overview: Hybrid fuzzing in general

t0 = GET:132(ebp)
ﬁ ﬁ
pm”;\t‘:t?p o t1 = GET:132(esp)
P, €5P £2 = Sub32(t1,0x00000004)
Program
Basic block Intermediate Representations

N
A[0] == ‘A =| |=
&& A[1] == N - | =
&& A[2] == ‘N ’ N N

Constraints
Fuzzing State forking Incomplete Test cases

Y —— - __ _ Environment modeling=— -

12

Overview: QSYM

1. Instruction-level execution
2. Concrete environment modeling

=== bush ebp A[0] == ‘A’
mov ebp, esp && A[l] == ‘A
Program && A[2] == ‘A’

Basic block Constraints

111 {7717
1) ()

Coverage — -

Test cases

/

\

Fuzzing -

”

“—_____ ___—

Overview: Hybrid fuzzing in general

====P>| push ebp

mov ebp, esp

Program

Basic block

Coverage

-
-

-

t0 = GET:132(ebp)
t1 = GET:132(esp)
t2 = Sub32(t1,0x00000004)

Intermediate Representations

»

N

State forking

Ineffective test case generation
due to unsatisfiable paths

A[0] == ‘N’
&& A[1] ==

IAI
IAI

Test cases

-_-__—_———————_____ 14

Overview: QSYM

1. Instruction-level execution
2. Concrete environment modeling

ﬁ push ebp A[O] == IA’
mov ebp, esp &&All]l=="A""| 3, Optimistic Solving
Program && A[2] ==A

Basic block Constraints

111 {7717
1) ()

Coverage -

Test cases

/

\

Fuzzing -

”

“—_____ — — -

Overview: Hybrid fuzzing in general

t0 = GET:132(ebp)
ﬁ ﬁ
pm”;::t? - t1 = GET:I32(esp)
Program P, €5P t2 = Sub32(t1,0x00000004)
; Blocked
Basic block Intermediate Representations by complex logics

A[O] == ‘A
Coverage , | [0]
-

_ && A[1] ==A
/\ N

I
1)

1 ()

1T]

State forking Test cases

Overview: QSYM

] —

Program

Fuzzing

“—_____ ___—

1. Instruction-level execution
2. Concrete environment modeling

push ebp Al0] =="A'
mov ebp, esp 8&&Alll=="A"| 3 Optimistic Solving
&& A[2] == ‘A’ N N
Basic block - - —:
4. Basic block pruning®"*™"
Refer our paper _» |=] |=
Coverage = - - — ——
— -
-_—— Test cases
/
/
-
-
- -

”

Overview: Hybrid fuzzing in general

t0 = GET:I32(eb
=% | push ebp (ebp)

t1 = GET:132(esp) Performance
mov ebp, esp _
Program t2 = Sub32(t1,0x00000004) overhead

Basic block Intermediate Representations

Coverage _ # A[0] == A
-

&& A[l] == A’
- /\ && A[Z] == ‘N

Constraints

I
1)

1 ()

1T]

Fuzzing State forking
S

—_y -
B J— — o w—
- e o e e e e o e s s s - .

Test cases
-

18

Intermediate representations (IR) are good to
make implementations easier

* Provide architecture-independent interpretations
e Can re-use code for all architectures

* e.g. angr works on many architectures: x86, arm, and mips

Problem1: IR incurs significant performance
overhead

* Increase the number of instructions
e 4.7 times in VEX (IR used by angr)

* Need to execute a whole basic block symbolically

* Due to caching and optimization
* Only 30% of instructions need to be symbolically executed

Solutionl: Execute instructions directly
without using intermediate layer

 Remove the IR translation layer
* Pay for the implementation complexity

QSYM reduces the number of instructions to
execute symbolically

e 126 CGC binaries

800 k -

600 k -
400k 4 4xless

Instructions

200 k -

QSYM Driller

22

Overview: Hybrid fuzzing in general

t0 = GET:132(ebp)
ﬁ ﬁ
pm”;\t‘:t?p o t1 = GET:132(esp)
P, €5P £2 = Sub32(t1,0x00000004)
Program
Basic block Intermediate Representations

N
A[0] == ‘A =| |=
&& A[1] == N - | =
&& A[2] == ‘N ’ N N

Constraints
Fuzzing State forking Incomplete Test cases

Y —— - __ _ Environment modeling=— -

23

State forking can reduce re-execution
overhead for constraint generation

* No need to re-execute to reach the state
* Recover from the snapshot

State forking for kernel is non-trivial

* State in concolic execution = Program state + Kernel state

* Forking program state is trivial
e Save application memory + register
* Save constraints

* Forking kernel state is non-trivial
* Need to maintain all kernel data structures
* e.g., file system, network state, memory system ...

Problem?2: State forking introduces problems in either
completeness or performance

* Kernel modeling
e e.g.)angr
* Pros: Small performance overhead
* Cons: Incompleteness —angr supports only 22 system calls in Linux

* Full kernel emulation
e e.g.)S2E
* Pros: Completeness
e Cons: Large performance overhead

Solution2: Re-execute to use concrete
environment instead of kernel state forking

* Instead of state forking, re-execute from start

* High re-execution overhead
* Instruction-level execution
 Basic block pruning

* Limit constraint solving: Based on coverage from fuzzing

Models minimal system calls and uses
concrete values

* Only model system calls that are relevant to user interactions
e e.g.) standard input, file read, ...

* Other system calls: Call system call using concrete values

e e.g.) mprotect(addr, sym_size, PROT_R)
- mprotect(addr, conc_size, PROT_R)

Problem: Concrete environment results in
incomplete constraints

* Add implicit constraints

e e.g.) mprotect(addr, sym_size, PROT_R)
- mprotect(addr, conc_size, PROT_R)

* Without knowing semantics of system calls
e Concretize: Over-constrained
* lgnore: Under-constrained

Unrelated constraint elimination can tolerate
incomplete constraints

x = int(input()) » Constraints for x (Incomplete)
y = int(input()) &&y *y==1337 * 1337

Path constraints
Incomplete constraints l

mprotect(addr, x, PROT_R)

y *y==1337 * 1337

ify *y==1337 *1337: Branch dependent constraints

bug() l

x = Use concrete value
— y =1337

Overview: Hybrid fuzzing in general

====P>| push ebp

mov ebp, esp

Program

Basic block

Coverage

-
-

-

t0 = GET:132(ebp)
t1 = GET:132(esp)
t2 = Sub32(t1,0x00000004)

Intermediate Representations

»

N

State forking

Ineffective test case generation
due to unsatisfiable paths

A[0] == ‘N’
&& A[1] ==

IAI
IAI

Test cases

-_-__—_———————_____ 31

Problem3: Over-constrained paths results in
no test cases

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPE1() type == TYPE1 type != TYPE1
.. +longtime
if type == TYPE2: l
parse_TYPE2()

type == TYPE2

!

Unsatisfiable: No test case

Problem3: Over-constrained paths results in
no test cases

If these branches are independent

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPEL() type == TYPE1 type != TYPE1
.. +longtime
if type == TYPE2: l
parse_TYPE2()
type == TYPE2

33

Solution3: Solve constraints optimistically

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPE1() type == TYPE1 type != TYPE1
. +longtime
if type == TYPE2: l
parse_TYPE2()

type == TYPE2

Our decision: Solve only the last constraint in
the path

e Simple: Only one constraint

type = int(input()) * High chance to pass the branch

if type == TYPE1:
parse_TYPEL() * Only waste a small solving time

if type == TYPE2:
parse_TYPE2()

In hybrid fuzzing, generating incorrect inputs
are fine due to fuzzing

—H|pusheby o ROJ W
mov ebp, esp && A[l]=="A
&& A[2] == A

Program

Basic block

Coverage

Fuzzing

“—_____ __——

Constraints

Fuzzing will filter out
incorrect inputs based on coverage _ -

”

111 (11
1) ()

Test cases

/

\

Optimistic solving helps to find more bugs

e LAVA-M dataset

uniq base64
30~
XK
40 A
2b 20 ~
< 10 1 -
-9
0 "4 T T 0 '4 T T T T T
0 1 2 3 4 5 0 1 2 3 4 5

Time (h)

50 A

25 A

mdSsum

2 3 4 5

=& w/ optimistic

1000

500

0-5

0

1

2

3

4 5

—©— w/o optimistic

37

Implementation

e 16K LoC of C++

* Intel Pin: emulation

e 73: constraint solving

* Will be available at https://github.com/sslab-gatech/qsym

38

Evaluation questions

* Scaling to real-world software?

* How good is QSYM compared to
* Driller (a state-of-the-art hybrid fuzzing)
* Vuzzer (a state-of-the-art fuzzing)
* Fuzzing and symbolic execution

QSYM scales to real-world software

* 13 bugs in real-world software

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read AFL
openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249* Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference = OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffimpeg CVE-2017-17081 Out-of-bounds read OSS-Fuzz
CVE-2017-17080 Out-of-bounds read AFL

objdump

40

QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if(((ox"(ox+dxw))

(ox”(ox+dxh))

(ox"(ox+dxw+ dxh))

(oy”(oy+dywy))

(oy”(oy+dyh))

(oy”(oy+dyw+ dyh))) >> (16 + shift)

| (dxx | dxy | dyx | dyy) & 15

| (need_emu && (h > MAX_H || stride > MAX_STRIDE)))
{...return; }

// the bug is here

41

Compare QSYM with Driller, a state-of-the-art
hybrid fuzzing

e Dataset: 126 binaries from CGC

* Run only one instance of concolic execution for 5 min
* i.e., remove fuzzing

 Compare code coverage

QSYM achieved more code coverage than
Driller in most cases of CGC

* Among 126 challenges
* QSYM achieved more: 104 challenges
* Driller achieved more: 18 challenges

QSYM achieved more code coverage due to
its better performance

e e.g., CROMU_00001

* To achieve new code coverage, seven stages are required
* Add one user > Add another user = login = send to message =2 ...

* QSYM can reach the stage, but Driller cannot in time

Driller achieved more code coverage it nested
oranches exist

* Driller can find inputs for nested branches by a single execution due
to forking

* QSYM requires re-execution
* NOTE: Our experiment allows only one instance of concolic execution

QSYM outperforms other techniques in LAVA-M
dataset

* LAVA-M dataset: inject hard-to-find bugs in real-world software

* 5 hour run
uniq base64 mdSsum who
Total 28 44 57 2,136
FUZZER 725%) 716 %) 2 (4 %) 0 (0 %)
SES 00%) 921 %) 0 (0 %) 18 (1 %)

VUzzer 277 (96 %) 1 (2 %) 00 %) 23 (1 %)
QsSYMm 28 (100 %) 44 (100 %) 57 (100 %) 1,238 (58 %)

Discussions & Limitation

* Use of less accurate test cases
* Requires efficient validators
e e.g., exploit generation

* Implementation status
* Only support x86, x86 64
* No floating point support

Conclusion

* Hybrid fuzzing scalable to real-world software
* 13 bugs in real-world software

e Qutperform a state-of-the-art hybrid fuzzing and other bug finding

* https://github.com/sslab-gatech/qsym

48

Thank you

Using on
and bug -

20000 -

10000 -

Time (ms)

uniq

- 10

I I 1 I 1 1

opt +1 +2 +4 +8 +16

base64

-0

opt +1 +2 +4 +8 +

16

md5Ssum

- 40

- 20

1

opt +1 +2 +4 +8 +16

== Time for optimistic solving

2000 -

1000

v the last constraint is good for time
inding

who

opt +1 +2 +4 +8 +16
—S— # of bugs

50

Number of instructions that are not emulated
by QSYM due to its limitation

Challenge Not emulated Total
NRFIN_00026 4 (0.02 %) 24,315
NRFIN_00032 4 (0.00 %) 4,784,433
CROMU_00016 18 (0.06 %) 31,988
KPRCA_00045 25(0.00 %) 81,920,092
KPRCA_00009 27 (0.23 %) 11,512
NRFIN_00027 178 (0.73 %) 24,449
CROMU_00028 1,154 (0.01 %) 18,626,977
CROMU_00010 1,467 (0.18 %) 811,819
CROMU_00020 3,492 (11.15 %) 31,306
KPRCA_00013 4,589 (0.02 %) 18,746,620
CROMU_00002 14,977 (3.92 %) 381,793
NRFIN_06021 18,821 (33.26 %) 56,583

KPRCA_00029 31,800 (0.16 %) 19,604,258

* 13 / 126 challenges: At least one
* 3 /126 challenges: More than 1% of total instructions

51

