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Two popular ways to find security bugs:
Fuzzing & Concolic execution
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Fuzzing and Concolic execution have their
own pros and cons

* Fuzzing
* Good: Finding general inputs
e Bad: Finding specific inputs

* Concolic execution
* Good: Finding specific inputs
* Bad: State explosion



Hybrid fuzzing can address their problems

* Use both techniques: Fuzzing + Concolic execution

* Find specific inputs: Using concolic execution
* Limit state explosion: Only fork at branches that are hard to fuzzing



Hybrid fuzzing has achieved great success in small-
scale study

e e.g.) Driller: a state-of-the-art hybrid fuzzer
« Won 3" place in CGC competition
* Found 6 new crashes: cannot be found by fuzzing nor concolic execution



However, current hybrid fuzzing suffers from
problems to scale to real-world applications

* Very slow to generate constraint
e Cannot support complete system calls

* Not effective in generating test cases



Our system, QSYM, addresses these issues by
introducing several key ideas

* Discard intermediate layer for performance
e Use concrete environment to support system calls

* Introduce heuristics to effectively generate test cases



QSYM is scalable to real-world software

e 13 previously unknown bugs in open-source software

 All applications are already fuzzed (OSS-Fuzz, AFL, ...)
* Including ffmpeg that is fuzzed by OSS-Fuzz for 2 years

* Bugs are hard to pure fuzzing — require complex constraints



Overview: Hybrid fuzzing in general
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Overview: Hybrid fuzzing in general
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Overview: QSYM

1. Instruction-level execution

Program

push ebp
mov ebp, esp
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Overview: QSYM

1. Instruction-level execution
2. Concrete environment modeling
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Overview: Hybrid fuzzing in general
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Overview: QSYM

1. Instruction-level execution
2. Concrete environment modeling
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Overview: Hybrid fuzzing in general
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Overview: QSYM

] —

Program

Fuzzing

“—_____ ___—

1. Instruction-level execution
2. Concrete environment modeling

push ebp Al0] =="A'
mov ebp, esp 8&&Alll=="A"| 3 Optimistic Solving
&& A[2] == ‘A’ N N
Basic block - - —:
4. Basic block pruning®"*™"
Refer our paper _» |=] |=
Coverage = - - — ——
— -
-_—— Test cases
/
/
-
-
- -

”
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Intermediate representations (IR) are good to
make implementations easier

* Provide architecture-independent interpretations
e Can re-use code for all architectures

* e.g. angr works on many architectures: x86, arm, and mips



Problem1: IR incurs significant performance
overhead

* Increase the number of instructions
e 4.7 times in VEX (IR used by angr)

* Need to execute a whole basic block symbolically

* Due to caching and optimization
* Only 30% of instructions need to be symbolically executed



Solutionl: Execute instructions directly
without using intermediate layer

 Remove the IR translation layer
* Pay for the implementation complexity



QSYM reduces the number of instructions to
execute symbolically

e 126 CGC binaries

800 k -

600 k -
400k 4 4xless

Instructions

200 k -

QSYM Driller
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Overview: Hybrid fuzzing in general
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State forking can reduce re-execution
overhead for constraint generation

* No need to re-execute to reach the state
* Recover from the snapshot



State forking for kernel is non-trivial

* State in concolic execution = Program state + Kernel state

* Forking program state is trivial
e Save application memory + register
* Save constraints

* Forking kernel state is non-trivial
* Need to maintain all kernel data structures
* e.g., file system, network state, memory system ...



Problem?2: State forking introduces problems in either
completeness or performance

* Kernel modeling
e e.g.)angr
* Pros: Small performance overhead
* Cons: Incompleteness —angr supports only 22 system calls in Linux

* Full kernel emulation
e e.g.)S2E
* Pros: Completeness
e Cons: Large performance overhead



Solution2: Re-execute to use concrete
environment instead of kernel state forking

* Instead of state forking, re-execute from start

* High re-execution overhead
* Instruction-level execution
 Basic block pruning

* Limit constraint solving: Based on coverage from fuzzing



Models minimal system calls and uses
concrete values

* Only model system calls that are relevant to user interactions
e e.g.) standard input, file read, ...

* Other system calls: Call system call using concrete values

e e.g.) mprotect(addr, sym_size, PROT_R)
- mprotect(addr, conc_size, PROT_R)



Problem: Concrete environment results in
incomplete constraints

* Add implicit constraints

e e.g.) mprotect(addr, sym_size, PROT_R)
- mprotect(addr, conc_size, PROT_R)

* Without knowing semantics of system calls
e Concretize: Over-constrained
* lgnore: Under-constrained



Unrelated constraint elimination can tolerate
incomplete constraints

x = int(input()) » Constraints for x (Incomplete)
y = int(input()) &&y *y==1337 * 1337

Path constraints
# Incomplete constraints l

mprotect(addr, x, PROT_R)

y *y==1337 * 1337

ify *y==1337 *1337: Branch dependent constraints

bug() l

x = Use concrete value
— y =1337




Overview: Hybrid fuzzing in general
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Problem3: Over-constrained paths results in
no test cases

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPE1() type == TYPE1 type != TYPE1
.. +longtime
if type == TYPE2: l
parse_TYPE2()

type == TYPE2

!

Unsatisfiable: No test case




Problem3: Over-constrained paths results in
no test cases

If these branches are independent

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPEL() type == TYPE1 type != TYPE1
.. +longtime
if type == TYPE2: l
parse_TYPE2()
type == TYPE2
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Solution3: Solve constraints optimistically

type = int(input()) type = int(input())
if type == TYPE1: /\
parse_TYPE1() type == TYPE1 type != TYPE1
. +longtime
if type == TYPE2: l
parse_TYPE2()

type == TYPE2




Our decision: Solve only the last constraint in
the path

e Simple: Only one constraint

type = int(input()) * High chance to pass the branch

if type == TYPE1:
parse_TYPEL() * Only waste a small solving time

if type == TYPE2:
parse_TYPE2()




In hybrid fuzzing, generating incorrect inputs
are fine due to fuzzing
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Optimistic solving helps to find more bugs

e LAVA-M dataset

uniq base64
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Implementation

e 16K LoC of C++

* Intel Pin: emulation

e 73: constraint solving

* Will be available at https://github.com/sslab-gatech/qsym
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Evaluation questions

* Scaling to real-world software?

* How good is QSYM compared to
* Driller (a state-of-the-art hybrid fuzzing)
* Vuzzer (a state-of-the-art fuzzing)
* Fuzzing and symbolic execution



QSYM scales to real-world software

* 13 bugs in real-world software

Program CVE Bug Type Fuzzer
lepton CVE-2017-8891 Out-of-bounds read  AFL
openjpeg CVE-2017-12878 Heap overflow OSS-Fuzz
Fixed by other patch NULL dereference
tcpdump CVE-2017-11543* Heap overflow AFL
file CVE-2017-1000249*  Stack overflow OSS-Fuzz
libarchive = Wait for patch NULL dereference = OSS-Fuzz
audiofile CVE-2017-6836 Heap overflow AFL
Wait for patch Heap overflow x 3
Wait for patch Memory leak
ffimpeg CVE-2017-17081 Out-of-bounds read  OSS-Fuzz
CVE-2017-17080 Out-of-bounds read  AFL

objdump
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QSYM can generate test cases that fuzzing is
hard to find

e e.g.) ffmpeg: Not reachable by fuzzing

if( ((ox"(ox+dxw))

(ox”(ox+dxh))

(ox"(ox+dxw+ dxh))

(oy”(oy+dywy))

(oy”(oy+dyh))

(oy”(oy+dyw+ dyh))) >> (16 + shift)

| (dxx | dxy | dyx | dyy) & 15

| (need_emu && (h > MAX_H || stride > MAX_STRIDE)))
{...return; }

// the bug is here
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Compare QSYM with Driller, a state-of-the-art
hybrid fuzzing

e Dataset: 126 binaries from CGC

* Run only one instance of concolic execution for 5 min
* i.e., remove fuzzing

 Compare code coverage



QSYM achieved more code coverage than
Driller in most cases of CGC

* Among 126 challenges
* QSYM achieved more: 104 challenges
* Driller achieved more: 18 challenges



QSYM achieved more code coverage due to
its better performance

e e.g., CROMU_00001

* To achieve new code coverage, seven stages are required
* Add one user > Add another user = login = send to message =2 ...

* QSYM can reach the stage, but Driller cannot in time



Driller achieved more code coverage it nested
oranches exist

* Driller can find inputs for nested branches by a single execution due
to forking

* QSYM requires re-execution
* NOTE: Our experiment allows only one instance of concolic execution



QSYM outperforms other techniques in LAVA-M
dataset

* LAVA-M dataset: inject hard-to-find bugs in real-world software

* 5 hour run
uniq base64 mdSsum who
Total 28 44 57 2,136
FUZZER  725%) 716 %) 2 (4 %) 0 (0 %)
SES 00%) 921 %) 0 (0 %) 18 (1 %)

VUzzer 277 (96 %) 1 (2 %) 00 %) 23 (1 %)
QsSYMm 28 (100 %) 44 (100 %) 57 (100 %) 1,238 (58 %)




Discussions & Limitation

* Use of less accurate test cases
* Requires efficient validators
e e.g., exploit generation

* Implementation status
* Only support x86, x86 64
* No floating point support



Conclusion

* Hybrid fuzzing scalable to real-world software
* 13 bugs in real-world software

e Qutperform a state-of-the-art hybrid fuzzing and other bug finding

* https://github.com/sslab-gatech/qsym
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Thank you
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Number of instructions that are not emulated
by QSYM due to its limitation

Challenge Not emulated Total
NRFIN_00026 4 (0.02 %) 24,315
NRFIN_00032 4 (0.00 %) 4,784,433
CROMU_00016 18 (0.06 %) 31,988
KPRCA_00045 25(0.00 %) 81,920,092
KPRCA_00009 27 (0.23 %) 11,512
NRFIN_00027 178 (0.73 %) 24,449
CROMU_00028 1,154 (0.01 %) 18,626,977
CROMU_00010 1,467 (0.18 %) 811,819
CROMU_00020 3,492 (11.15 %) 31,306
KPRCA_00013 4,589 (0.02 %) 18,746,620
CROMU_00002 14,977 (3.92 %) 381,793
NRFIN_06021 18,821 (33.26 %) 56,583

KPRCA_00029 31,800 (0.16 %) 19,604,258

* 13 / 126 challenges: At least one
* 3 /126 challenges: More than 1% of total instructions
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