blgc}zk hat

A ’Dr% eaking\Kernel Address Space
Layout Randomization with InteI\FS&

\ N N ngjin Jang,Sangho Lee, and Taesoo Kim
\ Georgia Institute &f Technology, August 3, 2016

< U LY 2 0 - AUGUS T 4, 2016 / ™M ANDAULLAY B AY / L AS VEéAS

¥ blackhat L=, =01

KASLR: A Practical Barrier for Exploits

Pod2g Finds Exploits for i0S 5.1 Jailbreak, Working On
Bypassing ASLR

by Gary Ng on Wednesday, April 18th, 2012 - 1:08am PDT

ASLR BYPASS APOCALYPSE IN RECENT
ZERO-DAY EXPLOITS

Pod2g is back at work on a new iOS 5.1 jailbreak, as he noted last month. It was during October 15, 2013 | by Xiaobo Chen | Vulnerabilities, Exploits, Threat Research, Targeted Attack
this time he also confirmed he was searching for vulnerabilities within iOS 5.1.

ASLR (Address Space Layout Randomization) is one of the most effective protection mechanisms
in modern operation systems. But it's not perfect. Many recent APT attacks have used innovative
techniques to bypass ASLR.

Now, it looks like some hard work has paid off. He just tweeted that he (along with the
Chronic Dev Team) has found exploits for a new iOS 5.1 jailbreak and is currently
working on bypassing ASLR during bootup:

Here are just a few interesting bypass techniques that we have tracked in the past year:
“News: we have all exploits required to do a new jailbreak. 'm working on

bypassing ASLR at bootup.” « Using non-ASLR modules
¢ Modifying the BSTR length/null terminator

e Modifying the Array object
ﬂ pod2g =3 +

The following sections explain each of these techniques in detail.

News: we have all exploits required to do a new
jailbreak. I'm working on bypassing ASLR at
bootup.

¥ blackhat L=, =01

Example: Linux

* To escalate privilege to root through a kernel exploit, attackers want
to call commit_creds(prepare_kernel creds(0)).
// full-nelson.c

static int __attribute__((regparm(3)))
getroot(void * file, void * vma)

{
commit_creds(prepare_kernel_cred(0));
return -1;

ks

// https://blog.plenz.com/2013-02/privilege-escalation-kernel-exploit.html
int privesc(struct sk_buff *skb, struct nlmsghdr *nlh)

commit_creds(prepare_kernel_cred(0)):

return 0;

¥ blackhat L=, =01

Example: Linux

* Kernel symbols are hidden to non-root users.

~$ | cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

0000000000000000 T
0000000000000000 T _cred

* KASLR changes kernel symbol addresses every boot.

~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'

ffffffffaa@a3bdod T 15t Boot
ffffffffaa0a3fco T _cred
~$ | sudo cat /proc/kallsyms | grep ' commit_creds\| prepare_kernel'
ffffffffbdoa3bdd T q
2"9 Boot

ffffffffbd0a3fco T _cred

¥ blackhat L=, =01

Example: town - OS XlllO 10 5
Kernel Privilege Escalation Vulnerability

e [CVE-2015-5864] I0OAudioFamailiy allows a local user to obtain
sensitive kernel memory-layout information via unspecified vectors.

char found = 0;
DO_TIMES(ALLOCS) A
charx data = read_kern_data(heap_infol[ctr].port);
if (!found && memcmp(data,vz,1024 - 0x58)) {
kslide = (x(uint64 tx)((1024-0x58+(charx)data))) - kslide ;

found=1;
¥
} Bypassing KASLR is
if (!found) { required
exit(-3); N

}
printf("leaked kaslr slide, @ 9x%01611lx\n", kslide);

=

¥ blackhat L=, =01

Kernel Address Space Layout-
Randomization (KASLR)

* A statistical mitigation for memory
corruption exploits

f

 Randomize address layout per each boot
 Efficient (<5% overhead)

 Attacker should guess where code/data are
located for exploit.

* In Windows, a successful guess rate is 1/8192.

> . o 1 7 £/
W 48 ¥ /4)/; "
rd IJ ‘ A AR d iV
9 d |/ /% 1R , ,E ’ -
" SR S

y

A Ao 4w
N

First Boot

USER32
0x7d000000
ntdll
kernel32 Ox7b000000
0x 79000000
RCPRTA 0x77000000
0x75000000

ADVAP123

0x73000000

Second Boot

il 0x7d000000

USER32

0x7b000000
RCPRT4

kernel32

0x 75000000
GDI32

0x77000000

ADVAP123

0x75000000
msvc rt

0x73000000

¥ blackhat L=, =01

KASLR Makes Attacks Harder

e KASLR introduces an additional bar to exploits
* Finding an information leak vulnerability

Pr[3 Memory Corruption Vuln]

$

Pr[3 information_leak]| x Pr[3 Memory Corruption Vuln]

e Both attackers and defenders aim to detect info leak vulnerabilities.

Windows Vista 108 5 OS X'10.8 Linux 3.14
Kernel/User space User-space Kernel-space Kernel-space

Years

L., [
2005T 2007 I 7 01 T 2012 2014

Linux2.6.12 0S X 10.5 Android4.0 i0S6
User-space User-space User-space Kernel-space

O blackhat =, =201

Is there any other way than info leak?

* Practical Timing Side Channel Attacks Against Kernel Space
ASLR (Hund et al., Oakland 2013)

* A hardware-level side channel attack against KASLR
* No information leak vulnerability in OS is required

¥ blackhat L=, =01

TLB Timing Side Channel

* If accessed a kernel address from the user space

$./access_address Oxffffffff80000000 Unmapped address
Accessing address Oxffffffff80000000
[1] 15990 segmentation fault (core dumped) ./access_address Oxffffffff80000000

$ sudo cat /proc/kallsyms | grep \ commit_creds
ffffffffaaa3bdo T

$./access_address Oxffffffffaa@a3bdo
Accessing address Oxffffffffaa®a3bdo
[1] 16025 segmentation fault (core dumped) ./access_address Oxffffffffaada3bdo

Mapped address

* Regardless of its mapping status, it generates page fault.

¥ blackhat L=, =01

TLB Timing Side Channel

* If an unmapped kernel address is accessed

Invalid address -> Page Fault
1. Try to get page table entry through page table walk

2. There is no page table entry found, generate page fault!

¥ blackhat L=, =01

TLB Timing Side Channel

* If a mapped kernel address is accessed

Access Violation -> Page Fault

1. Try to get page table entry through page table walk
2. Cache the entry to TLB

3. Check page privilege level (3<0), generate page fault!

¥ blackhat L=, =01

TLB Timing Side Channel

Virtual Address

g TLB

Hit

Mapped address
returns quicker!

)

Virtual Address
63 48 47 3938 30 29 2120 12 11 0
, L Pa?j’g?fp t Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend eve S€4 1 Pointer Offset Offset Offset Page Offset
(PML4)
59 £9 £ 19 A2
Page-
M iS S Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
> Table Table Table Table Page
Unmapped address 5‘\@'
PTE H¥
takes ~40 cycles [/ o
’_\ " o PDPE pa v /_\
more for page table walk e D\ o W Physica
PDE &2 Address
) N——
N—”
" - *This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-3
Base Address

CR3

13

¥ blackhat L=, =01

TLB Timing Side Channel

* Measuring the time in an exception handler
try

{

// a kernel address

_ %) .
— time begin=__rdtscp(); —> 1. Generates Page Fault
. o 2. CPU generates Page Fault
__except(EXCEPTION_EXECUTE_HANDLER) 3. OS handles Page Fault
{
— time_diff = __rdtscp() - time_begin; < 4. OS calls exception handler

// 1f time_diff < 4050, 1t 1s a mapped address

14

¥ blackhat L=, =01

TLB Timing Side Channel
e Result: Fault with TLB hit took less than 4050 cycles
* While TLB miss took more than that...

* Limitation: Too noisy
« Why????

L Unmapped

Mapped

3950
1

I | N S
0x80000000L 6x90000000L 0xa0000000L 6xb60000OOL 0xCc0000000L 0xd0000000L 6xe0000000L OxF0000000L
virtual address

¥ blackhat L=, =01

TLB Timing Side Channel

Measured Time (~4000 cycles)
—

User CPU OS Exception Handling

If we can the then the
timing channel will be more stable,

annel

OS Noise (~100 cycles) I Os Execution

Fault Handling Noise 0S Handling Noise

is too much!
16

O blackhat =, =201

A More Practical
TLB Side Channel Attack on KASLR

* DrK Attack: We present a very practical side channel attack on KASLR
* De-randomizing Kernel ASLR (this is where DrK comes from)

* Exploit Intel TSX for eliminate the noise from OS

Channel Noise Negligible A lot of noise from OS

5 sec for 100% accuracy

Speed 0.1 sec for Linux

65 seconds for 94.92%

Covertness OS do not know Page fault handler is called at OS
Precision U/NX/X U/ M
Tested OSes Linux/Windows/OS X (64bit) Windows 7 32bit

¥ blackhat L=, =01

Starting From a PoC Example in the Wild

TSX to the rescue] .
ess noisy

TSX makes kernel address probing much faster and less noisy. If an instruction executed within
XBEGIN/XEND block (in usermode) tries to access kernel memory, then no page fault is raised -
instead transaction abort happens, so execution never leaves usermode. On my i7-4800MQ CPU,
the relevant timings, in CPU cycles, are (minimal/average/variance, 2000 probes, top half of results
discarded):

1. access in TSX block to mapped kernel memory: 172 175 2
2. access in TSX block to unmapped kernel memory: 200 200 0
3. access in __try block to mapped kernel memory: 2172 2187 35

4. access in __try block to unmapped kernel memory: 2192 2213 57

Rafal Wojtczuk, https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
18

x4 -' N ,‘;.';‘ﬂ Sy, 3
) blackhat LsA =201 ‘ | /750 Tt A Sy
\ fre \ 1" TR 'é?f‘”l:'(/ //., //

TSX Gives Better Precision on Timing Attack

e Access to mapped address in TSX: 172 clk
._/v.»-/‘//\)

e Access to unmapped address in TSX : 200 clk
e 28 clk in timing difference, with stddev 0~2 > !

* Access to mapped addressin __ try: 2172 clk 1
* Access to unmapped address in _try: 2192 clk

« 20 clk in timing difference, with stddev 35~57 35 cycles

2 cycles

¥ blackhat L=, =01

Transactional Synchronlzatlon Exten5|on

(Intel TSX)

* Traditional Lock

*mutex;
pthread_mutex_lock(mutex); - 1. Block until acquires the lock

// atomic region

2. Atomic region (Guaranteed!)

do_atomic_operation();

pthread_mutex_unlock(mutex); < 3. Release the lock (finishes atomic region)
// atomic region end

20

¥ blackhat L=, =01

Transactional Synchronlzatlon Ektensmn
(Intel TSX)

* TSX: relaxed but faster way of handling synchronization

status = 0;
1f(C (status = _xbegin()) == _XBEGIN_STARTED) {«—— 1. Do not block, do not use lock

// atomic region
try_atomic_operation();

2. Try atomic operation (can fail)

_xend();
// atomic region end
Iy
else {
// 1f failed,) 3. If failed, handle failure with abort handler
handle_abort(); - (retry, get back to traditional lock, etc.)

21

¥ blackhat L=, =01

Transaction Aborts If Exist any of a Conflict

Lnt status = 0; * Condition of Conflict
1f((status = _xbegin()) == _XBEGIN_STARTED) { e Thread races
// atomic region * Cache eviction (L1
try_atomic_operation(); write/L3 read)
* Interrupt
_xend(); * Context Switch (timer)
// atomic region end e Syscalls
}1 ; * Exceptions
chse * Page Fault

// if failed, . GegeraI-Protection
handle_abort(); Debugging

Run If Transaction Aborts

¥ blackhat L=, =01

Abort Handler Suppresses Exceptions

status = 0; o

1f((status = _xbegin()) == _XBEGIN_STARTED) { Abort Handler of TSX .

e Suppress all sync. exceptions

// atomic region * E.g., page fault
try_atomic_operation(); * Do not notify OS
_xend(Q); e Just jump into abort_handler()
// atomic region end

h

else o No Exception delivery to the OS!
// 1f failed, (returns quicker, so less noisy
handle_abort(); than __try __except)

Iy

Run If Transaction Aborts 23

¥ blackhat L=, =01

Exploiting TSX as an Exception Handler

* How to use TSX as an exception handler?

time_begin, time_diff;

status = 0;

¥ = (1nt*) ; // kernel addresss
time_begin = __rdtscp();
1f((status = _xbegin == _XBEGIN_STARTED) { <«

// TSX transaction
*p; // read access

// or,
CCintC*)))Ip)(); // exec access

ks
else {

// abort handler

time_diff =

1. Timestamp at the beginning
2. Access kernel memory within

the TSX region (always aborts)

Processor directly calls the handler
OS handling path is not involved

_rdtscp() - time_begin; <

3. Measure timing at abort handler

24

¥ blackhat L=, =01

Reducing Noise with Intel TSX

Measured Time (~ 4000 cycles)

User CPU OS Exception Handling

Measured Time (~ 180 cycles)

—
Timing Side Channel (~ 40 cycles) B CPU Exception

. User Execution

, , TLB Side Channel
Not involving OS,

Less noisy!

User CPU

. OS Execution

OS Handling Noise

25

¥ blackhat L=, =01

V=g Re, 4 S
p " < .\/‘ ? Fo l
ST

Measuring Timing Side Channel

* Access Mapped / Unmapped kernel addresses
* Attempt READ access within the TSX region def probe(addr):

* mov [rax], 1 beg = rdtsc()

adfr if xbegin():
*
rread]* | [mode]
>230 cyciﬁ/ \<21 0 cycles else
J end = rdtsc()
unmapped mappe L]
(U) (M) return end - beg

¥ blackhat L=, =01

y. " 28 4 Sl
p " < ? V. ? R l
o 7%,«1':15(/1 / [

Measuring Timing Side Channel

* Access Executable / Non-executable address
e Attempt JUMP access within the TSX region def probe(addr):

" Jmp rax beg = rdtsc()

acidr if xbegin():
: mode]*
[jmp]* , | |
<200 cycles >215 cycles cise
end = rdtsc()
executable non-executable

(X) (NX) return end - beg

¥ blackhat L=, =01

Demo 1: Timing leference on M/U and X/NX

*Video Link
* https://www.youtube.com/watch?v=NdndV cMJ8k

7/ ¢ .
/
«

¥ blackhat L=, =01 4 ,, /4 ‘

_,/

’ > & “%
v 2 ’ 4
> - L 4
% 4 ks, 4 |
L /& fo) Q) ./
L N —

Measuring Timing Side Channel
* Mapped / Unmapped kernel addresses

* Ran 1000 iterations for the probing, minimum clock on 10 runs

Mapped Page Unmapped Page

i7-6700K (4.0Ghz) 209 240 (+31)
i5-6300HQ (2.3Ghz) 164 188 (+24)
i7-5600U (2.6Ghz) 149 173 (+24)

E3-1271v3 (3.6Ghz) 177 195 (+18)

29

7/ ¢ .
/
«

¥ blackhat L=, =01

_,/

A" = Bio 4 :,-‘
fo] QO 3
,g.-,{‘zg(/ y/ /,//

Measuring Timing Side Channel

e Executable / Non-executable kernel addresses
* Ran 1000 iterations for the probing, minimum clock on 10 runs

i7-6700K (4.0Ghz) 181 226 (+45)
i5-6300HQ (2.3Ghz) 142 178 (+36)
i7-5600U (2.6Ghz) 134 164 (+30)

F3-1271v3 (3.6Ghz) 159 189 (+30)

30

¥ blackhat L=, =01

Clear Timing Channel

| ‘Module M/U
260 '
250} -
240
o
S
) 230
DD N
U .. "Mapped

200k
18480 3d0900 5b8d80 7a1200 989680 b71b00 d59180

B S P S P T SO

Address
(a) Mapped vs. Unmapped

X

220

240}

Modul¢ X/N X,

iﬁii E: mmm o

{<

Non Executable or Unr

napped

Clocks

200

210

1901

180

Executable

..

T ﬂM‘Wiﬂ!

168480 3d0900 5b8d80 7a1200 989680 b71b00 d59180

Address
(b) Executable vs. Non-executable

Clear separation between different mapping status!

31

¥ blackhat L=, =01

TSX vs SEH

| ‘Module M/U
260} ' '
4150|
200 E Unmapped
o
5 230

220

210

3950

200 x8000 x9000 xa000 xb000 xc000 xd00e xe X
1 68480 3d0900 5b8d80 7a 1 200 989680 b7 1 bOO d59f80 0x80000000L 0x90000000L 6xa0000000L 0 boeeeesgLrgua(){ae%e;gkgsc;eeeeeem 0xe0000000L 0xf0000000L
Address

(a) Mapped vs. Unmapped
Clear separation between different mapping status!

32

O blackhat =, =201

Attack on Various OSes

e Attack Targets

* DrKis hardware side-channel attack
* The mechanism is independent to OS

* We target popular OSes: Linux, Windows, and OS X

* Attack Types
* Type 1: Revealing mapping status of each page
* Type 2: Finer-grained module detection

¥ blackhat L=, =01

Attack on Various OSes

* Type 1: Revealing mapping status of each page

* Find the start location of Kernel / Module (ASLR slide)
* Mostly they are located contiguously in a chunk

Modules

ScanfihcbagbR blidetfotekerodlle spaceScahinkiréGkR shidasholmadrel space

4

¥ blackhat L=, =01

Attack on Various OSes

* Type 1: Revealing mapping status of each page

* Try to reveal the mapping status per each page in the area
* X (executable) / NX (Non-executable) / U (unmapped)

OXFFFFFFFFCO278000-0xFfFFFfffc027d000 U
OXFFFFFFFFCO27d000-0XFFFFFFFFc0281000 X
OXFFFFFFFFC0281000-0xFfFFffffc0285000 NX
Oxffffffffc@285000-0xffffffffc0289000 U Compute the accuracy
OXFFFFFFFFCO289000-0xFfFFffffc028b000 X
OXFFFFFFFFCO28DO00-OXFFFFFFFFCO28e000 NX 7
OXFFFFFFFFC028e000-0xFFFFFFffc0293000 U With ground-truth
OxFEFFFFFfc0293000-0xFFFFFfffco2b7000 X page table entry data
OXFFFFFFFFCO2b7000-0xFFFFFFFFc02e9000 NX
OXFFFFFFFFC02e9000-0xFFffFfffc02¢a000 U
OXFFFFFFFFCO2ea000-0XFFFFFFFFCO2f0000 X

by comparing this

35

¥ blackhat L=, =01

Attack on Various OSes

* Type 2: Finer-grained

module detection // BASE_ADDR - END_ADDR PERM NAME SIZE
. o OxFEFEEFEECO35D000-0x EFEEFEEFCO360000 U

* Section-size Signature OXFEFEEFFECO360000-0xEFFEFFEFCO364000 X 4000

* Modules are allocated in fixed size Oxffffffffc0364000-0xffffffffc0368000 NX libahci 4000
of X/NX sections if the attacker Oxfffffff£c0368000-0xffffffffc036c000 U

OxEEEEEEFECO36C000-0xFEFEEEFECO36e000 X i2c_hid 2000
OxEEfFEEEECO36e000-0xFEEEEEEEC0371000 NX i2c_hid 3000
« Example OxEEEFEEEECO371000-0xEEEEEEEEC0376000 U
+ If the size of executable map is OxEEfFEEEECO376000-0xEEEEEEEEC0392000 X drm 24000
. OxEEfFEEEECO39a000-0x FEEEEEEECO3CCO00 NX drm 32000
gigggféb"’:giégﬁ 5;22%22880 then it OXEEEEEEEECO3CCO00-OxEEEEFFFFCO3CA000 U

is libahcil

knows the binary file

36

O blackhat =, =201

Attack on Linux

* Processor
* Intel Core i5-6300HQ (Skylake)

* OS Settings
* Kernel 4.4.0, running with Ubuntu 16.04 LTS

e Available Slots
e Kernel: 64 slots
o Oxffffffff80000000 — OxffffffffcO000000 (2MB page)

* Module: 1,024 slots
o OxffffffffcO000000 — Oxffffffffc0400000 (4KB page)

¥ blackhat L=, =01

Demo 2: Full Attack on Linux

*Video Link
* https://www.youtube.com/watch?v=WXGCyImAZkA

O blackhat =, =201

Result

* Achieved 100% accuracy across 3 different CPUs
* Took 0.1-0.67s for probing 6,147 pages.

* Detecting Modules
* From size signature, detected 38 modules among 105 modules.

O blackhat =, =201

Attack on Windows

* OS Settings
 Windows 10, 10.0.10586

* Available Slots
* Kernel: 8,192 slots
« Oxfffff80000000000 - Oxfffff80400000000 (2 MB pages)
* Drivers: 8,192 slots
» Oxfffff80000000000 - Oxfffff80400000000 (4 KB pages, aligned with 2 MB)

O blackhat =, =201

Result

* 100% of accuracy for the kernel (ntoskrnl.exe)
* 100% of accuracy for detecting M/U for the drivers (5 sec.)
* 99.28% of accuracy for detecting X/NX for drivers (45 sec.)

 Some areas in driver are dynamically deallocated
* Misses some ‘inactive’ pages

* Detecting Modules
* From size signature, detected 97 drivers among 141 drivers

O blackhat =, =201

Attack on OS X

* OS Settings
 OS X El Capitan 10.11.4

e Available Slots

e Kernel: 256 slots
* Oxffffff8000000000 - Oxffffff8020000000 (2 MB pages)

* Result
e Took 31 ms on finding ASLR slide (100% accuracy for 10 times)

O blackhat =, =201

Attack on Amazon EC2

* X1 Instance of Amazon EC2
* Processor: Intel Xeon E7-8880 v3 (Haswell)

* OS Settings
* Kernel 4.4.0, running with Ubuntu 14.04 LTS

e Available Slots
e Kernel: 64 slots
o Oxffffffff80000000 — OxffffffffcO000000 (2MB page)

* Module: 1,024 slots
o OxffffffffcO000000 — Oxffffffffc0400000 (4KB page)

O blackhat =, =201

Result Summary

* Linux: 100% of accuracy around 0.5 second
* Windows: 100% for M/U in 5 sec, 99.28% for X/NX for 45 sec

* OS X: 100% for detecting ASLR slide, in 31ms
 Linux on Amazon EC2: 100% of accuracy in 3 seconds

N blackhat =2 =015 2 %

)

Timing Side Channel (M/U)

* For Mapped / Unmapped addresses
* Measured performance counters (on 1,000,000 probing)

dTLB-loads 3,021,847 3,020,243
dTLB-load-misses 84 2,000,086 TLB-miss on U
Observed Timing 209 (fast) 240 (slow)

» dTLB hit on mapped pages, but not for unmapped pages.
* Timing channel is generated by dTLB hit/miss

¥ blackhat L=, =01

Path for an Unmapped Page

On the first access

Page Table
Kernel address access TLB%’ P/M L4
: dTiB PME3 |[PMIL3

Page fault!

N blackhat =2 =015 14 s ‘

\

Path for an Unmapped Page

On the Second access

Page Table

TLB miss

Kernel address access /’ PML4
> dTLB

PME3 || PML3

PML2 || PML2 || PML2
PMLL || PMmL1 || PMLL

PTE

Page fault!
Always do page table walk (slow) aes e

¥ blackhat L=, =01

Path for a mapped Page

On the first access

Kernel address access

TLB miss

P VY
dTLB z

il\

Page Table

ML1

Cache TLB entry!

Page fault!

¥ blackhat L=, =01

Path for a mapped Page

On the second access

Kernel address access

dTLB

dTLB hit

Page fault!

Page Table

PML4

PML3

PML3

PML2

PML2 || PML2

PML1

PML1

PML1

PTE

No page table walk on the second access (fast)

O blackhat =, =201

Root-cause of Timing Side Channels (M/U)

* For Mapped / Unmapped addresses

Fast Path (Mapped) Slow Path (Unmapped)

1. Access a Kernel address 1. Access a Kernel address

2. dTLB hits 2. dTLB misses

3. Page fault! 3. Walks through page table
4. Page fault!

Elapsed cycles: 209 Elapsed cycles: 240

* Caching at dTLB generates timing side channel

O blackhat =, =201 4

Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) 590 1,000,247 272
iTLB-load-misses 31 1,000,175
Observed Timing 181 (fast) 22 226 (slow)

e Point #1:iTLB hit on Non-exec, but it is slow (226) why?

* iTLB is not the origin of the side channel

O blackhat =, =201 4

Timing Side Channel (X/NX)

* For Executable / Non-executable addresses
* Measured performance counters (on 1,000,000 probing)

iTLB-loads (hit) < 590 1,000,247 > 272
iTLB-load-misses 31 12 1,000,175
Observed Timing 181 (fast) 226 (slow) 226 (slow)

* Point #2:iTLB does not even hit on Exec page, while NX page hits iTLB

e iTLB did not involve in the fast path

¥ blackhat L=, =01

Inclusion Logic 217 ¢

Intel Cache Architecture

Match Logic Match

€

S S
2327 2337 231

L1 instruction cache e e

, _ _ | Micro-Op Cache | 202
* Virtually-indexed, Physically-tagged B Lo

cache (requires TLB access) P Vaten T Gueve | Dot | N
* Caches actual x86/amd64 opcode LS S S k(ﬁ’

| 21 ’L,;? 2’”3 2m>

213 I s

Next
Ll P

—» BPU

L2

-+ Decode| |

h

201

From the patent US 20100138608 A1,
registered by Intel Corporation

¥ blackhat L=, =01

Intel Cache Architecture

 Decoded i-cache

 An instruction will be decoded as
micro-ops (RISC-like instruction)

* Decoded i-cache stores micro-ops

* Virtually-indexed, Virtually-tagged
cache (no TLB access)

P
J

Ol ol
/XY
s .;%-,f&g A/ 7~

Inclusion Logic 217 |
: ¥ ; ,
Way Flush Set |
Match Logic Match [
DS S S i
2327 2337 231"
Micro-Op Cache 202
|| Tag |Match| (Cache| ! 215
"IMatch [T "|Queue| | Data | R
L > é} Micro- ||
Lot & 222 <223 S Op |
o) laveue]
211 2’32m> 213 (216
, P , > L
) Mice | | Next
> Miss
—s BPU Queuel™” P
Mux
241" inmt{smn in-Use |
242, 243, 244 | 246
TR I-Cache| |~
w -+ TLB T Fetch -»Decode
I
L
MITE V-Cache
3 S
201 L2 " 245

From the patent US 20100138608 A1,
registered by Intel Corporation

N blackhat =2 =015 14 s ‘

\

Path for an Unmapped Page

On the second access, 226 cycles

Page Table

TLB miss

Kernel address access /’ PML4
> ITLB

PME3 || PML3

PML2 || PML2 || PML2
PMLL || PMmL1 || PMLL

PYE

Page fault!
Always do page table walk (slow) wes e

¥ blackhat L=, =01

Path for an Executable Page

On the first access

Page Table
Kernae(!caei(:ress Decoded MmIss y PML4
1 1-cache ’ LB PME3 |[PML3
PTE Cache TLB S
_I\ PML2 || PML2 || PML2
PMmL1 || PMLL
Cache Decoded Instructions PYE

Insufficient privilege, fault!

¥ blackhat L=, =01

Path for an Executable Page

On the second access, 181 cycles

Page Table
Kernel address
access) Decoded —_ PML4
| I-cache PML3 || PML3
E“ PML2 || PML2 || PML2
PML1 || PML1 || PML1
_ T+
Decoded I-cache hit! e

Insufficient privilege, fault!

No TLB access, No page table walk (fast)

¥ blackhat L=, =01

V=g Re, 4 S
p " < .\/‘ ? Fo l
ST

Path for a non-executable, but mapped Page

On the first access

Page Table
Kemae!cae(i(:ress Decoded| M!S % PMLA
1 1-cache ’ LB | PME3 |[PML3
PTE Cache iTLB S
—'\ PML2 | P2 | [PML2
ML1 || PmL1 || PML
PTE

NX, Page fault!

¥ blackhat L=, =01

V=g Re, 4 S
p " < .\/‘ ? Fo l
ST

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Page Table
Kernel address .
access) Decoded miss . —_ PML4
1 1-cache ' | PML3 |[PML3
PML2 || PML2 || PML2
TLB hit PML1 || PML1 || PML1
PTE
Page fault!

If no page table walk, it should be faster than unmapped (but not!)

¥ blackhat L=, =01

Cache Coherence and TLB

 TLB is not a coherent cache in Intel Architecture

Core 1l 1. Core 1 sets OxffO1 as Non-executable memory
TLB Erecute 2. Core 2 sets 0xffO1 as Executable memory
Oxff01->0x0010, NX No coherency, do not update/invalidate TLB in Core 1

3. Core 1 try to execute on 0xffO1 -> fault by NX

Core 2

TLB 4. Core 1 must walk through the page table
0xff01->0x0010, X The page table entry is X, update TLB, then execute!

¥ blackhat L=, =01

Path for a Non-executable, but mapped Page

On the second access, 226 cycles

Page Table

Kernel address

access) Decoded miss / P/M L4

I-cache ’ LB "PMI3 || PML3

PTE Cache TLB S
PML2 || PML2 || PML2

TLB hit | ML || PmLL || PMLL
PTE

NX, cannot execute!

NX, Page fault!

* For executable / non-executable addresses

1. Jmp into the Kernel addr 1. Jmp into the kernel addr

1. Jmp into the kernel addr
2. Decoded I-cache hits 2. iTLB hit 2. iTLB miss
3. Page fault! 3. Protection check fails, 3. Walks through page table
page table walk. 4. Page fault!
4. Page fault!
Cycles: 181 Cycles: 226 Cycles: 226

* Decoded i-cache generates timing side channel

O blackhat =, =201

Discussions: Controlling Noise

* Dynamic frequency scaling (SpeedStep, TurboBoost) changes
the return value of rdtscp()
* Run busy loops (while(1);) to make CPU run as full-throttle

* Hardware interrupts and cache conflicts also abort TSX
* Probe multiple times (e.g., 2-100) and take the minimum

O blackhat =, =201

Discussions: Increasing Covertness

* OS never sees page faults
e TSX suppresses the exception

* Possible traces: performance counters
* High count on dTLB/iTLB-miss

* Normal programs sequentially accessing huge memory could behave
similarly

* High count on tx-aborts or CPU time
» Attackers could slow down the probing rate (e.g., 5 min, still fast)

O blackhat =, =201

Discussions: Countermeasures?

* Modifying CPU to eliminate timing channels
e Difficult to be realized ®

* Turning off TSX

e Cannot be turned off in software manner (neither from MSR nor from BIOS)

* Coarse-grained timer?
* Always suggested for timing side channel, but no one adopts it.

O blackhat =, =201

Discussions: Countermeasures?

* Using separated page tables for kernel and user processes
* High performance overhead (~30%) due to frequent TLB flush

* Fine-grained randomization
e Difficult to implement and performance degradation

* Inserting fake mapped / executable pages between the maps

O blackhat =, =201

Conclusion

e TSX can break KASLR of commodity OSes

* Ensure accuracy, speed, and covertness

* Timing side channel is caused by hardware, independent to OS

e dTLB (for Mapped & Unmapped)
e Decoded i-cache (for eXecutable / non-executable)

* Current KASLR is not as secure as expected

O blackhat =, =201

Any Question?

* Q&A

O blackhat =, =201

TSX Support in Intel Processors

Server/Workstation 17/17 (100%) 19/19 (100%) 37/85 (43.5%)
High-end Consumer 23/38 (60.1%) 11/22 (50.0%) 2/92 (2.2%)
Low-end Consumer 4/32 (12.5%) 2/16 (12.5%) 0/79 (0%)

Layout
* OS X/iOS

* Even root user has no access (rootless).

* Windows (NtQuerySystemInformation)
» Sandbox process has no access (low/untrusted integrity level).

* Linux (kallsyms)
 Non-root user has no access.

