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Abstract

Network applications and protocols are increasingly adopting
security and privacy features, as they are becoming one of
the primary requirements. The wide-spread use of transport
layer security (TLS) and the growing popularity of anonymity
networks, such as Tor, exemplify this trend. Motivated by
the recent movement towards commoditization of trusted exe-
cution environments (TEEs), this paper explores alternative
design choices that application and protocol designers should
consider. In particular, we explore the possibility of using
Intel SGX to provide security and privacy in a wide range
of network applications. We show that leveraging hardware
protection of TEEs opens up new possibilities, often at the
benefit of a much simplified application/protocol design. We
demonstrate its practical implications by exploring the de-
sign space for SGX-enabled software-defined inter-domain
routing, peer-to-peer anonymity networks (Tor), and middle-
boxes. Finally, we quantify the potential overheads of the
SGX-enabled design by implementing it on top of OpenSGX,
an open source SGX emulator.

1. INTRODUCTION

Security and privacy has become one of the primary concerns
both for users and application/protocol developers. Today,
lack of security and privacy guarantees often acts as a deter-
rent in adopting new technologies [[17,139], and applications
with stronger security and privacy guarantees remain more
competitive. As a result, software technologies for security
and privacy have seen wider adoption within the network over
the years. For example, a large fraction of Internet traffic uses
Transport layer security (TLS) [27], and anonymity networks,
such as Tor, is becoming increasingly popular [21].

At the same time, significant progress in hardware-based
protection and security have also made into the market. Mod-
ern subscriber identity modules in mobile handsets securely
store authentication/encryption keys and perform cryptographic
operations in hardware. More powerful hardware-based secu-
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rity solutions, such as trusted execution environments (TEEs)
(e.g. ARM TrustZone), are also becoming popular.

Recently, Intel announced Software Guard Extensions (SGX),
as an extension to the x86 instruction set architecture (ISA),
which supports trusted execution [25]. One notable fact is
that unlike other TEEs, its trusted computing base (TCB)
only includes the processor and the application code inside
the enclave. It is designed to make it easy to run arbitrary
application code inside the enclave, while addressing the
performance limitations of previous approaches [25)]. This
commoditization of TEE has drawn attention of the research
community. A few pioneering studies [[7} 23} 31] have shown
that SGX can not only support traditional TEE applications,
but also dramatically enhance the security and privacy of
existing cloud applications.

We believe SGX can potentially have significant impact on
networking, because many networking applications run on
commodity hardware. Thus, this paper takes a first attempt
at answering the following question: what impact does com-
moditization of TEEs have on networking? To take a more
systematic approach, we look at three different types of net-
working software. To demonstrate practical implications, we
apply SGX to problems that are currently relevant.

First, we show that SGX can be applied to solve policy pri-
vacy issues in software-defined inter-domain routing. Privacy
is important in inter-domain routing because ISPs do not want
to disclose their routing policies for security and commercial
reasons [39]]. Privacy is one of the main barriers to having a
centralized controller for SDN-based inter-domain routing. A
recent proposal uses secure multi-party computation (SMPC)
to achieve policy privacy [17]. However, transforming ar-
bitrary computation to SMPC is non-trivial, and it suffers
from severe performance issues. We show that appropriately
leveraging the hardware protection of SGX results in a more
straight-forward design without significant impact on perfor-
mance. Second, we explore the design space of applying TEE
to secure the Tor anonymity network. Because Tor relies on
volunteer-provided hardware, it is particularly vulnerable to
malicious modifications by curious volunteers or by harmful
attackers who have control over the machines [22,[35]. Also,
by design, Tor places much trust on the directory authorities,
who are also vulnerable to attacks [11]. In exploring the de-
sign space, we show that security and privacy of Tor can be
strengthened, and SGX can enable a completely distributed
service without directory authorities. Finally, we show that
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Figure 1: Bootstrapping secure channel during attestation

SGX can also be used to securely introduce in-network func-
tionality into TLS sessions. To demonstrate the feasibility,
we prototype these applications on OpenSGX [2]], an open
source emulator that emulates SGX instructions. We also
estimate the overhead of our new design using our prototype.
Our performance characterization shows that SGX-enabled
applications introduce modest performance overhead.

2. BACKGROUND ON INTEL SGX

We briefly introduce key features of Intel SGX related to the
design choices we make. Detailed specifications are described
in Intel SGX white papers [18} 19, 25]].

2.1 Intel SGX Overview

Intel SGX allows applications or part of an application code
to be executed in a secure container, called an enclave. It
protects them from other applications and privileged system
software, such as the operating system (OS), hypervisor, and
BIOS. To achieve protection against privileged software,
memory content of the enclave is stored inside Enclave Page
Cache (EPC), which is protected memory where encrypted
enclave pages and Intel SGX data structures are stored. A
page table that maps enclave pages onto EPC frames is man-
aged by the OS. However, the OS cannot see the memory
content because EPC region is encrypted by the memory en-
cryption engine (MEE) within the CPU; only the enclave that
is associated with the EPC page can access it. The processor
maintains enclave page cache map (EPCM) to keep meta-data
associated with each EPC page for access protection. Privi-
leged software can only launch denial-of-service attacks, but
otherwise the enclave is secured by hardware design.

Before an application can be executed inside the enclave,
its code, data, and stack must be loaded into an enclave. Intel
SGX supports a set of privileged instructions for this. After
provisioning the enclave with appropriate memory content
(e.g., code, data, and stack) is finalized, the hardware “mea-
sures” the identity of the software (i.e., a SHA-256 digest of
enclave contents) inside the enclave, and enforce that only
the software whose integrity is verified can be executed.!
Threat model: SGX assumes that an adversary can com-
promise any software components including the operating
system, hypervisor, and firmware. Also, hardware compo-
nents (e.g., memory and I/O devices) can be inspected by an
attacker except for the CPU package itself. However, denial-
of-service is out of scope; a malicious privilege software
could easily crash or halt the system. We adopt the same

!"The assumption is that the identify of the software is previously
signed by an authority that a user trusts.

threat model as SGX throughout this paper for all of our ex-
ample applications. For example, in Tor network, we assume
that an attacker can obtain full control of the system software
and hardware (except the CPU package) of onion routers.

2.2 Remote Attestation

SGX also provides a remote attestation feature, in which an
enclave can verify the integrity of a target enclave running
on a remote, SGX-enabled platform [4]. Intel SGX provides
EGETKEY and EREPORT instructions to enable this.

We first explain the intra-attestation procedure in which
two enclaves, A and B, running on the same host verify the
identity of the other. First, enclave A obtains the identity of B.
Then, using the EREPORT instruction, it creates a REPORT
data structure that contains the hash value of the two enclaves
(enclave identities), public key of the signer who signed the
identity of A (signer identity), some user data, and a message
authentication code (MAC) over the data structure. The MAC
is produced with a report key, only known to the target enclave
and the EREPORT instruction on the same machine. Using
EGETKEY, enclave B obtains the report key used to compute
the MAC, and verifies that the REPORT is valid to ensure
that they are running on the same host. It then verifies the
identity of A (i.e., its content is not altered). Finally, enclave
B reciprocates this process for mutual verification.

Remote attestation extends intra-attestation to attest the
identity of a remote enclave. Intel SGX uses a specially
provisioned enclave, called quoting enclave, whose identity is
well-known, as shown in Figure[T} Only the quoting enclave
can access the processor key used for attestation. Figure
illustrates the process. When a remote attestation request
arrives from a challenger enclave, the target enclave performs
(intra-)attestation with the quoting enclave residing in the
same host. The quoting enclave then creates a signature
of attestation result (QUOTE), using the private key of the
CPU. ? The enclave on the host platform can then verify
the signature using the remote platform’s public key. As part
of remote attestation, two remote enclaves can bootstrap a
secure channel by performing a Diffie-Hellman key exchange.
For this, the host and target enclave embed Diffie-Hellman
parameters in messages 1) and 8) to derive a shared secret,
similar to TLS handshaking.

3. APPLICATION CASE STUDIES

This section demonstrates that the commoditization of trusted
execution enabled new opportunities in networking, using
several case studies that explores the new design space.

3.1 Software-Defined Inter-Domain Routing

Many new designs for inter-domain routing aim at providing
new features (i.e., flexible route selection [16) 136, [37] and
verifiability [26L[39]]). However, in inter-domain routing, intro-
ducing new features often comes at the cost of privacy, which
is something that ISPs are not willing to sacrifice [17,39].

%Intel actually uses a group signature scheme (EPID [8])) for attesta-
tion and verification of SGX-equipped platform.
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Figure 2: System overview illustrating the interactions between inter-domain controller and AS-controllers

Thus, providing rich features while ensuring the privacy has
been a challenge in inter-domain routing [39].

Recently, software-defined networking approaches that uti-
lize centralized decision making have demonstrated that they
enable new properties and features, such as fast convergence,
application-specific peering, and traffic engineering [16}17].
However, SDN-based inter-domain routing exacerbates the
privacy issues because it requires the logically centralized con-
troller to learn the topologies and policies of the autonomous
systems (ASes) [16]. A recent study proposes using secure
multi-party computation (SMPC) to address this issues [17]].
However, it requires non-trivial design, and the computational
complexity of SMPC is prohibitively expensive.

TEEs provide new opportunities for ensuring privacy in
SDN-based inter-domain routing. Our core idea is to en-
close all private information inside the enclaves and allow
all communication to happen between enclaves through a
secure channel. Figure [2]shows an overview of our design in
which two main components run inside the enclave: AS-local
controller and inter-domain controller. ASes, who are part of
the inter-domain routing system, maintain a common code
base for the inter-domain controller that they agree upon. The
ASes inspect the source code of the inter-domain controller
to make sure that no private information (e.g., policy and
topology) is explicitly sent to the outside world. We assume
ASes follow a deterministic compilation process to obtain the
correct identity of the inter-domain controller. At runtime,
each AS-local controller verifies the integrity of the code us-
ing remote attestation, upon connecting to the inter-domain
controller. Communication between the AS-local and inter-
domain controller is done through a secure channel that is
established during remote attestation. The AS-controllers and
the inter-domain controller mutually authenticate to verify
each others’ identities. AS-local controllers send their poli-
cies and topology information to the inter-domain controller
through the secure channel. The inter-domain controller then
computes paths for all ASes and sends routes for each AS.

Policy verification: Inter-domain routing policies are deter-
mined by business contracts, such as peering agreements that

contain “promises” that ASes make to others. For example,
an AS may make a promise to one of the customers to prefer
the customer’s route over others [39]. However, verifying
whether the outcome (or policy) stays up to the promises is
difficult, and as a result these promises are not always kept
in practice [39]]. Existing approaches, such as SPIDeR [39],
propose to verify whether ASes live up to their promises
by collaboratively verifying the promise. However, SPIDeR
relies upon the condition that all neighbors of a promise-
breaking AS correctly follows their design to perform the
verification. Furthermore, doing this in a privacy preserv-
ing fashion is non-trivial. In contrast, our design can enable
such verification in a more direct and straight-forward manner
while ensuring policy privacy.

To address the problem, we allow a query to be executed in
the verification model inside the enclave of the inter-domain
controller. The verification module executes the query against
the decisions that the controller has made. The query is a
Boolean condition that an AS wants to verify concerning the
behavior of other ASes that it has a business relationship
ship with. For example, two ASes, A and B, agree upon the
condition to be verified, according to their business agreement
(e.g., is the route announced by A most preferred by B?).
The AS who was promised can verify whether the other is
living up to its promise. The AS who made a promise can
ensure that the query examines only the minimal condition
required to verify the agreement, without leaking additional
information. Following the idea of SPIDeR, the inter-domain
controller verifies this over all routes that A receives, but
does this securely within the enclave. The controller ensures
that only the predicates agreed upon by the two ASes are
verified. As a result, the verification process does not leak any
extra information. Finally, during the entire process, privacy
sensitive information does not leave the hardware-protected
enclaves, as illustrated in Figure@

3.2 Tor Anonymity Network

Several attacks on Tor [20), 22| 135]] assume that attackers have
one or more compromised Tor onion routers (ORs). Because
Tor relies on volunteer nodes, once they are admitted in the



system, it is easy for their owners to modify the software to
launch attacks. For example, when the malicious Tor node is
selected as an exit node, an attacker can modify the plain-text,
unless end-to-end encryption is used by the end-user. It is
shown that a single compromised node is sufficient to break
the anonymity [22 35].

Also, attacks on directory authorities are a constant threat
to Tor [3]]. Directory authorities perform admission control,
determine the liveness of ORs, flag potentially malicious ORs,
and even drop compromised ORs from Tor. To avoid a single
point-of-failure and be robust against subversion attacks, Tor
maintains multiple independent directory servers and builds
consensus on active/legitimate ORs through majority vote.
If directory authorities are subverted, attackers can admit
malicious ORs or disable the Tor network. Note, multiple
directory authorities have been actually compromised [[11]],
which caused all nodes to update their software (e.g., directory
server information and keys).

We take a look at how Tor’s security model can be strength-
ened with respect to the deployment of SGX. We assume an
incremental deployment model and discuss three deployment
phases in the order of the ease of deployment. We assume
that 1) the Tor source code is extensively verified by the com-
munity, 2) SGX-enabled nodes run Tor inside the enclave?,
and 3) the Tor foundation publishes a signed certificate of
legitimate software that contains the identities.
SGX-enabled directory: Currently, Tor runs nine directory
authorities [35]). If all of these directory servers are SGX-
enabled, they can keep authority keys and list of Tor nodes
inside the enclaves. This ensures that the attacks cannot steal
the keys or data even if they compromise the host running
the directory. Using SGX, directory servers can also attest
each other to ensure the integrity and communicate through
the secure communication channel. The attackers can still
launch denial-of-service attacks (e.g., by killing the process),
but they cannot alter the directory behavior (e.g., to launch
tie-breaking attack or to admit malicious ORs [12]).
Incremental addition of SGX-enabled ORs: Once ORs are
SGX-enabled, authorities can attest their integrity. Malicious
Tor nodes fail to pass an enclave integrity check, because
compromised OR executes additional operations, such as tam-
pering or snooping. Another advantage is that admission of
new ORs can be done automatically. This may serve as an
incentive to deploy SGX-enabled ORs because currently ad-
dition of new ORs requires manual approval from majority
of directory authorities, which is a bottleneck. We believe
that SGX-enabled ORs will strengthen the trust model of
Tor, because current model of manually admitting ORs essen-
tially relies on trust on non-trustworthy volunteers [22| 35]].
However, incremental deployment raises new issues, such as
finding an interim solution that balances security and privacy
with performance and efficiency in the Tor network.

3There are two approaches to run software in TEE. The traditional
one is to put minimally required software components in TEE to
reduce the trusted computing base. The other is to run unmodified
software on TEE [7]]. This is still an area of active research.

Fully SGX-enabled setting: If all Tor components, includ-
ing authority nodes, Tor nodes and clients, are SGX-enabled,
it is possible to defend all attacks mentioned above that
change the behavior of director servers or ORs, such as the
bad apple attack [20, 22| [35]]. Using remote attestation, each
Tor component can check 1) target program’s integrity, 2) its
certificate, and 3) whether it is running on the SGX-enabled
platform or not. By inspecting these properties, each Tor com-
ponent can trust each other because it verifies that the other
is running the legitimate version of Tor and also establishes
a secure communication channel with the other party. The
directory authorities do not have to vote for detecting bad-exit
nodes because problematic Tor nodes are excluded during the
remote attestation. In fact, a new Tor design is possible that
does not require directory authorities that manually maintain
and check the membership, because verification is done by
hardware through SGX. Tor can utilize a distributed hash
table to track the membership, similar to other peer-to-peer
systems [34]]. We believe many research opportunities remain
in realizing or extending our suggested models.

3.3 Secure In-network Functions

The use of in-network functions (or middleboxes) is popular
on the Internet. However, widespread use of TLS protocol
disrupts in-network processing since only endpoints of com-
munication can access the plain-text. Existing approaches
to this problem include augmenting the TLS protocol to ex-
plicitly include middleboxes [28]], designing a new protocol
and encryption schemes that allow operations over encrypted
traffic [32]], and passing session keys out-of-band.

SGX enables yet another possibility. The key idea is that
endpoints use a remote attestation to authenticate middle-
boxes and give their session keys through the secure channel
to in-path middleboxes. When both end-points are SGX-
enabled, it can be used to allow only the middleboxes that
both end-points agree upon decrypt/encrypt the TLS traffic.
For example, the end-points can attest each other and the
middlebox to achieve this. Passing session keys through the
secure channel can be also done unilaterally by either of the
two end-points, which enables several more use cases. For
example, TLS traffic in enterprise networks can be sent to the
SGX-enabled cloud for deep packet inspection. Or service
providers can deploy middleboxes that inspect TLS traffic
in a more secure fashion. We leave the detailed design and
comparison with alternative approach as future work.

4. SECURE EXECUTION OF SHARED CODE

SGX provides isolation through the trusted CPU, and remote
attestation through the cryptographic guarantee of a user’s
private key. Given the prior knowledge of a program running
on the SGX and its signed key, the owner can remotely verify
the integrity of the code in execution. Interesting though,
there are many programs that are publicly available: for ex-
ample, open source projects or programs shared by multiple
entities. Thanks to modern code management systems, such
as git, virtually everyone can validate the integrity of the



entire project by comparing its local history with the remote,
shared repository. If there were an unauthorized change to
the program’s history, users or programmers can promptly
flag the fraud.

Given the openness of the project and with the power of iso-
lation provided the SGX, users now can privately and securely
(e.g., no tampering and no explicit information leakage) run
the program as long as they share the private key for the at-
testation. For example, Tor nodes can be launched, executed
and verified by anyone who has the private key; for example,
the Tor foundation can create and announce the shared key
for attestation purposes. This allows anyone who obtains the
valid code and the “open” private attestation key from the
open project can: 1) build the Tor binary program *; 2) create
a valid signature for the program; 3) validate the integrity of
the remote Tor program leveraging the remote attestation fea-
ture of SGX. At the same time, Intel SGX’s isolation property
ensures that no one, including the donator of the hardware for
the node, can subvert the running Tor programs.

We believe this idea can also be extended to any open
projects. The SDN inter-domain controller of §[3.1|can bene-
fit from this design as well. Participating ASes who connect
to the controller can inspect and verify the controller’s code
to make sure that it does not leak any policy information on
purpose (i.e., the code does not contain any logic to explic-
itly send the information to the outside world). They also
share a private key for attestation purposes among themselves.
Then, by relying on SGX’s isolation and remote attestation
properties, ISPs can ensure privacy.

S. PRELIMINARY EVALUATION

We evaluate the cost of using SGX functionality to improve
the privacy and security of network application. In theory,
enclaves running Intel SGX perform near to the native speed
of a processor if no external communications or interrupts
(e.g., asynchronous exits in SGX) are incurred. To charac-
terize the potential performance penalty of adopting SGX
in the absence of real SGX hardware platform, we provide
a model (e.g., hardware parameters from recent literature)
and measure how many of such operations are required in
performing a high-level function of secured network appli-
cations. We characterize the overhead using a prototype of
software-defined inter-domain routing (similar to that of Fig-
ure developed using OpenSGX [2]°. We use a Quad core
Intel i5-4690 3.5GHz CPU machine running Linux 3.11.0.

Overhead characterization: We measure the overhead of
two key elements that dominates the overhead of running
Intel SGX: remote attestation and I/O inside the enclave.
We provide a rough estimate of the cost of these operations
in terms of CPU cycles, using our prototype. We assume
each SGX instruction [[7] takes 10K CPU cycles and measure
the instructions per cycle (IPC) by executing applications

“For simplicity, we assume that the compilation process is determin-
istic [[13L29].

50penSGX is the only publicly available platform at the time of
writing.

Target Quoting Challenger
w/oDH w/DH w/oDH w/DH w/oDH w/DH
SGX(U) inst. 20 20 17 17 8 8

Normal inst. 154M  4338M  125M  125M  124M  348M

Table 1: Number of instructions during remote attestation.
"w/ DH" denotes remote attestation with DH key exchange
and SGX(U) stands for usermode SGX instructions.

SGX (1 packet)
w/o crypto  crypto

SGX (100 packets)
w/o crypto  crypto

SGX(U) inst. 6 6 204 204
Normal inst. 13K 97K 136K 972K

Table 2: Number of instructions of a single packet transmis-
sion. "crypto' includes overhead of symmetric key encryption
for secure communication.

Type Number of attestations

number of AS controller
number of reachable exit nodes
number of authority nodes
number of in-path middleboxes

Inter-domain routing
Tor network (Authority)
Tor network (Client)
TLS-aware middlebox

Table 3: Number of remote attestations for each design

natively without OpenSGX to estimate CPU cycles for normal
instructions. We measure the run-time overhead excluding
the cost launching an SGX application (e.g., loading code
pages into EPC pages) because it is a one-time cost.
Cost of remote attestation: Table[l|shows the cost of remote
attestation in terms of the number of instructions executed
in the target, quoting, and challenge enclaves. As part of
remote attestation, we can establish a shared secret using
Diffie-Hellman (DH). Table|[T]reports the overhead with and
without DH. We set the DH parameter as 1024-bit and use
AES-ECB mode as a symmetric key operation with 128-bit
key using polarssl [S]. The challenger enclave consumes
626M cycles®. The remote platform, which executes the
quoting and target enclave, consumes 8033M cycles. Note
the Diffie-Hellman key exchange takes up 90% of the cycles.
This suggests that the cost of each remote attestation is small.
Table 3| shows the number of remote attestations required
for each of the three applications discussed in §[3] The number
of remote attestations required is proportional to the size of
each network. Note, remote attestation occurs only at the
beginning when two parties communicate for the first time.
Thus, the overhead of remote attestation is minimal.
Cost of I/0 inside enclaves: We also measure the cost of
packet I/O within the enclave. For this, we implement and
run a simple server program which sends an MTU sized
packet inside an enclave. Note each I/O operation incurs con-
text switches (exit and resuming the enclave) and additional
instructions. Table 2] shows number of instructions used to
send a single packet and 100 packets in a batch with and
without encryption for secure communication. It shows that
while the cost of a single I/O operation is high, the cost can
be amortized with batched I/O.

10k x [# of SGX(U) instructions] + I PC'x [# of normal instruc-
tions]. Here, the resulting average IPC is 1.8.



Inter-domain AS-local (avg.)

w/o SGX  w/SGX w/oSGX  w/SGX
SGX(U) inst. - 1448 - 42
Normal inst. 74M 135M 13M 24M

Table 4: Costs of SDN-based inter-domain routing. ''w/o
SGX" denotes executing applications natively without SGX
and the result of AS-local is the average of 30 controllers.
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Figure 3: Number of CPU cycles consumed in the main con-
troller as AS number increases

Software-Defined Inter-domain Routing: We quantify the
overhead of the SGX-enabled software-defined inter-domain
routing controllers. In our implementation, the AS-local con-
trollers send their BGP-like policy to the inter-domain con-
troller. We then create a random topology with 30 ASes with
hypothetical business relationships. We model export rules
according to their business relationship (i.e., peer, customer,
and provider) and assume each AS has a local preference.
The inter-domain controller then computes routing paths for
all ASes using the rules of BGP. We verify the correctness of
its output using GNS3 [I1].

Table [d] shows the additional cost of using SGX. We com-
pare the instructions executed with the controller running
inside the enclave with OpenSGX and the one that run na-
tively without using SGX. To quantify the overhead of nor-
mal, steady-state operation, we exclude the cost of enclave
initialization and remote attestation that occurs only at the
beginning. The inter-domain controller consumes 82% more
normal instructions and AS-local controller requires 69%
more on average than the non-SGX counterparts. The over-
head is mainly due to in-enclave I/O and dynamic memory
allocation that cause context switches.

Figure |3| shows the CPU cycles consumed by the inter-
domain controller by varying the number of ASes. The over-
head gradually increases as more ASes participate because
it makes the topology more complex. SGX-enabled inter-
domain controller consumes 90% more CPU cycles compared
to the one without SGX support. Considering that our inter-
domain controller performs only BGP-like path computation
and supports no other desirable features of an SDN controller,
this is modest overhead.

6. RELATED WORK AND DISCUSSION

TEE has been an effective way of guaranteeing safe execution
of trusted application in mobile and PC environments. Many
types of TEEs have been deployed, including Trusted Plat-
form Module, ARM TrustZone, Intel TXT, and AMD SVM,
over time. Traditional trusted computing relies on chain of
trust, which increases the size of TCB. Flicker [24] dramati-
cally reduces the TCB and allows piece of application code to

run inside the isolated environment. However, TEE’s usage
has been rather limited due to performance issues. Intel SGX
removes this limitations by supporting native performance
for applications running inside enclaves.

One of the early applications of SGX came from the cloud [[7,

10, 30L 31]]. Recently, Haven [[7]] proposed a cloud software
infrastructure that supports unmodified application binaries
to run inside the enclave. VC3 [31] suggests using SGX for
ensuring privacy in data analytics in the cloud. Earlier applica-
tion of trusted computing to networking applications include
establishing a stable pseudonym and secure channel in P2P
networks [6], applying TPM for securing TLS [14}[15]], and
providing data-plane fault isolation in the network [38]. Our
work focuses on identifying a wide range of new and practical
networking applications that SGX enables. We explore their
design space to demonstrate how SGX can be used to solve
currently relevant problems in the field.
Discussions: This work identifies new design space that SGX
enables. Many research issues still remain in securing enclave
applications. For example, an enclave application can be sub-
ject to Tago attacks [9], if it blindly relies on external services
(e.g., system call). The enclave program must verify/sanity
check the return values and output parameters of system calls.
The SGX specification also adopts this practice in its support
for dynamic memory allocation [19]. Also, to minimize the
attack surface, the system call interface to be used within the
enclave should be narrow [7]]. Finally, verifying the applica-
tion behavior is also not trivial and currently requires manual
effort. An important research issue to enable automatic verifi-
cation of application source code (e.g., the program actually
does not leak private data) [33]].

7. CONCLUSION

Motivated by the recent advances in trusted execution en-
vironments, this paper explores new research opportunities
that wide-spread use of TEE might enable. We demonstrate
its practical implications by exploring the design space for
SGX-enabled software-defined inter-domain routing, peer-to-
peer anonymity networks (Tor), and middleboxes. Our design
shows that SGX can not only improve the security and privacy
of existing applications, but also enable new services. Our
preliminary evaluation based on the prototype built on top
of OpenSGX shows that SGX-enabled applications results
in modest performance degradations compared to a version
that does not utilize SGX, while benefiting from improved
security and privacy.
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