Recovering from intrusions in
distributed systems with Dare

Taesoo Kim
Ramesh Chandra, Nickolai Zeldovich

MIT CSAIL

Kernel.org Claims Cyber Attack

I -";;;I.

Attackers routinely compromise
distributed systems

Written by
Erica Thinesen

E Like

2

Since starting a freelance writing business in 2006, Erica J. Thinesen has been
working with small and medium-sized businesses to create...

kernel security linux kernel

A few crucial servers at Kernel.org were attacked by hackers, the
company recently wrote on its website.

Kernel_urg IS the mDSt innﬁﬁr-l'ﬁni' Aictribuitimn Fanilihe frr o wida

range of Linux-based sc
itself. According to upda
the site, the intrusion wa
August 28.

SDLII“EE-FIJFGE Browse Blog Support

SourceForge.net > Blog

Sourceforge Attack: Full Report
Posted on Saturday, January 25th, 2011 by admin

ory: General, Site Status
As we've previously announced, SourceForge.net has been the target of a directed attack. We have
completed the first round of analysis, and have a much more solid picture of what happened, the extent of
the impact, cur plan to reduce future risk of attack. We're still working hard on fixing things. but we wanted

to share what we know with the community.

We discovered the attack on Wednesday, and have been working hard to get things back in order since
then. While several boxes were compromised we believe we caught things before the attack escalated

beyond its first stages.

Recovery is manual and
time-consuming

 Example: SourceForge.net attack

* A hosting site for open source projects (>300K)

Jan 26, 2011 An operator detected a targeted attack
Shutdown CVS, SSH and WebVC services

Jan 28, 2011 Reset passwords of 2 million users

Jan 29, 2011 Validate data such as commits and releases

Restore services after fixing the bug

Retro: automatic recovery
In a single machine

e Normal execution:

* Record information about the system execution
 Build a dependency graph of a system

Review: Action History Graph
(AHG)

* Objects: data (e.g., file) and actor (e.g., process)
 Checkpoint: snapshot of state at a particular time
« Action: unit of execution

 Each action has dependencies from/to objects

X
& W
N
f %)
o _ o_rk() S
= = —-p
Y “— checkpoint
. dependenc
_ write() - Cep Y
T — objects

Review: repair with selective
re-execution

* Need to specity the attack action (e.g., fork)

Q\Q
%) %)
% S
N
o
o — —
=]
v “— - @ checkpoint
. dependenc
write() - Cep Y

—_— -

- = - — Objects

Review: repair with selective
re-execution

* Need to specity the attack action (e.g., fork)
* Rollback objects affected by the attack

time
|

|

|

v

-~ @ checkpoint

- pp dependency

—_— -

- = - — Objects

Review: repair with selective
re-execution

* Need to specity the attack action (e.g., fork)
* Rollback objects affected by the attack

O
& W
N
fork() %&@
£ X= = -
e ad) _
reaCV _ P |
v “— checkpoint
. dependenc
_ Write() - ceP Y
T — objects

Review: repair with selective
re-execution

* Need to specity the attack action (e.g., fork)
* Rollback objects affected by the attack

O
& W
N
fork() %&@
£ X= = -
e ad) _
rea®t _ P _
v — checkpoint
. dependenc
_ write() - ceP Y
I — objects

Review: repair with selective
re-execution

* Need to specity the attack action (e.g., fork)
* Rollback objects affected by the attack
* Re-execute the rest of the actions

time
|
|
|
v

- @ checkpoint
- pp dependency

_— .

T — Objects

Challenges

Machine Machine

~ ~N ~ ~N

/. r
O Q‘* %Q)
\ \C> AHG y \ \Q‘/ AHG y

1. How to record dependencies across machines?

2. How to replay network connections?

3. How to minimize re-exec. of long-lived process?

Overview of DARE's design

Machine A

-_— e - .

|
|

N\
' \
| T User
I i Kernel

Replayer

-

I

l« Logger
/

/

Requests:

N\

- Rollback(checkpoint)

- Re-execute(action)

N\

\ _ /(D-ctrl
| Distriputed - =
Repair Ctrl

N\

Machine B

\
\ /
\ Machine C
X,)
D-ctrl
\ /

Recording dependencies across
multiple machines

Machine A

Machine B

Connect()
— — — — >

—
—
—_—

What if same IP and port used multiple times?

Approach: assign unique id to

Machine A

Machine B

sockets
X
%O&A &
Cinnect()
T = =
send()
T T = =)

Distributed +
Repair Ctrl / \

—
—
—_—

Distributed
Repair Cirl

Send socket's unique id to the receiver

Repair network connections

Machine A

/

AHG

o

X
%%
o

Connect()

e —

—

=
[J—
=

Distributed

Machine B

]

—

Repair Cirl

/

Distributed
Repair Ctrl

AHG

/

Send rollback(id) request to the receiver

Repair long-lived processes

* Repairing shell2 requires re-execution of shell1

Repair long-lived processes

 Strawman: process checkpoint

 Problem: poor performance
« DMTCP (e.g., 0.6s w/ 4 MB log)
e Linux-CR

Approach: mark quiescent state

* Long-lived processes (e.g., daemon)

e Designed to be stateless

* Introduce mark quiescent() syscall

* Application needs modification to use the syscall
* Re-running application rolls back state

Implementation

» Early prototype of DARE on Linux

 Extend Retro's logger / repair controller
 Add mark quiescent() syscall

e GUI Tools

Component
Logging kernel module
AHG GUI Tool
Repair controller, managers
System library managers

Lines of code
3,300 lines of C
2,000 lines of Python
5,300 lines of Python

800 lines of C

Evaluation

* Does it recover from a synthetic attack?

e SSH attack with multiple users involved

* Does it effectively minimize re-execution?

 mark_quiescent() works efficiently?

VM A

Experiment setup

;

\.

5 Users

Attacker

5 Users

—
—
— —
— -

L I —
—_—
—_—

shared.c

User0
Uéér4
User5

UéérQ

/

Experiment results

 DARE recovers a synthetic attack

e 8,953 objects in AHG (two VMs)
* Restore the attack and rerun 10 legitimate users

Experiment setup: using

VM A

mark_quiescent()

;

\.

5 Users

Attacker

5 Users

shared.c

User0

Uéér4

User5

User9

Experiment results

 DARE effectively minimizes re-execution

 Modify SSHD to use mark_quiescent()
* Restore the attack and rerun 5 legitimate users
« Repairtime: 3.7s — 0.44 s

Open problems

 Missing dependencies

 What if password or SSH key are stolen?

 Repair across trust domains

 Who is allowed to undo an action?
 How to trust undo requests?

Related work

e Record-and-reexecute:

* Retro: initial design of repair controller, OS-level
 Warp: retroactive patching, repairing web app

* Restoring network connections:

« DMTCP: checkpoint and restore distributed processes
« Set/getsockopt: TCP repair mode on Linux 3.5

» Detecting attacks in distributed systems

* Vigilante: containment of internet worms
* Heat-ray: preventing identity snowball attacks

Conclusion

» Efficient recovery mechanism in distributed
systems using selective re-execution

 Three new techniques:

 Record dependencies across multiple machines
* Repair network connections
* Repair long-lived processes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

