From Zygote to Morula:
Fortifying Weakened ASLR on Android

Byoungyoung Lee“
Long LuP

Tielei Wang®
Taesoo KimY
Wenke Lee®

aGeorgia Tech, PStony Brook University, YMIT

In embryology, the morula is produced by the rapid division of the cell.
In Android, each application process is a fork of the process.

Security Hardening Efforts on Mobile

Address Space Layout Permission Model
Randomization (ASLR) +
ﬂ/ o
(DEP)

Underlying Operating System Mobile Platform

Security Hardening Efforts on Mobile

Address Space Layout Permission Model
Randomization (ASLR) +
ﬂ/ o
(DEP)

Underlying Operating System Mobile Platform

Address Space Layout Randomization
(ASLR)

* Motivation
 Knowing the address is prerequisite for many attacks

* Making prediction of the memory address difficult
— Individual memory layouts for each process

* Implemented in all major OSes

History of ASLR adoption in Android

* Why ASLR on Android?
— Prevent exploitations on native code in apps

* Adopted incrementally
— Performance concerns on early Android devices
(enabling PIE =» loading latency / memory overheads)
— Android 4.1 implemented full ASLR enforcements

Android Security shielded with full ASLR
implementation

Monday, July 16, 2012 by Mohit Kumar

Charlie Miller: 'Difficult to write
exploits' for Android 4.1

Summary: Android 4.1 Jelly Bean is the most secure version yet. Android now fully implements
Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP).
Unfortunately, most Android users will never get to use Jelly Bean on their device.

(] By Emil Protalinski for Zero Day | July 17, 2012 -- 20:07 GMT (13:07 PDT)

ekl ¥ rotow @emiprorainsk
Serial hacker says latest Android will be

“pretty hard” to exploit

Defenses added to Android Jelly Bean make it harder to hijack end users' phones.

by Dan Goodin - July 16 2012, 4:45pm EDT i —
[ANDROID | HARDENNG | 100 |

(actual) ASLR enforcements in Android
related to performance prioritized design

e
p

Performance Prioritized Designs of Android

* Multi-layered architectures
— Android Applications run on Dalvik VM
— with additional runtime libraries

=» Slow app launch time

Dalvik VM

/Zygote: the process creation module

Application

Android Runtime Library

fork()
Dalvik VM

the Zygote process
: a template process hosting apps Android Runtime Library

Android Runtime Library

Fast app launch time! Dalvik VM

/Zygote: the process creation module

Application

Android Runtime Library

fork()
Dalvik VM
Android Runtime Library
Dalvik VM Application
— fork() _

Android Runtime Library

Sharing address layout

Dalvik VM

10

/ygote weakens ASLR effectiveness

0o
&
—_ ——— @ request
I Zygote _j ----------------------- |:|:|:|:|: ‘\‘ neW app
— ———— Jj
I AL L D! B o e e
i
@ fork()s
i N I s O I
==M browser] e 0] e
(®specialize Shared libraries

e All apps have the same memory layouts
— For shared libraries loaded by the Zygote process

=>» Weakens Android ASLR security

11

Attacking the ASLR weakness
by Zygote

* Challenges to develop fully working exploits (with ideal
ASLR)

— Exploit the Information leak vulnerability

— Exploit the control-flow hijack vulnerability
=» should be achieved in !

Attacking the ASLR weakness
by Zygote

* How Zygote’s ASLR weakness helps attackers
— Remote Coordinated Attacks

* Information leak in Chrome + control-flow hijack in VLC
* Reduce the vulnerability searching spaces
— Local Trojan Attacks
* Obtain the memory layout by having the trojan app installed

Attacking weakened ASLR :
Remote Coordinated Attack

Chrome

Malicious JavaScript
=>» Exploit the information leak vulnerability
(CVE-2013-0912)

Attacker’s
web server

4
a8
as
—~t Crafted video file
=>» Exploit the control-flow hijack vulnerability
with leaked memory layout information

VLC player

Victim’s Android
14

Attacking weakened ASLR :
Local Trojan Attack

e Zero-permissioned trojan app
— Asks (almost) no permissions to the system
— Scanning memory spaces using the native code

— Layout information can be exported
* Intent
* [nternet

* Once the trojan app is installed, ASLR can be easily
bypassed

Intuitive (but impractical) Solutions

Application

Android Runtime Library Android Runtime Library

Dalvik VM Dalvik VM

— fork() & exec()

e Execute and initialize all components from the scratch

— Too slow to be used in practice
* App launch time: 427% slowdown

16

Morula: Fast Process Creation
without Weakening ASLR

 Maintain a Morula instance pool

— An instance is prepared (fork() and exec()) when the
device is idle

— Pull out the instance to create an app later

Morula: Fast Process Creation
without Weakening ASLR

Android Runtime Library

Dalvik VM

Application

Android Runtime Library

Dalvik VM

Still fast enough &
ASLR is securely enforced

Dalvik VM

Android Runtime Library

Pool of Morula instances

18

Morula: Fast Process Creation
without Weakening ASLR

Preparation phase
— Prepare a Morula instance when the device is idle

@ request
Zveote prepare
YE when idle
— AM
@ fork()
& exec()
— Morula
Morula

® cold-init Shared libraries

Morula: Fast Process Creation
without Weakening ASLR

Transition phase
— Transform the instance into the target application

mwa @ request
Zygote v>s IS === new app
@ send
app info
PP — Morula
browser

(@ specialize Shared libraries

Evaluations

* Implemented Morula in Android 4.2
— 548 Loc in Java
— 197 LoCinC

* Evaluated on Galaxy Nexus
— Dual-core 1.2 GHz CPU, 1GB RAM

Application Launch Delays

8 :
Bl Zygote
T B Fork & exec
=l B Morula
2
%4 // >
= 7 7 7
8 % 7
37 7 7
7z 2 2
1 % / o % ==
/| /AF3 / , A
Skype Pandora Instagram Android browser

0
Morula is 0.7% faster than Zygote on average

_|
2
o}

=» Trade-offs between
fork() in Zygote VS extra communications in Morula

22

Memory Use Overheads

(=2
(=]

Bl Zygote

sol B Fork & exec
_ B Morula
2 4l
g 30 == % —r— ? = =]
g 7 7 Z 7
S = 2 2 Y

. . % é g

7
0 Twiﬁer Sk/{pe Paéora Instag/ram Android browser

Morula uses 13.7MB (85%) more memory per app
=» Mostly from individual DalvikVM heaps

23

Implications

e Other data sharing issues by Android Zygote
— Predicting OpenSSL’s PRNG states [CCS 13]

* Systems relying on Zygote like designs
— Chrome, Server side applications [Blind ROP, Oakland 14]
— Platform specific optimizations should be considered

* Morula: On-demand Dalvik class loading / Selective randomization

* Performance prioritized designs can be odd with ASLR
— Hash table designs in dynamic script languages (to appear, BlackHat USA 2014)

Conclusion

 Showed two attacks on Weakened Android ASLR by Zygote
— Remote coordinated attacks
— Local trojan attacks

 Morula achieves fast app launch time without weakening
ASLR

Thank you

Q&A

Backup slides

Battery Consumption

* Executed the web browser every 10 seconds

* Morula imposes 0.5% more power
consumption for 100 executions

Optimizations on Morula

* On-demand Dalvik class Loading
— DalvikVM pre-loads 2,541 Dalvik classes

* Most Java libraries including Android runtime libraries
* On average, only 5% of them are actually used by applications

— Dynamically loaded the classes at the time it is used
 Shift the overheads from preparation phase to transition phase

— Device booting process can be significantly benefited

* More than 10 apps are launched during the device booting

Zygote conflicts with ASLR security

10 MB

@ I
‘D 1 MB
c
i X
O I
8 128 KB
@
9
©
5
O
o
X
LL

1 KB

=» Each app shares ~10MB sized of data that can be
potentially used as attack vectors (e.g., ROP)

5 T T T T T I
r libchromium_net.so
3 libc.so E
- libdvm.so o
. (€CO)
libssl.so fececece :
| | | | . '
0 10 20 30 40 50 60 70

Shared Libraries in Zygote (sorted in a size)

30

