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Fuzzing becomes popular
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The dilemma of fuzzing

•How to produce an input that is more likely to trigger 
a vulnerability? (fuzzing strategy)
•Our work: How to execute more inputs within a given 

time? (fuzzing performance)
• Save huge cost on computing resources in parallel fuzzing 
• No change in applied fuzzing strategies
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Poor scalability of AFL
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AFL explained – single instance
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Repeating
(1) Reading and mutating inputs
(2) Launching the target application
(3) Executing and recording runtime 
coverage
(4) Bookkeeping results



AFL explained – parallel fuzzing
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Syncing phase
(1) Scanning the private directories 
of other fuzzer instances
(2) Executing unseen test cases
(3) Copying to own directory if 
interesting



Fuzzers rely on non-scalable OS primitives
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• Launching the target application
• fork()

• Reading or writing test cases on the disk
• typical disk file system operations on small files

• Syncing test cases from other fuzzer instances
• Directory scanning
• fork() for test case re-executions



I. fork() to clone new target instances
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• fork() is generally designed to duplicate the state of any running 
process
• In terms of fuzzing on multicores, fork() involves

Redundant operations
• Duplicating virtual memory 

space
• Duplicating files, sockets, 

credentials 
…

Non-scalable operations
• Updating the reverse mapping
• Stressing the global memory 

allocator
• Scheduling the new task
…



II. Managing test cases through the disk file system
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open/creat
generate test cases
on the disk

write
flush interesting test cases
to the disk

creating files in 
a private directory

writing a small files in 
a private directory

heavy modifications on the file 
system metadata in critical sections 
which are not scalable 



III. Syncing test cases from other instances
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• non-linearly increase 
Directory enumeration

number of fuzzers × number of test cases
• interfere with the running fuzzer

Directory read and write cannot be performed concurrently

Test case re-execution
• redundant

The runtime coverage information was achieved before



Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
• A lightweight, scalable fork() substitute for fuzzing

• Dual file system service
• Shared in-memory test case log
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Snapshot() system call
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Before fuzzing, 
• Saving memory and file information
• Manipulating PTE of rw pages to ro

(CoW)
During fuzzing,
• Demanding page copy when 

memory write triggers page fault 
handler

After fuzzing,
• Recovering memory and file 

information
• Recovering copied page data
• Returning to the starting point



Snapshot() system call

• Compared with fork()
• No copies of numerous kernel data structures
• No new stack area allocation for the new process
• No stress on the kernel memory allocator
• No scheduling cost
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Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
•Dual file system service
• A two-level tiering of file systems ensuring efficiency and 

deferred durability
• Shared in-memory test case log
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Dual file system service

• Observation: neither the fuzzer instance nor the target 
instances requires strong consistency provided by the disk file 
system
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• Fuzzers can always reproduce lost test cases upon 
unexpected failures

• We introduce memory file system and trade off between 
consistent storage and fuzzing performance



Dual file system service
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Solutions

• General operating primitives specialized for fuzzers
• Snapshot() system call
• Dual file system service
• Shared in-memory test case log
• A circular queue for efficient collaborative fuzzing 
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Shared in-memory test case log
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• No directory enumeration: pop() to examine test cases 
from neighbors

• No test case re-execution: direct reference on the bitmap
• No contention: a lock-free design



Applicability of techniques
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Fuzzers Snapshot Dual FS In-memory log
AFL ✓ ✓ ✓

AFLFast ✓ ✓ ✓

Driller ✓ ✓ ✓

LibFuzzer - ✓ ✓

Honggfuzz - ✓ ✓

VUzzer ✓ ✓ ✓

Choronzon ✓ ✓ ✓

IFuzzer ✓ ✓ ✓

jsfunfuzz ✓ ✓ -
zzuf ✓ - -



Implementation

• A new x86_64 system call snapshot() (750 LoC)
• A library for the shared in-memory test case log (100 LoC)
• A dual file system service daemon (100 LoC)
• We applied our new primitives to AFL (400 LoC) and LibFuzzer

(200LoC)
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Evaluation – shared test case log
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Evaluation – snapshot() system call
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Evaluation – file system service in fuzzing
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Evaluation - AFL
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7.7x on 30 cores

25.9x on 60 cores

28.9x on 120 cores



Evaluation - LibFuzzer
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735.7x



Conclusion
• Current fuzzers are not at all scalable on modern OSes with 

manycore architectures.
• The underlying system components heavily relied on by the fuzzer

degrade its scalability.
• New operating primitives specially designed for fuzzing can largely 

improve the performance and scalability for the state-of-the-art 
fuzzers.
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Thanks for listening!
Wen Xu (wen.xu@gatech.edu)

Open source at https://github.com/sslab-gatech/perf-fuzz
Supported by  


