
Designing New Operating
Primitives to Improve
Fuzzing Performance

Wen Xu, Sanidhya Kashyap, Changwoo Min*, and Taesoo Kim
Georgia Tech, Virginia Tech*

ACM CCS 2017
11.02.2017

Fuzzing becomes popular

2

The dilemma of fuzzing

•How to produce an input that is more likely to trigger
a vulnerability? (fuzzing strategy)
•Our work: How to execute more inputs within a given

time? (fuzzing performance)
• Save huge cost on computing resources in parallel fuzzing
• No change in applied fuzzing strategies

3

Poor scalability of AFL

4

0
20
40
60
80

100

1 15 30 45 60 75 90 105 120

% time spent

fuzzing time syncing time

0
10000
20000
30000
40000

1 15 30 45 60 75 90 105 120

total executions/second

fuzzing executions

syncing executions

AFL explained – single instance

5

Repeating
(1) Reading and mutating inputs
(2) Launching the target application
(3) Executing and recording runtime
coverage
(4) Bookkeeping results

AFL explained – parallel fuzzing

6

Syncing phase
(1) Scanning the private directories
of other fuzzer instances
(2) Executing unseen test cases
(3) Copying to own directory if
interesting

Fuzzers rely on non-scalable OS primitives

7

• Launching the target application
• fork()

• Reading or writing test cases on the disk
• typical disk file system operations on small files

• Syncing test cases from other fuzzer instances
• Directory scanning
• fork() for test case re-executions

I. fork() to clone new target instances

8

• fork() is generally designed to duplicate the state of any running
process
• In terms of fuzzing on multicores, fork() involves

Redundant operations
• Duplicating virtual memory

space
• Duplicating files, sockets,

credentials
…

Non-scalable operations
• Updating the reverse mapping
• Stressing the global memory

allocator
• Scheduling the new task
…

II. Managing test cases through the disk file system

9

open/creat
generate test cases
on the disk

write
flush interesting test cases
to the disk

creating files in
a private directory

writing a small files in
a private directory

heavy modifications on the file
system metadata in critical sections
which are not scalable

III. Syncing test cases from other instances

10

• non-linearly increase
Directory enumeration

number of fuzzers × number of test cases
• interfere with the running fuzzer

Directory read and write cannot be performed concurrently

Test case re-execution
• redundant

The runtime coverage information was achieved before

Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
• A lightweight, scalable fork() substitute for fuzzing

• Dual file system service
• Shared in-memory test case log

11

Snapshot() system call

12

Before fuzzing,
• Saving memory and file information
• Manipulating PTE of rw pages to ro

(CoW)
During fuzzing,
• Demanding page copy when

memory write triggers page fault
handler

After fuzzing,
• Recovering memory and file

information
• Recovering copied page data
• Returning to the starting point

Snapshot() system call

• Compared with fork()
• No copies of numerous kernel data structures
• No new stack area allocation for the new process
• No stress on the kernel memory allocator
• No scheduling cost

13

Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
•Dual file system service
• A two-level tiering of file systems ensuring efficiency and

deferred durability
• Shared in-memory test case log

14

Dual file system service

• Observation: neither the fuzzer instance nor the target
instances requires strong consistency provided by the disk file
system

15

• Fuzzers can always reproduce lost test cases upon
unexpected failures

• We introduce memory file system and trade off between
consistent storage and fuzzing performance

Dual file system service

16

fuzzer

partitioned memory fs

.. DE AD BE EF ..

1.jpg

access test cases

for efficiency and scalability
disk fs

.. DE AD BE EF ..

1.jpg

for capacity and durability

moved to

symlink
1.jpg

point to

Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
• Dual file system service
• Shared in-memory test case log
• A circular queue for efficient collaborative fuzzing

17

Shared in-memory test case log

18

• No directory enumeration: pop() to examine test cases
from neighbors

• No test case re-execution: direct reference on the bitmap
• No contention: a lock-free design

Applicability of techniques

19

Fuzzers Snapshot Dual FS In-memory log
AFL ✓ ✓ ✓

AFLFast ✓ ✓ ✓

Driller ✓ ✓ ✓

LibFuzzer - ✓ ✓

Honggfuzz - ✓ ✓

VUzzer ✓ ✓ ✓

Choronzon ✓ ✓ ✓

IFuzzer ✓ ✓ ✓

jsfunfuzz ✓ ✓ -
zzuf ✓ - -

Implementation

• A new x86_64 system call snapshot() (750 LoC)
• A library for the shared in-memory test case log (100 LoC)
• A dual file system service daemon (100 LoC)
• We applied our new primitives to AFL (400 LoC) and LibFuzzer

(200LoC)

20

Evaluation – shared test case log

21

8.05%

0k
10k
20k
30k
40k
50k

1 15 30 45 60 75 90 105 120

total fuzzing executions/second

afl w/o log afl w/ log

13x

0
20
40
60
80

100

1 15 30 45 60 75 90 105 120

% time spent

afl w/o log afl w/ log

1.28x

Evaluation – snapshot() system call

22

0k

200k

400k

600k

1 15 30 45 60 75 90 105 120

total fuzzing executions/second

afl w/o snapshot afl w/ snapshot

12.6x

1

200

40,000

1 15 30 45 60 75 90 105 120

Process spawns/second (log scale)

snapshot() fork() pthread_create()

3004.5x

Evaluation – file system service in fuzzing

23

0k
200k
400k
600k
800k

1,000k

1 15 30 45 60 75 90 105 120

total fuzzing executions/second

HDD SSD tmpfs partitioned tmpfs

10.8x

Evaluation - AFL

24

7.7x on 30 cores

25.9x on 60 cores

28.9x on 120 cores

Evaluation - LibFuzzer

25

735.7x

Conclusion
• Current fuzzers are not at all scalable on modern OSes with

manycore architectures.
• The underlying system components heavily relied on by the fuzzer

degrade its scalability.
• New operating primitives specially designed for fuzzing can largely

improve the performance and scalability for the state-of-the-art
fuzzers.

26

Thanks for listening!
Wen Xu (wen.xu@gatech.edu)

Open source at https://github.com/sslab-gatech/perf-fuzz
Supported by

