
Making Linux Protection 
Mechanisms Egalitarian with 

UserFS

Taesoo Kim
and

Nickolai Zeldovich

MIT CSAIL



Overview:
How to build secure applications?

● Simple in principle: 

- reduce privileges of application components

- enforce policy at lower level (e.g. OS kernel)

● Difficult in practice (unless root user):

- cannot create new principals 

- cannot reduce privileges 



This Talk: 

How to help programmers to reduce 
privileges and enforce security policy in 

Linux?

by allocating and managing UIDs



Today’s Unix-like OS

● UID is not a real user’s identity anymore

(instead, also use UID as a protection principal)

i.e. nobody, www-data, wheelfs, etc.

● Existing protection mechanisms are using UID 
as a security principal

i.e. filesystem permission



Running example: DokuWiki



Example: Security model of 
DokuWiki

● PHP based Wiki 
● Run as a single UID

● Main features

1) Wiki users

2) Saving each page as a file

3) ACL on each page



Example: Run DokuWiki

php
<UID:www-data>



Example: Alice write to the page1

ACL of DokuWiki Pages

/doku/pages/page1 Alice: r/w Bob:r/-

/doku/pages/page2 Alice: r/- Bob: r/w

/doku/conf/acl.php
<UID:www-data>

open()

alice 

write to page1 

php
<UID:www-data>



Example: Alice write to the page1

/doku/pages/page1write()

/doku/conf/acl.phpopen()

alice 

write to page1 

php
<UID:www-data>

<UID:www-data>

<UID:www-data>



Example: Bob write to the page1

ACL of DokuWiki Pages

/doku/pages/page1 Alice: r/w Bob:r/-

/doku/pages/page2 Alice: r/- Bob: r/w

/doku/conf/acl.php
<UID:www-data>

open()

bob 

write to page1 

php
<UID:www-data>



Example: Bob write to the page1

/doku/conf/acl.phpopen()

bob 

write to page1 

failed to write

php
<UID:www-data>

<UID:www-data>



Example: Vulnerability when 
checking ACL

/doku/pages/page1
<UID:www-data>

write()

/doku/conf/acl.phpopen()

bob 

write to page1 

failed to write

php
<UID:www-data>

<UID:www-data>



Example: Vulnerability when 
checking ACL

/doku/pages/page1write()

/doku/conf/acl.phpopen()

bob 

write to page1 

failed to write

php
<UID:www-data>

The ACL check happens 40 times
in DokuWiki’s code:

New, potentially-buggy code in every app. 

CVE-2010-0288: 
Insufficient Permission Check

<UID:www-data>

<UID:www-data>



Strawman: Running php with 
different UID

php
<UID:wiki-alice>

/doku/pages/page1

<wiki-alice=r/w ,others=r/->

write()

alice 

write to page1 

php
<UID:wiki-bob>

/doku/pages/page1write()

bob 

write to page1 
<wiki-alice=r/w ,others=r/->



Problem: Privilege separation is 
difficult in Unix 

● Applications cannot

      - allocate new UIDs (e.g. adduser)

      - switch current UID (e.g. setuid)

                                        without root privilege
● Ironically, 

  To reduce privilege, it requires root privilege 

● Running DokuWiki as root is a security disaster



Problem: Privilege separation is 
difficult in Unix 

root

alice bob doku-wiki

doku-alice doku-bob

root

taesoo

PHP PHP

DokuWiki

PHP

DokuWiki

PHP

Unix-like OS

firefox



Goal of this work

 Allowing any application to use these 
protection mechanisms
without root privilege

● create a new principal
● reuse existing protection mechanisms 
● use chroot and firewall mechanisms



Outline

● Overview
● Design
● Example
● Implementation
● Evaluation
● Limitation
● Related work
● Conclusion



Design: UID allocation

● Strawman: pick a previously unused UID

● Challenges
● who can call setuid()?

  
● How to reuse UIDs?

  
● How to make UIDs persistent?



Challenge: Who can call setuid()?

● Current Linux
● Root can switch to any UID with setuid()
● Non-root cannot switch to new UID with setuid()

● Ideal system requirements
● Need to represent privilege of each UID
● Need to specify who can access each UID
● Need to pass privilege between processes



Key Idea: UserFS

● Maintaining UIDs as files in /proc-like filesystem

● Representing Privileges

  - each UID is represented by a file

● Delegating Privileges

  - change permissions on the file

  - send the file descriptor via FD passing 

● Accountability

  - track allocated UIDs of each user in a directory 



Representing UIDs



Representing UIDs

mount UserFS at /userfs



Representing UIDs
represent UID number as a directory



Representing UIDs
“ctl file” to represent 
          a privilege of each UID



Representing Privileges

● Each UID has only one ctl file
● Any process having the file descriptor of the ctl

- can change current UID e.g. setuid()

- can pass it through Unix domain socket e.g. send()

- can deallocate UID by deleting the ctl file e.g. unlink()



Challenge: How to reuse UIDs?

● Solution:

- Introduce 64-bit #gen

- Use #gen to detect unwanted UID reuse

● Ideally, unique ID to every principal

● Problem: 

- Linux use 32-bit UID

- Reuse previously allocated UID



Challenge: How to make UIDs 
persistent?

● For each UID, keep track of:

- #gen

- permissions of ctl file

- creator’s UID

                                     in persistent database



Managing UIDs

File system UserFS

Add a file Allocate a UID

Delete a file Deallocate a UID

Open a file Gain the privilege of UID

Change permission Delegate a privilege



Example: Using a Ufile

fd=open(/userfs/1000/ctl)

ioctl(fd, IOCTL_ALLOC, 2000)

2) UID Allocation

1) Setuid

ioctl(fd, IOCTL_SETUID)

sendmsg(receiver-socket, fd)

3) Privilege Delegation



Outline

● Overview
● Design
● Example
● Implementation
● Evaluation
● Limitation
● Related work
● Conclusion



Example: Security model of 
UserFS-aware DokuWiki

Key idea:

    Allocate UID for each Wiki user!

- Authenticate users with non-root daemon

- Use UID Sandboxing

- Reuse well-tested ACL of filesystem



Example: Authenticating users 
with non-root daemon

● Allocate new doku-admin UID (Wiki admin)

● When a new user signs up

- doku-admin will allocate a UID for the user

- doku-admin will gain read permission on ctl file

● When a user logs in

- login-mgr (setuid to doku-admin) check id/passwd

- open the ctl file of the Wiki user

- send it through Unix domain socket



Example: Servicing DokuWiki
with anonymous UID

php
<UID:anony.>

fork/exec

httpd
<UID:httpd>

URL

DokuWiki



Example: Authenticating users 
with non-root daemon

alice 
(ID/PASS)

php
<UID:anony.>



Example: Authenticating users 
with non-root daemon

alice 
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>



Example: Authenticating users 
with non-root daemon

alice 
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()

<doku-admin:r/->



Example: Authenticating users 
with non-root daemon

alice 
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->



Example: Authenticating users 
with non-root daemon

alice 
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

setuid(fd)

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->



Example: UID Sandboxing

● Initially, launch PHP with anonymous UID

● After a Wiki user logins

        change UID of PHP to Wiki user’s UID

- login-mgr will send the file descriptor of ctl file

- receive the file descriptor of the Wiki user

- call setuid() with the received file descriptor



Example: UID Sandboxing

alice 
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->



Example: UID Sandboxing

alice 
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->



Example: UID Sandboxing

alice 
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl 

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

100 LoC!?



Example: Reusing well-tested ACL 
of filesystem

● Save each Wiki page as a file with owner’s UID

● Align ACL of Wiki page to the file permission

● OS will enforce security policy



Example: Reusing well-tested ACL 
of filesystem

php
<UID:doku-alice>



Example: Reusing well-tested ACL 
of filesystem

/doku/pages/page1
<doku-alice:r/w>

write page1

php
<UID:doku-alice>



Example: Reusing well-tested ACL 
of filesystem

/doku/pages/page1
<doku-alice:r/w>

php
<UID:doku-alice>

write page1

/doku/pages/page2
<doku-alice:r/->

write page2

Bug on checking ACL?
CVE-2010-0288: Insufficient Permission Check



Implementation

● A single kernel module on Linux 2.6.31

- Using Linux Security Module (LSM)

    ex) file_permission, inode_setattr, socket_send/recvmsg

- Using Netfilter (NF)

    ex) NF_INET_LOCAL_IN/OUT

- Using Virtual File System (VFS)

● Minimal changes of the Linux kernel

- < 3,000 LoC Kernel Module

- < 1,500 LoC Library



Implementing 
Generation Number

● Keeping system-wide 64-bit #gen 

● Storing #gen in ext. attributes for setuid binaries

by hooking inode_setattr() of LSM

● Checking #gen when executing setuid binaries

by hooking file_permission() of LSM



Implementing 
Database

● Maintaing /etc/userfs/* per UID 

- #gen

- permission of ctl file

- creator’s UID/GID

● Lazily update the database

● mount.userfs constructs /userfs after booting



Evaluation questions

● How easy is it to use UserFS?

- Modified 5 applications, minimal code changes

● What kinds of security problems can it prevent?

- Catches 5/6 attacks on one of the apps, DokuWiki

● What is the performance overhead?

- Minimal overhead, see the paper



Apps LoC Security enhancement 

FTP Server 30 (+100 login-mgr) Avoid root privilege

Chromium 
Browser

1 UID Sandboxing

DokuWiki 40 (+150 login-mgr) Avoid root privilege
UID Sandboxing
Reuse OS protection mechanism

Cmdline Tool 
(su and bash)

15 (+60 bash) Easier to switch privileges

Subsh
(shell tools)

150 Easier to reduce privileges

Applying UserFS to existing 
applications



Apps LoC Security enhancement 

FTP Server 30 (+100 login-mgr) Avoid root privilege

Chromium 
Browser

1 UID Sandboxing

DokuWiki 40 (+150 login-mgr) Avoid root privilege
UID Sandboxing
Reuse OS protection mechanism

Cmdline Tool 
(su and bash)

15 (+60 bash) Easier to switch privileges

Subsh
(shell tools)

150 Easier to reduce privileges

Applying UserFS to existing 
applications

By changing fork() -> ufork(),
Provide UID for each renderer process



Vulnerabilities prevented

Attack Vectors CVE
Directory Traversal CVE-2010-0287

Insufficient Permission Check CVE-2010-0288

Cross Site Request Forgery CVE-2010-0289

PHP Code Upload CVE-2006-4675

PHP Code Injection CVE-2006-4674
CVE-2009-1960

● Prevent 5 out of 6 vulnerabilities

: not intended to prevent Cross Site Req. Forgery

● Application can rely on OS to enforce policy

: or can even get rid of manual ACL check routine



Evaluation of DokuWiki

● 40 LoC changes on DokuWiki (+150 LoC Login-mgr)

- excluding 530 LoC UserFS PHP extension

● 35% performance overhead with extra security checks

- invoking login-mgr in every request

- could avoid overhead with long-running daemon

Login-mgr 150 LoC

DokuWiki 40 LoC

Without UserFS 45 ms

With UserFS 61 ms

LoC of modification Fetching a wiki page



Limitation

● UID gen# only tracked for setuid binaries
● Reused UID owner can look at old UID’s files
● Applications should clean up sensitive files when 

deallocating UIDs

● GID allocation not implemented in prototype
● Can emulate this by creating shared UID

● Future work: allow a process to have multiple 
concurrent UIDs (generalization of Unix GIDs)



Related Work

● UID sandboxing

e.g. Android, Qmail

● System call interposition

e.g. Ostia

● New OS 

e.g. HiStar, ServiceOS, KeyKOS, VSTa ...

● New protection mechanisms for Linux/Unix

e.g. Flume, SELinux
e.g. Capsicum – doesn’t reuse file permission checks,
                     would be a good complement to UserFS



Conclusion
● Key idea: 

 Representing UID as files in /proc-like filesystem

● The first system to provide egalitarian OS 
protection mechanisms for Linux

                ex) UID allocation, chroot and firewall

● Anyone 

can create a new protection principal

can reuse exiting protection mechanisms

                              without losing compatibility 
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