
Making Linux Protection
Mechanisms Egalitarian with

UserFS

Taesoo Kim
and

Nickolai Zeldovich

MIT CSAIL

Overview:
How to build secure applications?

● Simple in principle:

- reduce privileges of application components

- enforce policy at lower level (e.g. OS kernel)

● Difficult in practice (unless root user):

- cannot create new principals

- cannot reduce privileges

This Talk:

How to help programmers to reduce
privileges and enforce security policy in

Linux?

by allocating and managing UIDs

Today’s Unix-like OS

● UID is not a real user’s identity anymore

(instead, also use UID as a protection principal)

i.e. nobody, www-data, wheelfs, etc.

● Existing protection mechanisms are using UID
as a security principal

i.e. filesystem permission

Running example: DokuWiki

Example: Security model of
DokuWiki

● PHP based Wiki
● Run as a single UID

● Main features

1) Wiki users

2) Saving each page as a file

3) ACL on each page

Example: Run DokuWiki

php
<UID:www-data>

Example: Alice write to the page1

ACL of DokuWiki Pages

/doku/pages/page1 Alice: r/w Bob:r/-

/doku/pages/page2 Alice: r/- Bob: r/w

/doku/conf/acl.php
<UID:www-data>

open()

alice

write to page1

php
<UID:www-data>

Example: Alice write to the page1

/doku/pages/page1write()

/doku/conf/acl.phpopen()

alice

write to page1

php
<UID:www-data>

<UID:www-data>

<UID:www-data>

Example: Bob write to the page1

ACL of DokuWiki Pages

/doku/pages/page1 Alice: r/w Bob:r/-

/doku/pages/page2 Alice: r/- Bob: r/w

/doku/conf/acl.php
<UID:www-data>

open()

bob

write to page1

php
<UID:www-data>

Example: Bob write to the page1

/doku/conf/acl.phpopen()

bob

write to page1

failed to write

php
<UID:www-data>

<UID:www-data>

Example: Vulnerability when
checking ACL

/doku/pages/page1
<UID:www-data>

write()

/doku/conf/acl.phpopen()

bob

write to page1

failed to write

php
<UID:www-data>

<UID:www-data>

Example: Vulnerability when
checking ACL

/doku/pages/page1write()

/doku/conf/acl.phpopen()

bob

write to page1

failed to write

php
<UID:www-data>

The ACL check happens 40 times
in DokuWiki’s code:

New, potentially-buggy code in every app.

CVE-2010-0288:
Insufficient Permission Check

<UID:www-data>

<UID:www-data>

Strawman: Running php with
different UID

php
<UID:wiki-alice>

/doku/pages/page1

<wiki-alice=r/w ,others=r/->

write()

alice

write to page1

php
<UID:wiki-bob>

/doku/pages/page1write()

bob

write to page1
<wiki-alice=r/w ,others=r/->

Problem: Privilege separation is
difficult in Unix

● Applications cannot

 - allocate new UIDs (e.g. adduser)

 - switch current UID (e.g. setuid)

 without root privilege
● Ironically,

 To reduce privilege, it requires root privilege

● Running DokuWiki as root is a security disaster

Problem: Privilege separation is
difficult in Unix

root

alice bob doku-wiki

doku-alice doku-bob

root

taesoo

PHP PHP

DokuWiki

PHP

DokuWiki

PHP

Unix-like OS

firefox

Goal of this work

 Allowing any application to use these
protection mechanisms
without root privilege

● create a new principal
● reuse existing protection mechanisms
● use chroot and firewall mechanisms

Outline

● Overview
● Design
● Example
● Implementation
● Evaluation
● Limitation
● Related work
● Conclusion

Design: UID allocation

● Strawman: pick a previously unused UID

● Challenges
● who can call setuid()?

● How to reuse UIDs?

● How to make UIDs persistent?

Challenge: Who can call setuid()?

● Current Linux
● Root can switch to any UID with setuid()
● Non-root cannot switch to new UID with setuid()

● Ideal system requirements
● Need to represent privilege of each UID
● Need to specify who can access each UID
● Need to pass privilege between processes

Key Idea: UserFS

● Maintaining UIDs as files in /proc-like filesystem

● Representing Privileges

 - each UID is represented by a file

● Delegating Privileges

 - change permissions on the file

 - send the file descriptor via FD passing

● Accountability

 - track allocated UIDs of each user in a directory

Representing UIDs

Representing UIDs

mount UserFS at /userfs

Representing UIDs
represent UID number as a directory

Representing UIDs
“ctl file” to represent
 a privilege of each UID

Representing Privileges

● Each UID has only one ctl file
● Any process having the file descriptor of the ctl

- can change current UID e.g. setuid()

- can pass it through Unix domain socket e.g. send()

- can deallocate UID by deleting the ctl file e.g. unlink()

Challenge: How to reuse UIDs?

● Solution:

- Introduce 64-bit #gen

- Use #gen to detect unwanted UID reuse

● Ideally, unique ID to every principal

● Problem:

- Linux use 32-bit UID

- Reuse previously allocated UID

Challenge: How to make UIDs
persistent?

● For each UID, keep track of:

- #gen

- permissions of ctl file

- creator’s UID

 in persistent database

Managing UIDs

File system UserFS

Add a file Allocate a UID

Delete a file Deallocate a UID

Open a file Gain the privilege of UID

Change permission Delegate a privilege

Example: Using a Ufile

fd=open(/userfs/1000/ctl)

ioctl(fd, IOCTL_ALLOC, 2000)

2) UID Allocation

1) Setuid

ioctl(fd, IOCTL_SETUID)

sendmsg(receiver-socket, fd)

3) Privilege Delegation

Outline

● Overview
● Design
● Example
● Implementation
● Evaluation
● Limitation
● Related work
● Conclusion

Example: Security model of
UserFS-aware DokuWiki

Key idea:

 Allocate UID for each Wiki user!

- Authenticate users with non-root daemon

- Use UID Sandboxing

- Reuse well-tested ACL of filesystem

Example: Authenticating users
with non-root daemon

● Allocate new doku-admin UID (Wiki admin)

● When a new user signs up

- doku-admin will allocate a UID for the user

- doku-admin will gain read permission on ctl file

● When a user logs in

- login-mgr (setuid to doku-admin) check id/passwd

- open the ctl file of the Wiki user

- send it through Unix domain socket

Example: Servicing DokuWiki
with anonymous UID

php
<UID:anony.>

fork/exec

httpd
<UID:httpd>

URL

DokuWiki

Example: Authenticating users
with non-root daemon

alice
(ID/PASS)

php
<UID:anony.>

Example: Authenticating users
with non-root daemon

alice
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>

Example: Authenticating users
with non-root daemon

alice
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()

<doku-admin:r/->

Example: Authenticating users
with non-root daemon

alice
(ID/PASS) fork/exec

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

Example: Authenticating users
with non-root daemon

alice
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

setuid(fd)

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

Example: UID Sandboxing

● Initially, launch PHP with anonymous UID

● After a Wiki user logins

 change UID of PHP to Wiki user’s UID

- login-mgr will send the file descriptor of ctl file

- receive the file descriptor of the Wiki user

- call setuid() with the received file descriptor

Example: UID Sandboxing

alice
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

Example: UID Sandboxing

alice
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

Example: UID Sandboxing

alice
(ID/PASS) fork/exec

php
<UID:doku-alice>

php
<UID:anony.>

login-mgr
<UID:doku-admin>

ctl file

/userfs/501/ctl

/var/doku/passwd
<doku-admin:r/->

open()

fd=open()
send(fd) <doku-admin:r/->

100 LoC!?

Example: Reusing well-tested ACL
of filesystem

● Save each Wiki page as a file with owner’s UID

● Align ACL of Wiki page to the file permission

● OS will enforce security policy

Example: Reusing well-tested ACL
of filesystem

php
<UID:doku-alice>

Example: Reusing well-tested ACL
of filesystem

/doku/pages/page1
<doku-alice:r/w>

write page1

php
<UID:doku-alice>

Example: Reusing well-tested ACL
of filesystem

/doku/pages/page1
<doku-alice:r/w>

php
<UID:doku-alice>

write page1

/doku/pages/page2
<doku-alice:r/->

write page2

Bug on checking ACL?
CVE-2010-0288: Insufficient Permission Check

Implementation

● A single kernel module on Linux 2.6.31

- Using Linux Security Module (LSM)

 ex) file_permission, inode_setattr, socket_send/recvmsg

- Using Netfilter (NF)

 ex) NF_INET_LOCAL_IN/OUT

- Using Virtual File System (VFS)

● Minimal changes of the Linux kernel

- < 3,000 LoC Kernel Module

- < 1,500 LoC Library

Implementing
Generation Number

● Keeping system-wide 64-bit #gen

● Storing #gen in ext. attributes for setuid binaries

by hooking inode_setattr() of LSM

● Checking #gen when executing setuid binaries

by hooking file_permission() of LSM

Implementing
Database

● Maintaing /etc/userfs/* per UID

- #gen

- permission of ctl file

- creator’s UID/GID

● Lazily update the database

● mount.userfs constructs /userfs after booting

Evaluation questions

● How easy is it to use UserFS?

- Modified 5 applications, minimal code changes

● What kinds of security problems can it prevent?

- Catches 5/6 attacks on one of the apps, DokuWiki

● What is the performance overhead?

- Minimal overhead, see the paper

Apps LoC Security enhancement

FTP Server 30 (+100 login-mgr) Avoid root privilege

Chromium
Browser

1 UID Sandboxing

DokuWiki 40 (+150 login-mgr) Avoid root privilege
UID Sandboxing
Reuse OS protection mechanism

Cmdline Tool
(su and bash)

15 (+60 bash) Easier to switch privileges

Subsh
(shell tools)

150 Easier to reduce privileges

Applying UserFS to existing
applications

Apps LoC Security enhancement

FTP Server 30 (+100 login-mgr) Avoid root privilege

Chromium
Browser

1 UID Sandboxing

DokuWiki 40 (+150 login-mgr) Avoid root privilege
UID Sandboxing
Reuse OS protection mechanism

Cmdline Tool
(su and bash)

15 (+60 bash) Easier to switch privileges

Subsh
(shell tools)

150 Easier to reduce privileges

Applying UserFS to existing
applications

By changing fork() -> ufork(),
Provide UID for each renderer process

Vulnerabilities prevented

Attack Vectors CVE
Directory Traversal CVE-2010-0287

Insufficient Permission Check CVE-2010-0288

Cross Site Request Forgery CVE-2010-0289

PHP Code Upload CVE-2006-4675

PHP Code Injection CVE-2006-4674
CVE-2009-1960

● Prevent 5 out of 6 vulnerabilities

: not intended to prevent Cross Site Req. Forgery

● Application can rely on OS to enforce policy

: or can even get rid of manual ACL check routine

Evaluation of DokuWiki

● 40 LoC changes on DokuWiki (+150 LoC Login-mgr)

- excluding 530 LoC UserFS PHP extension

● 35% performance overhead with extra security checks

- invoking login-mgr in every request

- could avoid overhead with long-running daemon

Login-mgr 150 LoC

DokuWiki 40 LoC

Without UserFS 45 ms

With UserFS 61 ms

LoC of modification Fetching a wiki page

Limitation

● UID gen# only tracked for setuid binaries
● Reused UID owner can look at old UID’s files
● Applications should clean up sensitive files when

deallocating UIDs

● GID allocation not implemented in prototype
● Can emulate this by creating shared UID

● Future work: allow a process to have multiple
concurrent UIDs (generalization of Unix GIDs)

Related Work

● UID sandboxing

e.g. Android, Qmail

● System call interposition

e.g. Ostia

● New OS

e.g. HiStar, ServiceOS, KeyKOS, VSTa ...

● New protection mechanisms for Linux/Unix

e.g. Flume, SELinux
e.g. Capsicum – doesn’t reuse file permission checks,
 would be a good complement to UserFS

Conclusion
● Key idea:

 Representing UID as files in /proc-like filesystem

● The first system to provide egalitarian OS
protection mechanisms for Linux

 ex) UID allocation, chroot and firewall

● Anyone

can create a new protection principal

can reuse exiting protection mechanisms

 without losing compatibility

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

